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S1 Preliminary lemmas

Before getting to the proofs of the main theorems, we need to suitably lower-

bound the posterior denominator and upper-bound the posterior numerator,

the latter depending on the type of neighborhood being considered. In

particular, for a generic measurable subset A of the parameter space, write

Πn(A) =
Nn(A)

Dn

=

∫
A

∑
S π(S)Rn(βS+, β

∗)απλ(βS | S) dβS∫ ∑
S π(S)Rn(βS+, β∗)απλ(βS | S) dβS

,

where Rn(βS+, β
∗) = Ln(βS+)/Ln(β?) is the likelihood ratio, with βS+ the

p-vector corresponding to βS with zeros filled in around the indices in S.

Recall that β? denotes the true and sparse coefficient vector in Rp, with

S? = Sβ? the corresponding configuration of complexity s? = |S?|. Also,

recall that the condition number, κ(S?), of the matrix n−1X>S?XS? is O(1)

as n → ∞ by Assumption 3 in the main text. Lemma 1 gives a general

lower bound on the denominator Dn.

Lemma 1. Given the inputs (α, g, λ) to our proposed posterior, define

b = b(α, g, λ, S∗) =



1
2

log{1 + αgκ(S?)1+λ}, if λ ∈ [0,∞)

1
2

log{1 + αgκ(S?)}, if λ ∈ [−1, 0)

1
2

log{1 + αgκ(S?)−λ}, if λ ∈ (−∞,−1).

(S1.1)

Then under Assumptions 1–3, the denominator Dn of the posterior satisfies

Pβ?{Dn < π(S?)e−bs
?} → 0 as n→∞.
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Proof. Since Dn is a sum of non-negative terms, we get the trivial bound

Dn > π(S?)

∫
Rn(βS? , β

?
S?)

αN
(
dβS? | φβ̂S? , σ2gkS?(X

>
S?XS?)

λ
)

= π(S?)
s?∏
i=1

(1 + αgkS?d
1+λ
S?,i)

−1/2 exp
{ α

2σ2
(An −Bn)

}
,

where

An = n(β̂S? − β?S?)>
(
n−1X>S?XS?

)
(β̂S? − β?S?)

Bn = (1− φ)2β̂>S?Q
−1
S? β̂S?

are both non-negative, and the QS matrix is defined as

QS = (X>SXS)−1 + αgkS(X>SXS)λ, S ⊆ {1, 2, . . . , p}. (S1.2)

From the well-known sampling distribution of β̂S? , we have

An ∼ σ2 ChiSq(s?) = Op(s
?).

Next, for Bn, under Assumption 3, it can be verified that the maximal

eigenvalue of Q−1S? is O(n). Therefore, Bn . n(1− φ)2‖β̂S?‖2. Write

‖β̂S?‖2 . ‖β̂S? − β?S?‖2 + ‖β?S?‖2

Since the first term is Op(s
?n−1) and (1− φ)2 ≤ o(1), we have

n(1− φ)2‖β̂S? − β?S?‖2 = op(s
?).

Similarly, by Assumption 2, for the second term we have

n(1− φ)2‖β?S?‖2 = o(s?).
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This implies Bn = op(s
?) and, hence, Pβ?(An ≤ Bn) → 0 which, in turn,

implies that the exponential term in the lower bound for Dn is no smaller

than 1. Therefore,

Dn > π(S?)
s?∏
i=1

(1 + αgkS?d
1+λ
S?,i)

−1/2

and the product can be lower-bounded by e−bs
?

for b as defined in (S1.1).

Finally, we have that Dn ≤ π(S?)e−bs
?

with vanishing Pβ?-probability, as

was to be shown.

Next, consider the subset Bε of Rp given by

Bε = {β ∈ Rp : ‖Xβ −Xβ?‖2 > ε}, ε > 0.

For the sequence εn and constant M > 0 as in the statement of Theorem 1

in the main text, set Nn = Nn(BMεn). The following lemma gives an upper

bound on Nn.

