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1. Proof of Theorem 1

Define P, , (0+) = lim; o1 P, ,(t). Then, by an application of the Karush-Kuhn-Tucker (KKT)

condition on the local minimizers B and 7, we get

L,(B,7
OLnBi1) 0 foralll <p,

9By

where v; = Pn7A(|@|)sgn(@) if B, #0, and v; € (=P, A (0+), P, (0+)] if B, = 0. Therefore, by

using the monotonicity and the limit of P, ,(¢) from Condition (C3), we get

~

8—@ < PA/\(O—l—) = o(1). (1.1)
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Next, by the first order Taylor series expansion of aL"(ﬁ 9Ln(Bm) 4 (,8, 1) around (B,, M), we get a

~

(3,7) on the line segment joining (3,7) and (B, n,) such that

dL, (B, n
0B

aL 1607 T’O
b

92 L, (B, ), O*La(B.7) .~
g 35153 BOJ) ; a—ﬁﬂ?k (77k 770k)-

Therefore, in the event 3 ~ = 0 having probability tending to one [by Condition (C2)], we get
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where the last step follows by Cauchy-Swartz inequality; here m is the dimension of 17. Now,

by Conditions (C1) and (C2), we get

L, (B, 7)
9B

_ OL(Bo: Mo)
9B

= Op(l).

Then the theorem follows using ((1.1) O



2. Proof of Theorem 2

First let us note that, for the likelihood loss L, (8, n,) = —{.(3,n), we have

AL, (By;Mo)

e (g - XB)V(6.0%) X,
k

for any k < p, where X denotes the k-th column of the matrix X. Therefore, by an
application of Strong law of Large Numbers, we have the following result in terms of the

transformed regression model given in Equation (3.2) of the main paper:

8Ln ’
‘M — E(e"X}), almost surely, as n — oo, (2.2)

9Br

where € and X} represent the random variables corresponding to the transformed error €* =
V(0,0%)7'/%2€ and the k-th transformed covariate (column) in X* = V(0,0%)"'/2X. Now, if
X is endogenous, then clearly €* and X} will be correlated and hence the limit in (2.2)) will

be non-zero. Then the proof follows directly from the results of Theorem 1. O

3. Proof of Theorem 3

We will first show that our Assumptions (A), (I) and (M) together with (P) imply the following

four results for the PFGMM loss function LY (3) given in Eq. (3.7) of the main paper.

(R1) [|VsLE(Bos:0)|| = Op (\/%), where Vg denotes the gradient with respect to the

(non-zero) elements of 3 in S. Note that /%2 = o(d,,) by our Assumptions.
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(R2) For any e > 0, there exists a positive constant C, such that, for all sufficiently large n,

P (Amin [VELE (Bys:0)] > Ce) > 1 —e.

(R3) For any € > 0, § > 0 and any non-negative sequence «,, = o(d,), there exists a positive

integer N such that, for all n > N,

P ( (VAL (85,0) - VAL (8,5.0), < a) 1o

[1Bs—Bosl|<an

where ||A||r denotes the Frobenius norm of a matrix A.

(R4) For any e > 0, there exists a positive constant C, such that, for all sufficiently large n,

P ()\min [V%Lﬁ(ﬁoSv O)} > Ce) >1—e

Then, Parts (a) and (b) of our Theorem 3 follow from Theorems B.1 and B.2 of Fan and Liao
(2014). Note that the assumptions required on the penalty functions there are exactly the
same as our Assumption (P); see Fan and Liao (2014) for details.

In the following, we will use the notations ITg = IT(3,4) and

LY (Bs) = - -

T
vy - Xsﬁs)] J(8y) [1Hs‘72 Yy Xsﬁs)] . BscR.(33)

Note that IE(BS) = LP(B4,0). We will now prove results (R1)—(R4).

