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OPTIMAL MODEL AVERAGING

BASED ON GENERALIZED METHOD OF MOMENTS
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Abstract: We propose a model averaging method that combines estimators from the

generalized method of moments (GMM). Unlike other GMM-based model averaging

procedures, this method allows all candidate models to be misspecified (not locally

misspecified). We prove that when all candidate models are misspecified, the pro-

posed method is optimal in the sense of minimizing the estimation loss; when there

exists at least one correctly specified model, the method can achieve the common

root-n convergence rate. Simulation experiments and an application to a housing

market show the superiority of our method over other methods.
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1. Introduction

Model averaging and selection are the two main approaches used to deal

with having many candidate models. Using model selection, we figuratively put

all of our inferential eggs in one unevenly woven basket (Longford (2005)). Model

averaging is a smoothed extension of model selection that substantially reduce

the risk relative to that of selection (Hansen (2014)). Moreover, model averaging

procedures can be more stable than those of model selection, for which a small

change in the data can have a significant effect on the choice of the choice of

model (Breiman (1996); Yuan and Yang (2005)).

There are two types of model averaging: Bayesian model averaging (BMA)

and frequentist model averaging (FMA). BMA has long been a popular statistical

technique. Its main advantage is that inferences based on BMA are straightfor-

ward; see Hoeting et al. (1999) for a comprehensive review of this literature.

FMA is commonly used to improve prediction or estimation precision. As dis-

cussed in Bates and Granger (1969) and Leung and Barron (2006), an average

estimator often reduces the mean squared error (MSE) in an estimation. This

is because it incorporates useful information from the relationship between the
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response and the covariates, providing a kind of insurance against selecting a

very poor candidate model. Many FMA methods have been proposed, including

averaging weights based on the scores of information criteria (Buckland, Burn-

ham and Augustin (1997); Hjort and Claeskens (2003, 2006); Zhang and Liang

(2011)), optimal weighting (Hansen (2007); Wan, Zhang and Zou (2010); Liang

et al. (2011); Zhang, Zou and Liang (2014); Zhang and Wang (2019)), adaptive

weighting (Yang (2001); Yuan and Yang (2005); Zhang, Lu and Zou (2013)), plug-

in methods (Liu (2015); Yin, Liu and Lin (2019), and model averaging marginal

regression (Li, Linton and Lu (2015); Chen et al. (2018)). The optimal weighting

method minimizes a weight choice criterion, and has been shown to provide the

minimal prediction loss in a large sample sense. In the seminal work on optimal

model averaging, Hansen (2007) combined the least squares estimators. Since

then, a large body of literature has been formed on optimally combining least

squares estimators or generalized least squares estimators, such as Hansen and

Racine (2012), Liu and Okui (2013), Ando and Li (2014), Cheng and Hansen

(2015), Liu, Okui and Yoshimura (2016), and Fang et al. (2019). Recently, op-

timal model averaging methods were extended to combine maximum likelihood

estimators; see, for example, Zhang et al. (2016) and Ando and Li (2017). The

weighted average least squares estimation is a method between BMA and FMA,

using prior distributions and an analysis of the estimation risk from a frequentist

perspective; see Magnus, Powell and Prüfer (2010), Magnus, Wan and Zhang

(2011), and De Luca, Magnus and Peracchi (2018).

In this study, we develop optimal model averaging based on the general-

ized method of moments (GMM). In general, the GMM is more applicable than

the maximum likelihood method because the former only requires the moment

functions, and does not require knowledge of the likelihood function. Despite

the extensive literature on model averaging, few studies have explicitly examined

GMM-based model averaging. Those that have include the works of DiTraglia

(2016) and Cheng, Liao and Shi (2019). DiTraglia (2016) combines GMM estima-

tors from candidate models with different moment condition sets, and takes into

account locally misspecified moment conditions. We describe the local misspec-

ification in (2.3) of Section 2. Cheng, Liao and Shi (2019) combines two GMM

estimators, one of which is from a correctly specified candidate model. In con-

trast, we allow all candidate models to be misspecified (not locally misspecified).

To develop an optimal model averaging method for the GMM, following

the classic model averaging literature, we propose a weight choice criterion by

estimating the risk under the GMM framework. We prove that when all candidate

models are misspecified, the corresponding model average estimator is optimal in
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the sense that it minimize the estimation loss. To provide more comprehensive

support for using our method, we prove that it has root-n consistency when

there are correctly specified candidate models. Therefore, for a large sample

sense, our method performs no worse than the commonly used methods that

also achieve root-n consistency. In addition to providing theoretical justifications

for the proposed method, we use a Monte Carlo study to demonstrate that the

proposed averaging method outperforms the GMM and a selection method based

on the GMM in a variety of settings, especially when the sample size is small.