Lemma 2. There exists a constant d = d(α, σ2) such that

sup
β?

Eβ?(Nn) ≤ e−dεn
∑

S:|S|≤R

ψ(|S|)|S|πλ(S),

where

ψ(s)2 =



ω(s)2(λ+1)
[
1 + qφ2

g
ω(s)−(λ+1)

]1− 1
q if λ ∈ [0,∞)

ω(s)2
[
1 + qφ2

g
ω(s)−1

]1− 1
q if λ ∈ [−1, 0)

ω(s)−2λ
[
1 + qφ2

g
ω(s)λ

]1− 1
q if λ ∈ (−∞,−1),

(S1.3)
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where q = h(h− 1)−1 and h ∈ (1, α−1) is a constant.

Proof. Let us consider the expectation of Nn, given the true distribution of

Y , i.e. Y ∼ N(Xβ?, σ2I). Then by Hölder’s inequality, for constants h > 1

and q = h(h− 1)−1, we can find an upper bound for Eβ?(Nn),

Eβ?(Nn) ≤
∑
S

π(S)

∫
Bεn

Jn(βS)
1
hKn(βS)

1
q dβS, (S1.4)

where

Jn(βS) = Eβ?
[{ N(y | XSβS, σ

2I)

N(y | XS?β?S? , σ
2I)

}hα]
Kn(βS) = Eβ?

[
Nq(βS | φβ̂S, σ2gkS(X>SXS)λ)

]
.

If hα < 1, then upon taking expectation with respect to y ∼ N(XS∗β
∗
S∗ , σ

2I),

we get

Jn(βS) = e−
α(1−hα)

2σ2
‖XβS+−Xβ?‖2 ≤ e−[α(1−hα)/2σ

2]εn , ∀ βS+ ∈ Bεn . (S1.5)

Next, for Kn, after factoring out the non-stochastic terms in the multivari-

ate normal density, there is an expectation of exponential quadratic form

to be dealt with, i.e.,

Eβ?
[

exp
{
− q

2σ2gkS
Z
}]
, (S1.6)

where Z = (βS − φβ̂S)>(X>SXS)−λ(βS − φβ̂S) and β̂S is the least square

estimator under configuration S. Let β?S denote the mean of β̂S, then β?S =
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(X>SXS)−1XT
SXS?β

?
S? . Applying a spectral decomposition on X>SXS in Z,

we have,

Z/(σ2φ2) = ν>S Λ
−(λ+1)
S νS,

where νS = Λ
1/2
S Γ>S (βS−φβ̂S)/(σφ). ΛS is a diagonal matrix whose diagonal

elements are the corresponding eigenvalues for X>SXS, and ΓS is a matrix

with columns being corresponding eigenvectors. It is not difficult to show,

νS ∼ N
(

Λ
1/2
S Γ>S (βS − φβ?S)/(σφ), I

)
,

which implies νS,i are iid N(d
1/2
S,i Γ>S,i(βS − φβ?S)/(σφ), 1), where dS,i is the

ith eigenvalue of X>SXS and ΓS,i is the ith eigenvector. Hence, ν2S,i has a

non-central chi-square distribution with df = 1 and non-centrality µS,i =

1
σ2φ2

(βS − φβ?S)>ΓS,idS,iΓ
>
S,i(βS − φβ?S). By taking advantage of the inde-

pendence of the ν2S,is and using the moment generating function of the

non-central chi-square distribution, (S1.6) can be written as

s∏
i=1

(1− 2tS,i)
− 1

2q exp
{µS,i

2q

( 1

1− 2tS,i
− 1
)}
, (S1.7)

where tS,i = −qφ2d
−(1+λ)
S,i /2gkS < 0 < 1/2. It is clear that (S1.7) is a

non-decreasing function with respect to tS,i. And when λ ≥ 0, tS,i ≤ tS :=

−φ2q
2g
ω(s)−(λ+1). Then, for all βS ∈ R|S|, we can obtain an upper bound for
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(S1.6) by replacing tS,i with tS in (S1.7),

