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1. Proof of Theorem 1

Define P ′n,λ(0+) = limt→0+ P
′
n,λ(t). Then, by an application of the Karush-Kuhn-Tucker (KKT)

condition on the local minimizers β̂ and η̂, we get

∂Ln(β̂, η̂)

∂βl
+ vl = 0, for all l ≤ p,

where vi = Pn,λ(|β̂l|)sgn(β̂l) if β̂l 6= 0, and vi ∈ [−P ′n,λ(0+), P ′n,λ(0+)] if β̂l = 0. Therefore, by

using the monotonicity and the limit of P ′n,λ(t) from Condition (C3), we get

∣∣∣∣∣∂Ln(β̂, η̂)

∂βl

∣∣∣∣∣ ≤ P ′n,λ(0+) = o(1). (1.1)
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Next, by the first order Taylor series expansion of ∂Ln(β,η)
∂βl

at (β̂, η̂) around (β0,η0), we get a

(β̃, η̃) on the line segment joining (β̂, η̂) and (β0,η0) such that

∂Ln(β̂, η̂)

∂βl
− ∂Ln(β0,η0)

∂βl
=

p∑
j=1

∂2Ln(β̃, η̃)

∂βlβj
(β̂j − β0j) +

m∑
k=1

∂2Ln(β̃, η̃)

∂βlηk
(η̂k − η0k).

Therefore, in the event β̂N = 0 having probability tending to one [by Condition (C2)], we get∣∣∣∣∣∂Ln(β̂, η̂)

∂βl
− ∂Ln(β0,η0)

∂βl

∣∣∣∣∣
=

∣∣∣∣∣∑
j∈S

∂2Ln(β̃, η̃)

∂βlβj
(β̂j − β0j) +

m∑
k=1

∂2Ln(β̃, η̃)

∂βlηk
(η̂k − η0k)

∣∣∣∣∣
≤ max

l,j≤p

∣∣∣∣∣∂2Ln(β̃, η̃)

∂βlβj

∣∣∣∣∣ ∣∣∣∣∣∣β̂S − β0S

∣∣∣∣∣∣
1

+ max
l,k≤p

∣∣∣∣∣∂2Ln(β̃, η̃)

∂βlηk

∣∣∣∣∣ ||η̂ − η0||1

≤ max
l,j≤p

∣∣∣∣∣∂2Ln(β̃, η̃)

∂βlβj

∣∣∣∣∣√s ∣∣∣∣∣∣β̂S − β0S

∣∣∣∣∣∣
2

+ max
l,k≤p

∣∣∣∣∣∂2Ln(β̃, η̃)

∂βlηk

∣∣∣∣∣√m ||η̂ − η0||2 ,

where the last step follows by Cauchy-Swartz inequality; here m is the dimension of η. Now,

by Conditions (C1) and (C2), we get∣∣∣∣∣∂Ln(β̂, η̂)

∂βl
− ∂Ln(β0,η0)

∂βl

∣∣∣∣∣ = oP (1).

Then the theorem follows using (1.1) �
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2. Proof of Theorem 2

First let us note that, for the likelihood loss Ln(β0,η0) = −ln(β,η), we have

∂Ln(β0,η0)

∂βk
= − 1

σ2
(y −Xβ)TV (θ, σ2)−1X(k),

for any k ≤ p, where X(k) denotes the k-th column of the matrix X. Therefore, by an

application of Strong law of Large Numbers, we have the following result in terms of the

transformed regression model given in Equation (3.2) of the main paper:

∣∣∣∣∂Ln(β0,η0)

∂βk

∣∣∣∣→ E(ε∗X∗k), almost surely, as n→∞, (2.2)

where ε∗ and X∗k represent the random variables corresponding to the transformed error ε∗ =

V (θ, σ2)−1/2ε and the k-th transformed covariate (column) in X∗ = V (θ, σ2)−1/2X. Now, if

Xk is endogenous, then clearly ε∗ and X∗k will be correlated and hence the limit in (2.2) will

be non-zero. Then the proof follows directly from the results of Theorem 1. �

3. Proof of Theorem 3

We will first show that our Assumptions (A), (I) and (M) together with (P) imply the following

four results for the PFGMM loss function LPn (β) given in Eq. (3.7) of the main paper.