The remainder of this paper is structured as follows. In Section 2, we intro-

duce the candidate models and the GMM estimation. In Section 3, we introduce

the proposed model average estimator based on the GMM. In Section 4, we show

the asymptotic optimality and root-n consistency of the proposed method. In

Sections 5 and 6, we report the results of a Monte Carlo study and a real-data

application, respectively. Section 7 concludes the paper. The proofs of the theo-

retical results are given in the online Supplementary Material.

2. Candidate Models and GMM Estimation

Let θd×1 be an unknown vector, µtrue(θ)p×1 be moments, and µ̂p×1 be the

sample moments. Thus, the moment conditions are

E {µ̂− µtrue(θ)} = 0p×1. (2.1)

Let µ(·) be the working moment function, which can be different from µtrue(·).
As a result, the working moment conditions can be misspecified; that is,

E {µ̂− µ(θ)} 6= 0p×1. (2.2)

For example, when

yi = Xi1θ1 + · · ·+Xi(d−1)θd−1 + exp(Xidθd) + εi,

with E(εi|Xi1, . . . , Xid) = 0, we have µ̂ = XTy and

µtrue(θ) = XT
[{
X11θ1, . . . , X1(d−1)θd−1, exp(X1dθd)

}T
,

. . . ,
{
Xn1θ1, . . . , Xn(d−1)θd−1, exp(Xndθd)

}T]T
,

where y = (y1, . . . , yn)T and X =
{

(X11, . . . , X1d)
T, . . . , (Xn1, . . . , Xnd)

T
}T

.

However, the working moment function may be incorrectly set as µ(θ) = XTXθ;
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that is, the function of the last variable Xid is misspecified. The local misspeci-

fication considered in DiTraglia (2016) is

E {µ̂− µ(θ)} =

(
0T
p1×1,

ζp2×1√
n

)T

, (2.3)

where ζ is an unknown vector and p1 + p2 = p. Notably, the setting in (2.2) is

more general than that in (2.3).

Because we are uncertain whether some components of θ should be set to

zero, which determines whether certain variables should be used, we consider

M candidate models. For the mth candidate model, the unknown parameter

vector is θm, which is a dm-dimensional sub-vector of θ, such that θm = Πmθ,

where Πm is a projection matrix equal to (Idm×dm ,0dm×(d−dm)), or a column

permutation thereof. In the example following (2.2), when θd is very small, using

µ{(θ1, . . . , θd−1, 0)T} as the working moment function can be better than using

µ{(θ1, . . . , θd−1, θd)T} in (2.4).

Under the mth candidate model, the GMM estimator of θm is

θ̂m = argmin
θm

[{µ̂− µ(ΠT
mθm)TΩ(µ̂− µ(ΠT

mθm))}], (2.4)

where Ω is a positive-definite weighting matrix. Note that this is a special case of

the classic minimum distance estimator and of the general estimator (Newey and

McFadden (1994)), but not of a general GMM estimator in which the moment

conditions are E
{
g(ΠT

mθm)
}

= 0p×1. Developing a model averaging method

that combines the general GMM estimators is left to future research.

Note that the matrix Ω and sample moments µ̂ do not vary with the model

index m in (2.4), which implies that the candidate models use the same moment

conditions. Hence, we combine models with different specifications in µ(ΠT
mθm),

rather than models with different moment conditions, as in DiTraglia (2016) and

Cheng, Liao and Shi (2019). We allow M and dm to increase with the sample

size n, but we need p to be unrelated to n. Note that if d is large and all 2d

possible models are considered, then the computation burden will be very heavy.

In this case, the model-screening methods developed in Ando and Li (2014) and

Zhang et al. (2016) can be applied.
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3. Model Average Estimator Based on the GMM

Let w = (w1, w2, . . . , wM )T be a weight vector in the following set:

W =

{
w ∈ [0, 1]M :

M∑
m=1

wm = 1

}
. (3.1)

We define the model average estimator of θ as

θ̂(w) ≡
M∑
m=1

wmΠmθ̂m. (3.2)

Because some components of the vectors Πmθ̂m are zeros, the model average

estimator θ̂(w) is a type of shrinkage estimator, as pointed out by Liang et al.

(2011) and Hansen (2014).

Let θ0 be the true value of θ. A reasonable loss function to evaluate the

model average estimator θ(w) is

L(w) ≡ [µ{θ̂(w)} − µtrue(θ0)]
TΩ[µ{θ̂(w)} − µtrue(θ0)], (3.3)

and the corresponding risk function is

R(w) ≡ E{L(w)}. (3.4)

Next, we propose a weight choice criterion by estimating the risk function R(w).

First, we list two conditions.

Condition 1. µ̂− µtrue(θ0) satisfies the following central limit theorem:

√
n {µ̂− µtrue(θ0)}

d−→ π ∼ Normal(0,V ),

where
d−→ denotes convergence in distribution, π is a random vector, and V is a

nonrandom positive-definite matrix.