U(βS) = (1− 2tS)−
s
2q exp

{( 2tS
1− 2tS

) 1

2qσ2φ2
(βS − φβ?S)>(X>SXS)(βS − φβ?S)

}
(S1.8)

For λ < −1 and −1 ≤ λ < 0, we can get the same expression of Un(βS)

with tS = −φ2qω(s)/2g and tS = −φ2qω(s)λ/2g respectively. Therefore,

Kn(βS) ≤ (2πσ2gkS)−
s
2D(S)−

λ
2Un(βS) (S1.9)

Since Jn(βS) and Kn(βS) are non-negative, we upper-bound the integral in

(S1.4) by

∫
R|S|

Jn(βS)
1
hKn(βS)

1
q dβS (S1.10)

By plugging (S1.9) and (S1.5) into (S1.10), and integrating out βS , we

bound Eβ?(Nn) by,

e−[α(1−hα)/2σ
2]εn

∑
S:|S|≤R

ψ(|S|)sπ(S)

where function ψ(s) is defined (S1.3).
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S2 Proofs of theorems

S2.1 Proof of Theorem 1

With Lemmas 1 and 2, the expectation of posterior probability of event

Bn = BMεn can be bounded by,

Eβ?
{

Πn(Bn)
}
≤ ebs

?−dMεn

∑
S:s≤R ψ(s)sπ(S)

π(S?)

= ebs
?−dMεn

∑R
s=1 ψ(s)sfn(s)

π(S?)
.

While for the prior, if λ ≥ 0, we can get,

π(S?) ≥ ω(s?)−λ/2fn(s?)

(
p

s?

)−1
.

Therefore the upper bound for the posterior probability can be written as,

Eβ?
{

Πn(Bn)
}
≤ ebs

?−dMεnξn,

where

ξn =
ω(s?)λ/2

(
p
s?

)
fn(s?)

R∑
s=1

ψ(R)sfn(s).

Taking logarithm on both sides, we get

log Eβ?
{

Πn(Bn)
}
≤
(bs?
εn
−Md+

log ξn
εn

)
εn. (S2.1)

We require εn to have a certain rate such that the upper bound for posterior

probability can vanish. A preliminary requirement for εn is s?/εn → 0, in

order make ebs
?−dεn as o(1). In addition, εn should satisfy log ξn = O(εn).
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Therefore, as n → ∞, bs?/εn → 0 and log(ξn)/εn → K. Thus, for any M

satisfying Md > K, we will have

log Eβ?
{

Πn(Bn)
}
→ −∞.

Next, we establish the rate for log ξn. Under Assumptions 1 and 2,

ω(s?) is bounded with probability 1. By Stirling’s formula, we have that

log

(
p

s?

)
≤ s? log(p/s?){1 + o(1)}.

Given that fn(s) ∝ c−sp−as, we can also have

− log fn(s?) ≤ s? log(cs?) + as? log(p/s?) = O(s? log(p/s?)).

Since we have ruled out cases with extremely ill-conditioned X>SXS, ω(s)

is bounded above by Cpr. Thus, for the nonnegative λ case,

R∑
s=1

ψ(R)sfn(s) . pR
[
r(1+λ)−a

]
.

Therefore, when λ ≥ 0, the rate of εn should be

max{R
[
r(1 + λ)− a

]
log p, s? log(p/s?)}.

The proofs for λ < 0 are similar. Therefore, the rate εn then can be

rewritten as

εn = max{q(R, λ, r, a), s? log(p/s?)},

where function q is defined in the Theorem 1 statement.
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S2.2 Proof of Theorem 2

Followed by Lemma 2 and Theorem 1, we can get

E
1/h
β?

[{N(y | XSβS+, σ
2I)

N(y | XSβS? , σ2I)

}hα]
= exp

{
− α(1−hα)

2σ2 ‖XβS+ −XβS?‖2
}
≤ 1.

If Un = {β ∈ Rp : |Sβ| ≥ ρs?}, then it is not difficult to show that,

Eβ?{Nn(Un)} ≤
R∑

s=ρs?