(R1)
∣∣∣∣∇SL

P
n (β0S,0)

∣∣∣∣ = OP

(√
s log p
n

)
, where ∇S denotes the gradient with respect to the

(non-zero) elements of β in S. Note that
√

s log p
n

= o(dn) by our Assumptions.
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(R2) For any ε > 0, there exists a positive constant Cε such that, for all sufficiently large n,

P
(
λmin

[
∇2
SL

P
n (β0S,0)

]
> Cε

)
> 1− ε.

(R3) For any ε > 0, δ > 0 and any non-negative sequence αn = o(dn), there exists a positive

integer N such that, for all n ≥ N ,

P

(
sup

||βS−β0S ||≤αn

∣∣∣∣∇2
SL

P
n (βS,0)−∇2

SL
P
n (β0S,0)

∣∣∣∣
F
≤ δ

)
> 1− ε,

where ||A||F denotes the Frobenius norm of a matrix A.

(R4) For any ε > 0, there exists a positive constant Cε such that, for all sufficiently large n,

P
(
λmin

[
∇2
SL

P
n (β0S,0)

]
> Cε

)
> 1− ε.

Then, Parts (a) and (b) of our Theorem 3 follow from Theorems B.1 and B.2 of Fan and Liao

(2014). Note that the assumptions required on the penalty functions there are exactly the

same as our Assumption (P); see Fan and Liao (2014) for details.

In the following, we will use the notations ΠS = Π(β0S) and

L̃Pn (βS) =

[
1

n
ΠSṼ

−1
z (y −XSβS)

]T
J(β0)

[
1

n
ΠSṼ

−1
z (y −XSβS)

]
, βS ∈ Rs. (3.3)

Note that L̃Pn (βS) = LPn (βS,0). We will now prove results (R1)–(R4).

Proof of (R1):

By standard derivative calculations, we get∇L̃Pn (βS) = 2An(βS)J(β0)
[
1
n
ΠSṼ

−1
z (y −XSβS)

]
,

where An(βS) = − 1
n

(
ΠSṼ

−1
z XS

)
. Now, by Assumption (I4), we know that ||An(β0S)|| =

OP (1). Also, by Assumption (I2), the elements in J(β0) are uniformly bounded in probability,
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and hence

∣∣∣∣∣∣∇L̃Pn (β0S)
∣∣∣∣∣∣ ≤ OP (1)

∣∣∣∣∣∣∣∣ 1nΠSṼ
−1
z (y −XSβ0S)

∣∣∣∣∣∣∣∣ . (3.4)

Next, we study the difference of the random variables Z1 =
[
1
n
ΠSṼ

−1
z (y −XSβ0S)

]
and

Z2 =
[
1
n
ΠSV (θ)−1(y −XSβ0S)

]
. By Assumption (M1), we get

C1Ṽ z − V (θ, σ2) = (C1 − 1)I +ZT (C1M− σ−2Ψθ)Z ≥ 0.

That is C1Ṽ z ≥ V (θ, σ2). By the Woodbury formula, since C1Ṽ z and V (θ, σ2) are both

positive definite, we get Ṽ
−1
z ≤ C1V (θ, σ2)−1. Therefore,

Z1 −Z2 =
1

n
ΠS

[
Ṽ
−1
z − V (θ, σ2)−1

]
(y −XSβ0S)

≤ (C1 − 1)

n
ΠSV (θ, σ2)−1(y −XSβ0S). (3.5)

Further, by Assumption (M2), we have

C1(log n)V (θ, σ2)− Ṽ z = (C1 log n− 1)I +ZT (C1 log nσ−2Ψθ −M)Z ≥ 0.

Then, C1(log n)V (θ, σ2) ≥ Ṽ z, and as before we get C1(log n)Ṽ
−1
z ≥ V (θ, σ2)−1. Therefore,

Z2 −Z1 =
1

n
ΠS

[
V (θ, σ2)−1 − Ṽ

−1
z

]
(y −XSβ0S)

≤ C1(C1 log n− 1)

n
ΠSV (θ, σ2)−1(y −XSβ0S).