Condition 2. For m ∈ {1, . . . ,M}, the derivatives ∂µ(θ)/∂θ and ∂θ̂m/∂µ̂
T ex-

ist ar are continuous with respect to θ and µ̂, respectively, and trace(∂(
√
nµ{θ̂(w

)}−
√
nµ̂)/[∂

√
n {µ̂− µtrue(θ0)}T]ΩV ) and

√
nµ{θ̂(w)−µ̂}Ω

√
n{µ̂−µtrue(θ0)}

are uniformly integrable for w ∈ W.

Condition 1 is the same as Assumption 1.9 of Harris and Mátyás (1999),

where its rationality is discussed in detail. Condition 2 relates to the existence,

continuity, and integrability. We propose the following weight choice criterion:
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C̃(w) ≡ [µ{θ̂(w)} − µ̂]TΩ[µ{θ̂(w)} − µ̂]− 2n−1trace (ΩV )

+2n−1trace

[
M∑
m=1

wm
∂µ{θ̂(w)}
∂θ̂(w)T

ΠT
m

∂θ̂m
∂µ̂T

ΩV

]
+{µ̂− µtrue(θ0)}TΩ{µ̂− µtrue(θ0)}. (3.5)

Proposition 1. Under Conditions 1− 2, we have

E
{
C̃(w)

}
= R(w) + o(n−1). (3.6)

The proof of Proposition 1 is given in Section S.1 of the Supplementary

Material. The normal approximation is widely used in developing model selec-

tion criteria; see, for example, Hurvich and Tsai (1989). From (3.6), C̃(w) is

an approximately unbiased estimator of the risk R(w). By minimizing C̃(w)

with respect to w, the risk should also be minimized, but there are unknown

parameters in C̃(w). Hence, the minimization is not feasible.

Let V̂ be the preliminary estimator of V . Andrews (1991) and Den Haan and

Levin (1997) provide methods for estimating V̂ . Removing the terms unrelated

to w and replacing V with its estimator, the criterion C̃(w) defined in (3.5)

becomes

C(w) ≡ [µ{θ̂(w)} − µ̂]TΩ[µ{θ̂(w)} − µ̂]

+2n−1trace

[
M∑
m=1

wm
∂µ{θ̂(w)}
∂θ̂(w)T

ΠT
m

∂θ̂m
∂µ̂T

V̂

]
, (3.7)

which can function as a weight choice criterion. By minimizing C(w), we obtain

the following weights:

ŵ = argmin
w∈W

C(w). (3.8)

The first term of C(w) measures the model fitness. To interpret the second

term of C(w), following Efron (2004), we define the degrees of freedom of the

model average estimator θ̂(w) as

df(w) = cov
{
µT(θ̂(w))Ω1/2, µ̂TΩ1/2

}
. (3.9)

From the proof of Proposition 1, we know that the second term of C(w) is

an approximately unbiased estimator of the degrees of freedom df(w). We re-

fer to the resulting estimator θ̂(ŵ) the model average estimator based on the

GMM (MAGMM). When the weight components are restricted to one or zero,

our method simplifies to a model selection method based on the GMM, called
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MSGMM.

In general, the moment µ(θ) is an explicit function of θ; hence, the calcula-

tion of ∂µ{θ̂(w)}/∂θ̂(w)T is straightforward. Next, we present a closed form for

∂θ̂m/∂µ̂
T. Write θ̂m = (θ̂m,1, . . . , θ̂m,dm)T. Let

A(θ̂m) =
∂µ(ΠT

mθ̂m)T

∂θ̂m
, Aτ (θ̂m)=

∂A(θ̂m)

∂θ̂m,τ
, (3.10)

Dm=
[
A1(θ̂m)Ω

{
µ̂− µ(ΠT

mθ̂m)
}
, . . . ,Adm(θ̂m)Ω

{
µ̂− µ(ΠT

mθ̂m)
}]

dm×dm
,

(3.11)

and

Bm = A(θ̂m)ΩAT(θ̂m), (3.12)

for m = 1, . . . ,M and τ = 1, . . . , dm, where dm is the number of components in

θ̂m.

Proposition 2. If Condition 2 holds, the derivatives ∂A(θ̂m)/∂θ̂m,τ for m =

1, . . . ,M and τ = 1, . . . , dm exist, and the minimum singular value of the matrix

(Dm − Bm)T(Dm − Bm) is bounded away from a positive constant, for m =

1, . . . ,M , then

∂θ̂m
∂µ̂T

= −
{

(Dm −Bm)T(Dm −Bm)
}−1

(Dm −Bm)TA(θ̂m)Ω. (3.13)

The proof of Proposition 2 is given in S.2 of the Supplementary Material.

This proposition provides a closed form for the derivative ∂θ̂m/∂µ̂
T.