ψ(s)sfn(s).

With the help of Lemma 1, the posterior probability of event Un can be

bounded as,

Eβ?{Πn(Un)} ≤ ecs
? ω(s?)λ/2

(
p
s?

)
fn(s?)

R∑
s=ρs?

ψ(s)sfn(s) (S2.1)

From Theorem 1, we have

log
ω(s?)λ/2

(
p
s?

)
fn(s?)

≤ (a+ 1 + o(1))s? log(p/s?).

In addition, for λ ≥ 0, if a > r(1 + λ), we can get

R∑
s=ρs?

ψ(s)sfn(s) . exp{−ρs?[a− r(1 + λ)] log p}.

When λ ≥ 0, ρ > ρ0 = (a+1){a−r(1+λ)}−1, then
∑R

s=ρs? ψ(s)sfn(s) dom-

inates the other two terms in (S2.1). Therefore, Eβ?{Πn(Un)} will vanish

as n→∞. Similarly for λ < 0, we can get the same result if ρ > ρ0.
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S2.3 Proof of Theorem 3

Let |Sβ−β?| be the number of non-zero entries of (β − β?). Then,

‖X(β − β?)‖2 > n`(|Sβ−β?|)‖β − β?‖2.

If a > max{1 + λ, 1, 1− λ} and ρ > ρ0 in Equation (3.1) in the main text,

by Theorem 2 and monotonicity of `(s), we can get

Eβ?Π
n({β : `(|Sβ−β?|) ≥ `(ρs? + s?)})→ 1.

If we set δn as in the theorem’s statement and apply Theorem 1, we get

Eβ?{Πn(β : ‖β − β?‖2 > Mδn)} ≤ Eβ?{Πn(BMδn`(ρs?+s?))} → 0,

as was to be shown.

S2.4 Proof of Theorem 4

We segment the proof of Theorem 4 into two parts. First, under Assump-

tions 1 and 3, we aim to show that, Eβ? [Π
n({β : Sβ ⊃ Sβ?})]→ 0. Second,

under the beta-min condition, we prove that Eβ? [Π
n({β : Sβ 6⊇ Sβ?})]→ 0.

We only consider positive λ case here. The proofs in Parts 1 and 2 below

can go through the same way when λ < 0.

Note that some of the arguments presented here refer to Martin et al.

(2017), but there are some oversights in the selection consistency results
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presented in the published version of that paper. The version available at

arXiv:1406.7718 contains corrections of those arguments.

Part 1 Let S be any configuration containing but not equal to the true

model S?, i.e. S ⊃ S?. Then the posterior for S can be written as,

πn(S) ≤ Πn(S)
/

Πn(S?)

= FSRS exp
[
− α

2σ2

{
y>(PS? − PS)y + (1− φ)2β̂>SQ

−1
S β̂S − (1− φ)2β̂>S?Q

−1
S? β̂S?

}]
≤ FSRS exp

[
α

2σ2

{
y>(PS − PS?)y + (1− φ)2β̂>S?Q

−1
S? β̂S?

}]
,

where FS = π(S)/π(S?), PS = XS(X>SXS)−1X>S , QS is as in (S1.2), and

RS =

∏s
i=1(1 + αgkSd

λ+1
S,i )−

1
2∏s?

i=1(1 + αgkS?d
λ+1
S?,i)

− 1
2

.

Applying Hölder’s inequality with the same constants in (S1.4), h > 1 and

q = (h− 1)/h, we get that Eβ?{πn(S)} is upper-bounded by

FSRSE
1/h
β?

[
exp{ αh

2σ2y
>(PS − PS?)y}

]
E
1/q
β?

[
exp{αq(1−φ)

2

2σ2 β̂>S?Q
−1
S? β̂S?}

]
. (S2.1)

First, given that S ⊃ S?, (PS − P ?
S) is idempotent and (PS − P ?

S)XS? = 0.

Therefore, y>(PS − PS?)y/σ2 has a chi-square distribution, ChiSq(s − s?).