(3.6)

Combining (3.5) and (3.6), along with our basic IV assumption (Eq. (3.3) of the main paper),

we have |Z1 −Z2| = oP (1). Therefore, from (3.4), we get



6∣∣∣∣∣∣∇L̃Pn (β0S)
∣∣∣∣∣∣ ≤ OP (1)

∣∣∣∣∣∣∣∣ 1nΠSV (θ, σ2)−1(y −XSβ0S)

∣∣∣∣∣∣∣∣
= OP (1)

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

(y∗i −X∗iSβ0S)Π∗iS

∣∣∣∣∣
∣∣∣∣∣ . (3.7)

But, E [(Y ∗ −X∗iβ0S)Π∗i ] = 0 by the choice of IV π∗i . So, using the Bonferroni inequality

and the exponential-tail Bernstein inequality along with Assumption (I1) and the normality

of (Y ∗ −X∗iβ0S), we get a positive constant C such that, for any t > 0,

P

(
max
l≤p

∣∣∣∣∣ 1n
n∑
i=1

(y∗i −X∗iSβ0S)F ∗li

∣∣∣∣∣ > t

)
< pmax

l≤p
P

(∣∣∣∣∣ 1n
n∑
i=1

(y∗i −X∗iSβ0S)F ∗li

∣∣∣∣∣ > t

)
≤ ≤ p exp(−Ct2/n).

Thus,
P

(
max
l≤p

∣∣∣∣∣ 1n
n∑
i=1

(y∗i −X∗iSβ0S)F ∗li

∣∣∣∣∣ > t

)
= OP

(√
log p

n

)
.

Similarly, we can show

P

(
max
l≤p

∣∣∣∣∣ 1n
n∑
i=1

(y∗i −X∗iSβ0S)H∗li

∣∣∣∣∣ > t

)
= OP

(√
log p

n

)
.

Combining with (3.7) we get
∣∣∣∣∣∣∇L̃Pn (β0S)

∣∣∣∣∣∣ = OP

(√
s log p
n

)
, proving (R1). �

Proof of (R2):

Note that, by standard derivative calculations, we have∇2L̃Pn (β0S) = 2An(β0S)J(β0)An(β0S)T .

Fix any ε > 0. By Assumption (I2), there exists a constant C > 0 such that P (λmin[J(β0)] >

C) > 1− ε for all sufficiently large n. Also, by Assumption (I4), there exists a constant C2 > 0

such that λmin[AAT ] > C2, where A is as defined in Assumption (I4). Now, let us consider

the events
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G1 = {λmin[J(β0)] > C} , G2 =

{∣∣∣∣An(β0S)An(β0S)T −AAT
∣∣∣∣ < C2

2

}
.

On the event G1 ∩G2, we have

λmin

[
∇2L̃Pn (β0S)

]
≥ 2λmin[J(β0)]λmin

[
An(β0S)An(β0S)T

]
≥ ≥ 2C

{
λmin[AAT ]− C2

2

}
> CC2. (3.8)

But, we already have P (G1) > 1− ε. And, by the definition of matrix A, we have P (Gc
2) < ε

for all sufficiently large n. Hence P (G1 ∩G2) ≥ 1−P (Gc
1)−P (Gc

2) > 1− 2ε, which completes

the proof of (R2). �

Proof of (R3):

Fix any ε > 0, δ > 0 and any non-negative sequence αn = o(dn). For all βS satisfying

||βS − β0S|| < dn/2, we have βS,k 6= 0 for all k ≤ s. Thus, J(βS) = J(β0S). Also

P

(
sup

||βS−β0S ||≤αn

||An(βS)−An(β0S)||F ≤ δ

)
> 1− ε.

Combining we get

P

(
sup

||βS−β0S ||≤αn

∣∣∣∣∣∣∇2
SL̃

P
n (βS)−∇2

SL̃
P
n (β0S)

∣∣∣∣∣∣
F
≤ δ

)
> 1− ε,

which completes the proof of (R3). �

Proof of (R4):

The proof follows in the same line of argument as in Appendix C.1.2 of Fan and Liao (2014)

and hence left out for brevity. �
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Proof of Parts (a)-(b) of Theorem 3:

Under the results (R1)–(R4) along with Assumption (P), we can apply Theorem B.2 of Fan

and Liao (2014) for our PFGMM loss to conclude Part (a) of Theorem 3, and we also get that

P (Ŝ ⊂ S) → 1. Further, from Theorem B.1 of Fan and Liao (2014), we have
∣∣∣∣∣∣β̂S − β0S

∣∣∣∣∣∣ =

oP (dn). Then,

P (S * Ŝ) = P (There exists a j ∈ S such that β̂j = 0)