Remark 1. When focusing on linear regression candidate models that have dif-

ferent regressor matrices, our criterion C(w) simplifies to the Mallows’ criterion

introduced by Hansen (2007). Specifically, consider a linear regression model

y = Xθ + ε, ε|X ∼ (0, σ2In), where X has a fixed full-column rank, and the

regressor matrix for the mth candidate model is XΠT
m. Then, we have

µ̂ =
XTy

n
, µ(θ) =

XTXθ

n
, Ω =

(
XTX

n

)−1
, V = σ2E(XiX

T
i ), (3.14)

where XT
i is the ith row of X. Let σ̂2 be an estimator of σ2. Then, V̂ =

σ̂2XTX/n. From (3.10) and (3.11), we have

A(θ̂m) = Πm
XTX

n
, Aτ (θ̂m) = 0dm×p, Dm = 0dm×dm . (3.15)
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Hence, we can show that

trace

[
M∑
m=1

wm
∂µ{θ̂(w)}
∂θ̂(w)T

ΠT
m

∂θ̂m
∂µ̂T

ΩV̂

]
= σ̂2

M∑
m=1

wmdm, (3.16)

and thus

C(w) = n−1‖Xθ̂(w)− y‖2 + 2n−1σ̂2
M∑
m=1

wmdm

−yT
{
In −X(XTX)−1XT

}
y, (3.17)

which is the Mallows’ criterion in Hansen (2007) up to the term yT{In − X

(XTX)−1XT}y unrelated to w. The proofs of (3.16) and (3.17) are provided in

Section S.3 of the Supplementary Material.

Remark 2. In this remark, we consider linear regression models with instru-

mental variables. The linear regression model is still y = Xθ + ε, and there is

an instrumental variable matrix Z that has a fixed full-column rank not smaller

than that of X, which also has a fixed full-column rank, and ε|Z ∼ (0, σ2In). We

fix Ω = (ZTZ/n)−1. For the mth candidate model, the regressor matrix is XΠT
m.

Let PZ = Z(ZTZ)−1ZT and σ̂2 be an estimator of σ2. Then, we have

µ̂ =
ZTy

n
, µ(θ) =

ZTXθ

n
, V̂ = σ̂2

ZTZ

n
, (3.18)

A(θ̂m) = Πm
XTZ

n
, Aτ (θ̂m) = 0dm×p, Dm = 0dm×dm . (3.19)

Hence, similarly to (3.16) and (3.17), we can show that

trace

[
M∑
m=1

wm
∂µ{θ̂(w)}
∂θ̂(w)T

ΠT
m

∂θ̂m
∂µ̂T

ΩV̂

]
= σ̂2

M∑
m=1

wmdm, (3.20)

and thus

C(w) = n−1‖PZXθ̂(w)− y‖2 + 2n−1σ̂2
M∑
m=1

wmdm − yT(In −PZ)y. (3.21)

The proofs of (3.20) and (3.21) are given in Section S.3 of the Supplementary

Material.

Lastly, note that if µ(θ) is a linear function of θ (i.e., there exists a matrix Q

such that µ(θ) = Qθ), which is the case in the above remarks, then calculating
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ŵ is extremely simple. Let ĝm = Qθ̂m − µ̂, Ĝ = (ĝ1, . . . , ĝM ), and

g̃ =

{
trace

(
QTΠT

1

∂θ̂1
∂µ̂T

ΩV̂

)
, . . . , trace

(
QTΠT

M

∂θ̂M
∂µ̂T

ΩV̂

)}T

.

Then

C(w) = wTĜw + 2n−1wTg̃. (3.22)

Thus, the minimization of C(w) with respect to w is simply a quadratic pro-

gramming problem. Numerous software packages (e.g., quadprog of MATLAB)

are available to solve this problem very efficiently even when M is very large.

4. Large-Sample Properties

In this section, we study the large-sample properties of the proposed MAGMM

estimator θ̂(ŵ). We first consider a common situation in which all candidate

models are misspecified (see Section 4.1 a the detailed description of the model

misspecification). In that situation, we show that the estimator offers asymptotic

optimality. Then, we consider an ideal situation in which at least one of the

candidate models is correctly specified. In this case, the estimator is shown to

have root-n consistency. All limiting processes discussed in this paper are as

n→∞. The number of candidate models M can increase to infinity with n.

4.1. Asymptotic optimality under misspecified candidate models

When no value of θm exists such that µ(ΠT
mθm) = µtrue(θ0), we say that

the mth candidate model is misspecified.

Condition 3. V̂ − V = op(1).

Condition 4. There exist vectors θ∗1, . . . ,θ
∗
M such that ‖θ̂m − θ∗m‖ = Op(d

1/2
m

n−1/2), for any m ∈ {1, . . . ,M} and maxm∈{1,...,M} ‖θ̂m − θ∗m‖ = Op(d
1/2M1/2

n−1/2), where ‖θ̂m − θ∗m‖ = {(θ̂m − θ∗m)T(θ̂m − θ∗m)}1/2.