If hα < 1, using moment generating function of central chi-square, the first

expectation term in (S2.1) can be written as,

E
1/h
β?

[
exp{ hα

2σ2y
>(PS − PS?)y}

]
= (1− hα)−(s−s

?)/2h.
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Second, from the spectral decomposition X>S?XS? = ΓS?ΛS?Γ
>
S? , if u =

Λ
1/2
S? Γ>S? β̂S?/σ, then,

β̂>S?Q
−1
S? β̂S?/σ

2 = u>
(
Is + αgkS?Λ

λ+1
S?

)−1
u =

s?∑
i=1

1

1 + αgkS?d
λ+1
S?,i

u2i .

Obviously, u ∼ N(Λ
1/2
S? Γ>S?β

?
S?/σ, Is?), and this implies ui

iid∼ N(d
1/2
S?,iΓ

>
S?,iβ

?
S?/σ, 1).

It follows that the u2i s are independent non-central chi-square random vari-

ables, with non-centrality parameter µi = d
1/2
S?,iΓ

>
S?,iβ

?
S?/σ and degrees of

freedom of 1. Using the same argument as in (S1.7)–(S1.8), we get,

E
1/q
β?

[
exp{αq(1−φ)

2

2σ2 β̂>S?Q
−1
S? β̂S?}

]
≤ (1− t)−

s?

2q exp
{
αn‖β?S?‖2λmax(S

?) t
1−t

}
,

where 0 < t . (1 − φ)2. Since t = o(s?{n‖β?S?‖2}−1) ≤ o(1), by Assump-

tion 2, we have 1 − t > 1
2

for large n; in addition, by Assumption 3, we

have that the expression inside exp{·} on the right-hand side above is o(s?).

Therefore, since q−1 < 1− α, we can conclude that the second expectation

term in (S2.1) is asymptotically upper-bounded by

exp[{1
2
(1− α) log 2 + o(1)}s?}] ≤ exp{(1− α)(log 2)s?}.

Next, it is clear that

RS ≤
s?∏
i=1

(1 + αgkS?d
λ+1
S?,i)

1/2.

Since kSd
λ+1
S,i satisfies

κ(S)−(λ+1) ≤ kSd
λ+1
S,i ≤ κ(S)λ+1,
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and the lower and upper bounds are stable according to Assumption 3, it

follows that RS is upper-bounded by ems
?
, where m = 1

2
log(1+αgκ(S?)λ+1).

For FS defined above, we have

π(S) ≤
(
p

s

)−1
ω(s)

λ
2 fn(s) and π(S?) ≥

(
p

s?

)−1
ω(s?)−

λ
2 fn(s?).

Now we can bound Eβ?{πn(S)} above by,

eGs
?

ω(s)λ
(
p

s

)−1(
p

s?

)( z
cpa
)s−s? ×O(1),

where G = (1− α)(log 2) + m and z > 0 is a constant. By Theorem 2, we

only need to consider S of size no more than ρs?, where ρ > ρ0 in (3.2) and

a > r(1 + λ). Therefore,

Eβ?{Πn(β : Sβ ⊃ Sβ?)} =
∑
S⊃S?

Eβ?{πn(S)}

≤ eGs
?

ω(ρs?)λ
ρs?∑

s=s?+1

(
p−s?
p−s

)(
p
s?

)(
p
s?

) ( z
cpa
)s−s?

(S2.2)

Under Assumption 3, ω(ρs?) is bounded, so following the results in Martin

et al. (2017), (S2.2) turns out to be,

Eβ?{Πn(β : Sβ ⊃ Sβ?)} ≤
eGs

?
s?

pa
×O(1).

So, if p and a are such that pa � s?eGs
?
, then E{Πn(S ⊃ S?)} will go to 0

as n→∞.
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Part 2 Consider a configuration S satisfying S + S?, in Part 1, we already

have (S2.1), which is

Eβ?{πn(S)} ≤ FSRSE
1/h
β?

[
exp{ αh

2σ2y
>(PS−PS?)y}

]
E
1/q
β?