≤ P (There exists a j ∈ S such that |β̂j − β0j| ≥ |β0j|)

≤ P (max
j∈S
|β̂j − β0j| ≥ dn)

≤ P (||β̂j − β0j|| ≥ dn) = o(1). (3.9)

Therefore, P (S ⊂ Ŝ)→ 1, and hence P (Ŝ = S)→ 1. �

Proof of Part (c) of Theorem 3:

We start with the KKT condition for β̂S which gives

−P ′n(|β̂S|) ◦ sgn(β̂S) = ∇L̃Pn (β̂S),

where sgn denote the sign function, ◦ denotes the element-wise product and

P ′n(|β̂S|) = (Pn,λ(|β̂S,1|), . . . , Pn,λ(|β̂S,s|))T .

By the Mean-Value Theorem, we can get β∗ lying on the segment joining β0S and β̂S such

that
∇L̃Pn (β̂S) = ∇L̃Pn (β0S) +∇2L̃Pn (β∗)(β̂S − β0S).

Therefore, denoting D =
[
∇2L̃Pn (β∗)−∇2L̃Pn (β0S)

]
(β̂S − β0S), we get
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∇2L̃Pn (β0S)(β̂S − β0S) +D = −P ′n(|β̂S|) ◦ sgn(β̂S)−∇L̃Pn (β0S).

Now, take any unit vector α ∈ Rs. Then, since ∇2L̃Pn (β0S) = Σ + oP (1) by definition, using

the consistency of β̂S we have from the above equation that

√
nαtΓ−1/2Σ(β̂S − β0S) = −

√
nαtΓ−1/2∇L̃Pn (β0S)−

√
nαtΓ−1/2

[
P ′n(|β̂S|) ◦ sgn(β̂S) +D

]
.(3.10)

To tackle the first term in (3.10), we recall that ∇L̃Pn (β0S) = 2An(β0S)J(β0)Bn, where

the random component Bn =
[
1
n
ΠSṼ

−1
z (y −XSβS)

]
is normally distributed with

Var(
√
nB) =

σ2

n
ΠSṼ

−1
z V (θ, σ2)Ṽ

−1
z ΠS → Υ, as n→∞.

So, by the central limit theorem, for any unit vector α̃ ∈ R2s,

√
nα̃tΥ−1/2Bn

D→N(0, 1).

Further, by definition ||An(β0)−A|| = oP (1). Hence, by Slutsky’s theorem, we have

√
nαtΓ−1/2∇L̃Pn (β0S)

D→N(0, 1). (3.11)

Next, for the second term in (3.10), we apply Lemma C.2 of Fan and Liao (2014) to get,

under Assumption (P),

∣∣∣∣∣∣P ′n(|β̂S|) ◦ sgn(β̂S)
∣∣∣∣∣∣ = OP

(
max

||βS−β0S ||≤dn/4
ζ(β)

√
s log p

n
+
√
sP ′n,λ(dn)

)
.

Also, by Assumptions (I4)–(I5), we have λmin(Γ−1/2) = OP (1). Hence, applying Assumptions

(A1)–(A2), we get
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λmin(
√
nΓ−1/2)

∣∣∣∣∣∣P ′n(|β̂S|) ◦ sgn(β̂S)
∣∣∣∣∣∣

≤ OP (
√
n)OP

(
max

||βS−β0S ||≤
dn
4

ζ(β)

√
s log p

n
+
√
sP ′n,λ(dn)

)
= oP (1).

Further, by continuity of ∇2L̃Pn (βS), one can easily show that

∣∣∣∣∣∣∇2L̃Pn (β∗)−∇2L̃Pn (β0S)
∣∣∣∣∣∣ = oP

(
1√
s log p

)
.

Also, we have ||β̂S − β0S|| = OP

(√
s log p
n

+
√
sP ′n,λ(dn)

)
. Then, combining the above equa-

tions with Assumption (A1), we have ||D|| = oP (n−1/2). Hence, we get

√
nαtΓ−1/2

[
P ′n(|β̂S|) ◦ sgn(β̂S) +D

]
= oP (1). (3.12)

Therefore, using (3.11) and (3.12) in (3.10) with the help of Slutsky’s theorem, we get the

desired asymptotic normality result completing the proof of the theorem. �
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