Condition 5. Uniformly for any w ∈ W and any vector θ̃w between θ̂(w) and

θ∗(w),

λmax

[
∂µ{θ̂(w)}

∂θ̂(w)
T
|
θ̂(w)=θ̃w

]
= Op(1),

where λmax(·) denotes the largest singular value of a matrix.

Condition 3 requires the estimator V̂ to be consistent. Condition 4 is a high-

level condition. When the candidate model m is correctly specified, the root-n
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consistency in Condition 4 has been shown by, for example, Harris and Mátyás

(1999). When the candidate model m is misspecified and dm is fixed, Hall and

Inoue (2003) proved θ̂m − θ∗m = Op(n
−1/2), under some regularity conditions.

Condition 5 requires that the largest singular value of the fixed-dimensional ma-

trix ∂µ{θ̂(w)}/∂θ̂(w)
T
|
θ̂(w)=θ̃

is uniformly bounded, and this matrix depends

on the specific form of the working moment function µ(θ).

Let θ∗(w) =
∑M

m=1wmΠmθ
∗
m,

L∗(w) = [µ{θ∗(w)} − µtrue(θ0)]
T Ω [µ{θ∗(w)} − µtrue(θ0)] ,

and ξn = infw∈W L∗(w).

Condition 6. M1/2p1/2n−1/2ξ−1n → 0.

Condition 6 requires that the minimum limitation loss decreases at a rate

slower than n−1/2 when n → ∞. Similar conditions are used in Ando and Li

(2014), Zhang et al. (2016), and Ando and Li (2017). To further discuss Condition

6, we first define a correctly specified model. For model m̃, if there exists a value

of θm̃ such that µ(ΠT
m̃θm̃) = µtrue(θ0), then we say that model m̃ is correctly

specified. If one of the candidate models (say model m̃) is correctly specified,

then µ(ΠT
m̃θ
∗
m̃) = µtrue(θ0), and thus

L∗(w0
m̃) =

{
µ(ΠT

m̃θ
∗
m̃)− µtrue(θ0)

}T
Ω
{
µ(ΠT

m̃θ
∗
m̃)− µtrue(θ0)

}
= 0, (4.1)

where w0
m̃ is an M ×1 vector, in which the m̃th element is one and the others are

zeros. Hence, Condition 6 requires that all candidate models are misspecified.

This condition is commonly used to study the properties of an AIC-type model

selection criterion; see, for example, Li (1987) and Shao (1997).

Theorem 1. Under Conditions 1 − 6 and the conditions in Proposition 2, we

have
L(ŵ)

infw∈W L(w)
→ 1 (4.2)

in probability, where the squared loss function L(w) is defined in (3.3).

The proof of Theorem 1 is provided in Section S.5 of the Supplementary Material.

This theorem shows that the model averaging procedure using ŵ is asymptotically

optimal in the sense that the resulting squared loss is asymptotically identical to

that of the infeasible best possible model average estimator.
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4.2. Root-n consistency when there are correctly specified candidate

models

The asymptotic optimality in Section 4.1 requires all candidate models are

misspecified. However, in practice, we never know whether there are correctly

specified candidate models (we say that the mth candidate model is correctly

specified if there exists a value of θm such that µ(ΠT
mθm) = µtrue(θ0)), which may

happen. Hence, in this section, we provide theoretical support for our method

when there are correctly specified candidate models. In this case, our method

exhibits root-n consistency, which means that in a large-sample sense, our method

at least does not perform worse than the commonly used methods that also

achieve root-n consistency. We further impose the following regularity condition.

Condition 7. Uniformly for any w ∈ W and any vector θ̃ between θ̂(w) and

θ∗(w),

λ−1min

[
∂µ{θ̂(w)}

∂θ̂(w)
T
|
θ̂(w)=θ̃w

]
= Op(1),

where λmin(·) denotes the smallest singular value of a matrix.

Condition 7 is similar to Condition 5, but requires that the smallest singular

value of the matrix be bounded away from zero.

Theorem 2. Under Conditions 1− 5 and 7 and the conditions in Proposition 2,

if there exists at least one correctly specified candidate model (say model m̃), then

‖θ̂(ŵ)− θ0‖ = Op(n
−1/2p1/2). (4.3)

The proof of Theorem 2 is provided in Section S.6 of the Supplementary

Material. Combining Theorems 1−2, the proposed MAGMM method has a the-

oretical justification in a large-sample sense, regardless of whether or not there

are correctly specified candidate models.