[
exp{αq(1−φ)

2

2σ2 β̂>S?Q
−1
S? β̂S?}

]
.

For the first expectation term, if we plug in y = XS?βS? + σz, where z ∼

N(0, In), then according to the results in Martin et al. (2017)

y>(PS − PS?)y = −‖(I − PS)XS?β
?
S?‖2 − 2σz>(I − PS)XS?β

?
S? + σ2z>(PS − PS?)z

≤ −‖(I − PS)XS?β
?
S?‖2 − 2σz>(I − PS)XS?β

?
S? + σ2z>(PS − PS∩S?)z.

Since z>(I − PS)XS?β
?
S? and z>(PS − PS∩S?)z are independent, using the

moment generating function of normal and chi-square distributions, we can

get,

E
1/h
β?

[
exp{ αh

2σ2y
>(PS − PS?)y}

]
≤ (1− hα)−

1
2h

(|S|−|S∩S?|) exp{−α(1−hα)
2σ2 ‖(I − PS)XS?β

?
S?‖2} (S2.3)

With some algebraic manipulation, we can show that

‖(I − PS)XS?β
?
S?‖2 = ‖(I − PS)XS?∩Scβ

?
S?∩Sc‖2,

and then based on Lemma 5 of Arias-Castro and Lounici (2014), we get

‖(I − PS)XS?∩Scβ
?
S?∩Sc‖2 ≥ n`(s?)‖β?S?∩Sc‖2.
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By the beta-min condition (3.5), it follows that ‖β?S?∩Sc‖2 ≥ %2n(s?−|S?∩S|),

and, hence,

exp
{
−α(1−hα)

2σ2 ‖(I − PS)XS?β
?
S?‖2

}
≤ p−M(s?−|S?∩S|).

Then following the results in Martin et al. (2017), we can get,

Eβ?{Πn(β : Sβ + Sβ?)} . eGs
?

ρs?∑
s=0

min(s,s?)∑
t=1

(
s?

t

)(
p−s?
s−t

)(
p
s?

)(
p
s

) (cpa)s
?−s{(1−hα)p−M}s?−t.

When s < s?, we have,

Eβ?{Πn(β : Sβ + Sβ?)} . eGs
?
s?−1∑
s=0

(cp1+a−M)s
?−s .

eGs
?

pM−(a+1)
, M > a+ 1.

When s ≥ s?, we have,

Eβ?{Πn(β : Sβ + Sβ?)} . eGs
?{(1−hα)p1−M}

ρs?∑
s=s?

(cpa−1)s
?−s .

eGs
?

pM−(a+1)
, a > 1.

Furthermore, if pM−(a+1) satisfies pM−(a+1) � eGs
?
, the two fractions above

will finally go to 0 as n and p go to infinity.

S3 Choice of φ

Consider the following sequence

φn = 1− 2E‖β̂S? − β?S?‖2

‖β?S?‖2 + E‖β̂S? − β?S?‖2
.

As claimed in Section 4.2.3 of the main text, this choice of φn satisfies the

condition in Assumption 2, that is,

1− φn = O(s?{n‖β?S?‖2}−1).
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To see this, first note that

E‖β̂S? − β?S?‖2 = σ2tr{(X>S∗XS∗)
−1} ' σ2n−1s∗λ−1min(S∗),

where λmin(S∗) is the smallest eigenvalue of n−1X>S∗XS∗ , which is O(1).

Then it is not difficult to show that

1− φn '
s∗

n‖β∗S∗‖2
.

Therefore,

n(1− φn)2‖β?S?‖2 ' s∗
s∗

n‖β∗S∗‖2
,

and if s?{n‖β?S?‖2}−1 → 0, we have

n(1− φn)2‖β?S?‖2 = o(s∗).