Proof of (R1):
By standard derivative calculations, we get VED(BS) =2A,(8Bs)J(By) [%Hgvgl(y - Xsﬁs)] :
where A,(Bg) = —= (HS{;’;IXS) Now, by Assumption (I4), we know that ||A,(Bys)|| =

Op(1). Also, by Assumption (I12), the elements in J(3,) are uniformly bounded in probability,



and hence

9z (B0 < 0rl1) || 11157~ (0 - Xaths)| (3.

Next, we study the difference of the random variables Z; = [%HS‘N/Z_I(y — X sBys)| and

Zy = [tIIgV (0) " (y — X sBys)|- By Assumption (M1), we get
V. — V(0,0%) = (C, — I+ Z'(C,M — 072Wy)Z > 0.

That is C,V. > V(6,02). By the Woodbury formula, since C;V . and V (8, 0%) are both

positive definite, we get ‘N/;l < C1V(0,0%) 7. Therefore,

1

Z,—Zy, = -IlIg|V

< THSV(07 o)y — X sBs)- (3.5)
Further, by Assumption (M2), we have

Cy(logn)V(0,0°) — V. = (Cylogn — 1) I + Z"(Cylogno g — M)Z > 0.
~ ~ 1
Then, C1(logn)V (0,0?) >V, and as before we get Ci(logn)V, > V(0,0?)'. Therefore,
1 ~—1
Zy,—Z, = EHS V(0,0°) —V_ | (y— XsBs)

C1(Cylogn — 1)

n

< LV (6,0%) " (y — XsBos)-

(3.6)
Combining (3.5)) and (3.6]), along with our basic IV assumption (Eq. (3.3) of the main paper),

we have |Z| — Zs| = op(1). Therefore, from (3.4), we get



[VEEBw)|| < 0n(0)| LTIV (6.0%) 5~ X

n

1 * * *
n Z(?Jz — XisBos) s

=1

= 0p(1) (3.7)

But, E[(Y* — X[By¢)IIi] = 0 by the choice of IV 7f. So, using the Bonferroni inequality

and the exponential-tail Bernstein inequality along with Assumption (I1) and the normality

)

of (Y* — X7Byg), we get a positive constant C' such that, for any t > 0,

1
(max > t) < pmax P (
I<p I<p

E X Fr
n (yz zsﬁos) li
Thus,

(max

n

Z yz ZS/BOS Ez

n

DS RIE
i=1
Similarly, we can show

max
I<p

Combining with 1’ we get HVZZD(BOS)H =0Op ( Slflgp), proving (R1). O

>

< < pexp(—Ct*/n).
I<p

3

. Z yz zSﬁOS le
=1

Proof of (R2):
Note that, by standard derivative calculations, we have VQZE(BOS) =2A,(Bys)J (B)An(Bys)T-
Fix any € > 0. By Assumption (I2), there exists a constant C' > 0 such that P(Ap[J(B,)] >

C') > 1— ¢ for all sufficiently large n. Also, by Assumption (I4), there exists a constant Cy > 0
such that Ayin[AA”T] > Oy, where A is as defined in Assumption (I4). Now, let us consider

the events



Gr = PunlJ (Be)] > O}, Ga= {I\Anwos)An(ﬂos)T _AAT|| < %} |

On the event G; N G, we have

/\min |:V2Z£:D(,305)} Z 2/\min[J(,80)]/\min [An(/@OS)An(ﬁOS)T}

> >2C {)\min[AAT] — %} > CC,. (3.8)

But, we already have P(G1) > 1 —e. And, by the definition of matrix A, we have P(GS) < €
for all sufficiently large n. Hence P(G1NG2) > 1 — P(GS) — P(G$) > 1 — 2¢, which completes

the proof of (R2). O

Proof of (R3):
Fix any ¢ > 0, 6 > 0 and any non-negative sequence o, = o(d,). For all B¢ satisfying