5. Monte Carlo

In this section, we conduct Monte Carlo experiments to examine the finite-

sample performance of the proposed model averaging method based on the GMM

(MAGMM). Here, we compare the model selection estimator MSGMM and the

GMM estimator. We do not compare our method with other existing selection or

averaging methods because they focus on candidate models with different moment

conditions. As stated in Section 2, the candidate models for our method use the

same moment conditions, but different variables.
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5.1. Data generation process

We consider two simulation designs. In the first design, the true data-

generation procedure is captured by at least one of the candidate models, while in

the second, it is not; that is, all candidate models are misspecified in the second

design.

Design I. We use the linear regression models with instrumental variables de-

scribed in Remark 2. Specifically, we set

yi=XT
i θ + εi, Xi=(1, Yi,q

T
i )T,

θ=(1, 1, 0.2,−0.001, 1, 0.01, 0.2, 0.01)T, qi∼Normal{06×1, (0.5
|j1−j2|)1≤j1,j2≤6},

Yi=hT
i γ + ui, γ=δ(1, 1, 1, 1, 1, 1, 1)T,

hi∼Normal{07×1, (0.5
|j1−j2|)1≤j1,j2≤7},

(
εi
ui

)
∼Normal

{(
0

0

)
,

(
σ2 0.5σ

0.5σ 1

)}
.

Hence, the correlation coefficient between εi and ui is 0.5, and the instrumental

variable vector is Zi = (1,hT
i ,q

T
i )T. We control σ2 such that the theoretical

R2 ≡ var(XT
i θ)/var(yi) varies in the set {0.2, 0.3, . . . , 0.8}, and control δ such

that the theoretical R̃2 ≡ var(hT
i γ)/var(Yi) varies in the set {0.2, 0.5, 0.8}. The

sample size n is set to 30, 80, 150, or 300. Here, we consider the case with a

very small sample size, i.e., n = 30, because we find that when the sample size

is large, all methods tend to perform very similarly. The variables in qi are set

to be auxiliary (i.e., they are possibly used in the candidate models); hence, we

have 26 = 64 candidate models.

To evaluate the methods, we use 104 replications. In each replication, we

obtain the estimators of the coefficients of the endogenous variable Yi by using

the GMM, MAGMM, and MSGMM, which is defined in the text following (3.9).

As described in Remark 2, we set Ω = (ZTZ/n)−1 for all methods. Then, we

calculate MSE using these 104 replications. To facilitate the comparisons, all

MSEs are normalized using the MSE of the GMM.

Design II. In this design, we generate yi as

yi = Xi1θ1 + · · ·+Xi6θ6 + exp(Xi7θ7) + exp(Xi8θ8) + εi,

where Xij and θj are the jth components of Xi and θ, respectively. All other

settings in Design II are the same as those in Design I. Hence, in this design, all

candidate models are misspecified.

In contrast to Design I, we do not use the MSE in the coefficient estimation
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Figure 1. MSE in simulation Design I, with R̃2 = 0.2.

to evaluate the methods in this design, because the estimators may not all be

consistent. Instead, we use the estimation loss, defined in (3.3), to evaluate

the methods. Then, we calculate the mean loss using the 104 replications. To

facilitate the comparisons, all losses are normalized using the loss from the GMM.

5.2. Results

The results of the simulations under Design I are presented in Figure 1 and

Figures S.1−S.2 of the Supplementary Material. It is clear from the figures that

when n ∈ {30, 80, 150}, the MAGMM yields the most accurate results for a very

large range of values of R2. When n = 300, the three methods perform similarly,

because there are correctly specified candidate models in this design. Thus, all

three methods achieve root-n consistency.

The MSGMM is always dominated by the MAGMM. When R̃2 decreases, the

three methods perform more disparately, and the R2 range in which the MAGMM

has an advantage over the GMM widens, compare the left-bottom panels of Figure

1 and Figure S.1 of the Supplementary Material.

The simulation results for Design II are presented in Figure 2 and Figures

S.3−S.4 of the Supplementary Material. Again, we find that when R2 is small or

moderate, the MAGMM outperforms the GMM; when R2 is large, the GMM can

be superior to the MAGMM. When the sample size is 300 and R2 is close to 0.8,
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Figure 2. Loss in simulation Design II, with R̃2 = 0.2.

the MSGMM outperforms the MAGMM. However, for all other settings, MAGMM

performs best.

6. Empirical Application

6.1. Data and models

We analyze data from the 1980 census on the median thousand dollar value

of owner-occupied housing (hsngval) and the median monthly gross rent (rent)

in the 50 US states. The data are provided by Stata: https://www.stata.com/.

We model the rent as

renti = θ1 + θ2hsngvali + θ3pcturbani + θ4region2i + θ5region3i

+θ6region4i + εi, (6.1)

where “pcturban” is the percentage of the population living in urban areas, and

“region2”, “region3” and “region4” are dummy region variables. Because we focus

on the impact of “hsngval” on “rent”, we set the other variables (“pcturban”,

“region2”, “region3” and “region4”) to be auxiliary (i.e., they are possibly used

in the candidate models). Hence, we have 24 = 16 candidate models. Because

we do not know whether all of these candidate models are misspecified, and our

https://www.stata.com/
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Table 1. Coefficient estimates and weights in the real-data analysis. The notation *
indicates that the model includes the corresponding variable. For example, Model 1 only
includes “constant” and “hsngval”.