In practice, we cannot use φn because it depends on the true β?. In-

stead, we use an estimator, φ̂n, of φn. Replacing E‖β̂S? − β?S?‖2 and ‖β?S?‖2

by σ̂tr{(X>S∗XS∗)
−1} and ‖β̂Ŝ‖ respectively, we have,

φ̂n = 1−
2σ̂2tr{(X>

Ŝ
XŜ)−1}

‖β̂Ŝ‖2 + σ̂2tr{(X>
Ŝ
XŜ)−1}

,

where Ŝ is obtained from adaptive lasso, σ̂ and β̂Ŝ are from the least squares

estimator given Ŝ.
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S4 Sensitivity analysis of choices of hyperparameters

In this section, we investigate the sensitivity of our method’s performance to

different choices of hyperparameters. In our ECAP model, hyperparameters

λ and g are chosen based on maximum marginal likelihood method, and

σ2 is determined by adaptive lasso. Here we only consider various values

of a in prior (2.1) and the upper bound of φ, given that although we use a

James-Stein type estimator φ̂, in practice we still set the maximum value of

φ to be 0.7 for “stable” performance of model selection. We will also briefly

discuss α later.

Table 1: Simulation results for Cases 1–5.

Case a P(Ŝ = S?) P(Ŝ ⊇ S?) Average |Ŝ|

1 0.05* 0.263 0.342 9.65(0.15)

0.5 0.411 0.465 9.50(0.73)

2 0 0 6.30(0.81)

2 0.05* 0.994 1 10.00(0)

0.5 0.975 0.975 9.96(0.20)

2 0.775 0.775 9.76(0.57)

3 0.05* 0.760 0.778 4.90(0.08)

0.5 0.182 0.182 4.18(0.14)
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2 0 0 3.67(0.12)

4 0.05* 0.872 0.897 5.05(0.07)

0.5 0.809 0.825 4.90(0.06)

2 0.360 0.360 4.17(0.06)

5 0.05* 0.827 0.919 4.95(0.05)

0.5 0.823 0.845 4.82(0.07)

2 0.240 0.240 4.27(0.08)

Table 2: Simulation results for Cases 1–5.

Case φ P(Ŝ = S?) P(Ŝ ⊇ S?) Average |Ŝ|

1 0.5 0.435 0.609 10.01(0.81)

0.7∗ 0.263 0.342 9.65(0.15)

0.9 0.288 0.589 10.71(1.22)

0.99 0.285 0.679 10.57(1.26)

2 0.5 0.980 1 10.02(0.14)

0.7∗ 0.994 1 10.00(0)

0.9 0.919 1 10.05(0.23)

0.99 0.826 1 10.59(0.86)



20 C. Liu, Y. Yang, H. Bondell, and R. Martin

3 0.5 0.590 0.614 4.77(0.09)

0.7∗ 0.760 0.778 4.90(0.08)

0.9 0.692 0.781 4.96(0.10)

0.99 0.620 0.796 4.94(0.13)

4 0.5 0.882 0.912 4.97(0.05)

0.7∗ 0.861 0.940 5.05(0.07)

0.9 0.810 0.967 5.17(0.09)

0.99 0.844 0.969 5.13(0.13)

5 0.5 0.857 0.918 4.89(0.06)

0.7∗ 0.827 0.919 4.95(0.05)

0.9 0.752 0.950 5.04(0.10)

0.99 0.714 0.939 5.04(0.12)

From the above tables, a take-away message we can get is that the

“optimal” choice of hyperparameters can be different for different settings.

In practice, e.g., in Sections 4 and 5, we tend to choose a hyperparameter

that can give us stable model selections results. For example, we choose

φ = 0.7 instead of 0.9 or 0.99 because when φ is close to 1, we tend to get

slow MCMC convergence or unstable SSS results. And we usually avoid
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very small values of a, like 0.01, given that small a can lead to convergence

problem in choosing g by maximizing local marginal likelihood.

For sensitivity analysis of hyperparamter α, it is not difficult to under-

stand that in practice, there would be little significant difference in terms

of model selection performance between choice of 0.99 and 0.999, since we

want our α close to 1. The main issue about α is from a theoretical per-

spective, which we have discussed in Sections 2 and 3.
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