1Bs — Bosl| < dn/2, we have gy, # 0 for all k£ < s. Thus, J(Bg) = J(Bys)- Also

P( sup (| A(Bs) — An(Bos)ll, < 5) >1-e

[1Bs—Bosl|<an

Combining we get

P sup
[1Bs—BoslI<an

which completes the proof of (R3). d

VELE(Bs) = VALE(Bos)|, < 5) >1-c

Proof of (R4):
The proof follows in the same line of argument as in Appendix C.1.2 of Fan and Liao (2014)

and hence left out for brevity. O



Proof of Parts (a)-(b) of Theorem 3:
Under the results (R1)-(R4) along with Assumption (P), we can apply Theorem B.2 of Fan
and Liao (2014) for our PFGMM loss to conclude Part (a) of Theorem 3, and we also get that

P(S c S) — 1. Further, from Theorem B.1 of Fan and Liao (2014), we have HBS — BOSH =

op(dy,). Then,
PS¢ S) = P(There exists a j € S such that B\j =0)

P(There exists a j € S such that |§] — Boj| > 15ojl)

IN

< P(%leag 185 — Bos| > do)
< P(1B; = ojl] = dn) = o(1). (3.9)

Therefore, P(S C S) — 1, and hence P(5 = §) — 1. O

Proof of Part (c) of Theorem 3:

We start with the KKT condition for Bs which gives
=P (1Bsl) o sgn(Bs) = VLL (Bs),
where sgn denote the sign function, o denotes the element-wise product and

Pr(1Bs]) = (Pua(Bsal); - Pan(1Bss)"

By the Mean-Value Theorem, we can get 3 lying on the segment joining B,¢ and [A‘is such

that

~

VL (Bg) = VL (Bys) + VELE(B")(Bs — Bos)-

Therefore, denoting D = |V2LE(3") — VQZE(BOS)] (B — Bos), we get



-~

V2LE(Bys)(Bs — Bos) + D = —PL(|Bs|) o sgn(Bs) — VLE (Bys)-

Now, take any unit vector ¢ € R*. Then, since VQE’(ﬁOS) = X + op(1) by definition, using

the consistency of B ¢ we have from the above equation that

V' T8 (B — Bys) = —V/nalT™2VLE(Byg) — vna'T~1/2 |:P7/L(’BSD osgn(Bg) + D] (3.10)
To tackle the first term in 1) we recall that VIAJZLD(BOS) = 2A,(Bys)J (By) B, where
the random component B,, = [%Hgvj(y - X3 S)} is normally distributed with

2 ~ ~
Var(vaB) = Z IV, V(0,6°)V, TIs = Y, as n— oo
n

So, by the central limit theorem, for any unit vector & € R?S,
V&' Y 2B, B N(0,1).
Further, by definition ||A,(83,) — A|| = op(1). Hence, by Slutsky’s theorem, we have
VnalT- V2V LP(B,s) 2 N(0,1). (3.11)

Next, for the second term in (3.10)), we apply Lemma C.2 of Fan and Liao (2014) to get,

under Assumption (P),

~ ~ 1
| PL(1Bs) o sen(Bs)|| = Or (L;S_gé?f;dnmé(ﬁ)\/ TR ﬁPg,xdn)) .

Also, by Assumptions (I4)-(I5), we have Apin(I'™Y/?) = Op(1). Hence, applying Assumptions

(A1)-(A2), we get
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)\min(\/ﬁril/Q)

P1(1Bsl) o sen(Bs)||

< Op(v/n)Op ( max (@) 28P \/EP,’M(dn)) — op(1).

HBS_BOSHSdTn n

Further, by continuity of VQZf;D (Bg), one can easily show that

(V2220687 - VLB | =0 ()

Also, we have ||Bg — Bysl|| = Op ( e \/EPA)\(dn)) Then, combining the above equa-

tions with Assumption (A1), we have ||D|| = op(n~'/?). Hence, we get

Via'T2 [P (|Bg]) o sgn(Bs) + D| = op(1). (3.12)

Therefore, using (3.11) and (3.12)) in (3.10) with the help of Slutsky’s theorem, we get the

desired asymptotic normality result completing the proof of the theorem. O
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