Panel I Panel II

Coefficient estimates Weights of models with weights larger than 10−4

Variables GMM MSGMM MAGMM Model 1 Model 2 Model 3 Model 4

constant 88.3141 96.7447 94.7084 * * * *

hsngval 3.8691 3.7037 3.5430 * * * *

pcturban -0.4993 -0.4612 -0.3414 * *

region2 1.5253 - 0.0000

region3 7.7394 - 2.1899 *

region4 -40.6289 -41.0891 -36.8204 * * *

Weights 0.0586 0.2247 0.3931 0.3235

method has theoretical support regardless of whether this is the case, we use our

method for this data set.

Because random shocks that affect rent in a state may also affect housing

prices, the variable “hsngval” is taken as endogenous. The median of family

income (faminc) and the region variables are used as instrumental variables; that

is,

hsngvali = γ1 +γ2faminci+γ3region2i+γ4region3i+γ5region4i+ui. (6.2)

Panel I of Table 1 shows the coefficient estimates of the main model (6.1). The

effects estimated by the MAGMM are smaller than those of the GMM. The vari-

ables “region2” and “region3” are not selected by MSGMM. Panel II of Table 1

shows the weights of the MAGMM. The the weights are primarily assigned to four

models, with the largest weight assigned to the model selected by the MSGMM.

6.2. Comparison of estimation performance

To compare the three methods using the real data, we generate data by sam-

pling the residuals. Specifically, let γ̂OLS be the ordinary least squares estimator

of coefficients in model (6.2). The residual is

ûi = hsngvali − (1, faminci, region2i, region3i, region4i)γ̂OLS, (6.3)

for i = 1, . . . , 50. By sampling in {û1, . . . , û50} 50 times with repetition, we obtain

û
(r)
1 , . . . , û

(r)
50 . Then, we obtain

hsngval
(r)
i = (1, faminci, region2i, region3i, region4i)γ̂OLS + û

(r)
i .
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Table 2. MSE in estimating the coefficient of the endogenous variable “hsngval”.

GMM MSGMM MAGMM

θ̂Method is from GMM 0.7056 0.7101 0.6289

θ̂Method is from MSGMM 0.6486 0.6465 0.5660

θ̂Method is from MAGMM 0.5977 0.5987 0.5192

Table 3. Mean of average squared prediction errors ×10−4.

GMM MSGMM MAGMM

n1 = 20 2.6015 0.5914 0.5482

n1 = 30 0.1845 0.1529 0.1400

n1 = 40 0.1462 0.1375 0.1249

Let θ̂Method be the estimator of the coefficients in model (6.1), where Method is

GMM, MSGMM, or MAGMM. The estimators are shown in Panel I of Table 1.

Similarly to (6.3), we obtain the residual

ε̂i = renti − (1, hsngvali, pcturbani, region2i, region3i, region4i)θ̂Method,

for i = 1, . . . , 50. By sampling in {ε̂1, . . . , ε̂50} 50 times with repetition, we obtain

ε̂
(r)
1 , . . . , ε̂

(r)
50 . Then the response variable in the main model is generated by

rent
(r)
i = (1, hsngval

(r)
i , pcturbani, region2i, region3i, region4i)θ̂Method + ε̂

(r)
i .

We generate 104 data sets; that is r = 1, . . . , 104. Table 2 shows the MSE when

estimating the coefficient of the endogenous variable “hsngval” based on the 104

replications. Regardless of which estimated coefficients are used to generate the

data sets, the proposed MAGMM method always performs best.

Lastly, we compare the out-of-sample prediction performance of the different

methods. We randomly divide the 50 observations into a training sample of n1
observations and a test sample of n− n1 observations. We set n1 ∈ {20, 30, 40}.
The predictions of the three methods are based on model (6.1). The average

squared prediction errors are calculated across observations in the test sample.

We randomly divide the sample into training and test samples 104 times. Table

3 provides the mean of the average squared prediction errors based on the 104

replications. Regardless of how the sample is divided, the proposed MAGMM

method always performs best.
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7. Conclusion

In this paper, we propose optimal model averaging based on the GMM.

Theoretical justifications are provided, regardless of whether all of the candidate

models are misspecified. The numerical examples also show the promise of the

proposed method. While the results in this paper offer some interesting insights

to the application of the GMM, they also raise some important issues that warrant

further study.

First, in general, under the GMM framework, the candidate models can

vary with respect to (1) the moment restrictions and (2) the specification of

a working moment function. In this study, we ignore the first situation. The

proposed weight choice method cannot be used in this situation because our

method depends heavily on the loss function (3.3). If the moment restrictions

vary with working models, then the true moment µtrue(θ0) in (3.3) can do so as

well, leading to serious difficulty in defining a reasonable loss function. Developing

an asymptotically optimal model averaging method under this situation warrants

future study.

Second, when there are correctly specified candidate models, we only derive

the root-n convergence rate for the true parameter vector. We cannot establish its

limit distribution theory, owing to the difficulties caused by the random weights.

Hjort and Claeskens (2003) and Zhang and Liu (2019) may serve as useful guides

in this regard. However, studies that follow Hjort and Claeskens (2003) use

the locally misspecified moment conditions; see DiTraglia (2016), for example.

In Zhang and Liu (2019), the nested setup of the candidate models limits the

flexibility of their theory. Much future effort is required to promote research on

inferences after averaging GMM estimators.

Lastly, in this study, the dimension of µ̂ is fixed. When the dimension of µ̂

is divergent to infinity with n, Proposition 2 still holds. For Proposition 1, we

conjecture that the criterion C̃(w) is still an approximately unbiased estimator

of the risk, although this requires a more detailed derivation. Additionally, we

think that the optimality and consistency can be derived using techniques similar

to those in the current proofs. Detailed derivations warrant future study.

Supplementary Material

The online Supplementary Material contains the technical proofs and figures

for the outcomes of the simulation studies.



2120 ZHANG

Acknowledgments

The author is grateful to the co-Editor Hans-Georg Müller, and to the asso-

ciate editor and two referees for their constructive comments. Zhang’s research

was partially supported by the National Natural Science Foundation of China

(Grant nos. 71925007, 72091212, 71988101, and 11688101), the Youth Innovation

Promotion Association of Chinese Academy of Sciences, the Beijing Academy of

Artificial Intelligence, and a joint grant from the Academy for Multidisciplinary

Studies, Capital Normal University. This work occurred when the author visited

Penn State University.

References

Ando, T. and Li, K.-C. (2014). A model-averaging approach for high-dimensional regression.

Journal of the American Statistical Association 109, 254–265.

Ando, T. and Li, K.-C. (2017). A weight-relaxed model averaging approach for high-dimensional

generalized linear models. The Annals of Statistics 45, 2654–2679.

Andrews, D. W. K. (1991). Asymptotic optimality of generalized cl, cross-validation, and gen-

eralized cross-validation in regression with heteroskedastic errors. Journal of Economet-

rics 47, 359–377.

Bates, J. M. and Granger, C. W. J. (1969). The combination of forecasts. Operations Research

Quarterly 20, 451–468.

Breiman, L. (1996). Heuristics of instability and stabilization in model selection. The Annals of

Statistics 24, 2350–2383.

Buckland, S. T., Burnham, K. P. and Augustin, N. H. (1997). Model selection: An integral part

of inference. Biometrics 53, 603–618.

Chen, J., Li, D., Linton, O. and Lu, Z. (2018). Semiparametric ultra-high dimensional model

averaging of nonlinear dynamic time series. Journal of the American Statistical Associa-

tion 113, 919–932.

Cheng, X. and Hansen, B. E. (2015). Forecasting with factor-augmented regression: A frequen-

tist model averaging approach. Journal of Econometrics 186, 280–293.

Cheng, X., Liao, Z. and Shi, R. (2019). On uniform asymptotic risk of averaging GMM estima-

tors. Quantitative Economics 10, 931–979.

De Luca, G., Magnus, J. R. and Peracchi, F. (2018). Weighted-average least squares estimation

of generalized linear models. Journal of Econometrics 204, 1–17.

Den Haan, W. J. and Levin, A. T. (1997). A practitioner’s guide to robust covariance matrix

estimation. Handbook of Statistics 15, 299–342.

DiTraglia, F. J. (2016). Using invalid instruments on purpose: Focused moment selection and

averaging for gmm. Journal of Econometrics 195, 187–208.

Efron, B. (2004). The estimation of prediction error: Covariance penalties and crossvalidation

(with discussion). Journal of the American Statistical Association 99, 619–642.

Fang, F., Lan, W., Tong, J. and Shao, J. (2019). Model averaging for prediction with fragmentary

data. Journal of Business & Economic Statistics 37, 517–527.

Hall, A. R. and Inoue, A. (2003). The large sample behaviour of the generalized method of

moments estimator in misspecified models. Journal of Econometrics 114, 361–394.



OPTIMAL MODEL AVERAGING BASED ON GMM 2121

Hansen, B. E. (2007). Least squares model averaging. Econometrica 75, 1175–1189.

Hansen, B. E. (2014). Model averaging, asymptotic risk, and regressor groups. Quantitative

Economics 5, 495–530.

Hansen, B. E. and Racine, J. (2012). Jacknife model averaging. Journal of Econometrics 167,

38–46.
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