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This Supplementary Material contains the simulation results, two real data analyses and the

proofs for Theorems 1–5. In Section S1, we show the simulation results for finite network

sizes. In Section S2, we present the analytical results for the Children’s Friendship data and the

Lazega’s Law Firm data. The proofs for Theorems 1–5 are given in Sections S3–S7, respectively.

S1 Simulation

In this section, we carry out numerical simulations by using the discrete

Laplace mechanism in Algorithm 1. We assess the performance of the esti-

mator for finite sizes of networks when n, εn and θi vary and compare the

simulation results of the non-denoised estimator with those of the denoised

estimator.

The parameters in the simulations are as follows. Similar to Yan et

al. (2016), the setting of the parameter θ∗ takes a linear form. Specifi-
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cally, we set α∗i+1 = (n − 1 − i)L/(n − 1) for i = 0, . . . , n − 1. For the

parameter values of β, let β∗i = α∗i , i = 1, . . . , n − 1 for simplicity and

β∗n = 0 by default. We considered four different values for L, L = 0,

log(log n), (log n)1/2 and log n, respectively. We simulated three different

values for εn: one is fixed (εn = 2) and the other two values tend to zero

with n, i.e., εn = log(n)/n1/4, log(n)/n1/2. We considered three values for

n, n = 100, 200 and 500. Each simulation was repeated 10, 000 times.

By Theorem 2, ξ̂i,j = [α̂i − α̂j − (α∗i − α∗j )]/(1/v̂i,i + 1/v̂j,j)
1/2, ζ̂i,j =

(α̂i + β̂j − α∗i − β∗j )/(1/v̂i,i + 1/v̂n+j,n+j)
1/2, and η̂i,j = [β̂i − β̂j − (β∗i −

β∗j )]/(1/v̂n+i,n+i + 1/v̂n+j,n+j)
1/2 converge in distribution to the standard

normal distributions, where v̂i,i is the estimate of vi,i by replacing θ∗ with θ̂.

Therefore, we assess the asymptotic normality of ξ̂i,j, ζ̂i,j and η̂i,j using the

quantile-quantile (QQ) plot. Further, we record the coverage probability of

the 95% confidence interval, the length of the confidence interval, and the

frequency that the estimate does not exist. The results for ξ̂i,j, ζ̂i,j and η̂i,j

are similar, thus only the results of ξ̂i,j are reported. Note that θ̄ denotes

the denoised estimator corresponding to the denoised bi-degree sequence

d̂. The notation ξ̄i,j is defined in a similar manner as ξ̂i,j and it also has

the same asymptotic distribution as ξ̂i,j by Theorem 5. We also draw the

QQ plots for ξ̄i,j and α̂i − α∗i . The distance between the original bi-degree
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sequence d and the noisy bi-sequence z is also reported in terms of ‖d−z‖∞.

The average value of the `∞-distance between d and z is reported in

Table 1. We can see that the distance becomes larger as εn decreases. It

means that smaller εn provides more privacy protection. For example, when

εn changes from log n/n1/4 to log n/n1/2, ‖d − z‖∞ dramatically increases

from 8 to 26 in the case n = 100. As expected, the distance also becomes

larger as n increases when εn is fixed.

Table 1: The distance ‖d− z‖∞.

εn
n 2 log n/n1/4 log n/n1/2

100 5.7 8.0 25.5
200 6.4 9.2 35.1
500 7.4 11.3 53.8

When εn = 2, the QQ-plots under n = 100, 200, 500 are similar and

we only show the QQ-plots for ξ̂i,j when n = 100 in Figure 1 to save

space. The other QQ-plots for εn = log n/n1/4, log n/n1/2 are shown in

the online supplementary material. In the QQ-plots, the horizontal and

vertical axes are the theoretical and empirical quantiles, respectively, and

the straight lines correspond to the reference line y = x. In Figure 1,

we first observe that the empirical quantiles agree well with the ones of

the standard normality for non denoised estimates (i.e., ξ̂i,j) when L =

0 and log(log n), while there are notable deviations for pair (1, 2) when
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Figure 1: The QQ plots of ξi,j with black color for ξ̂i,j and red color for ξ̄i,j .

L = (log n)1/2. These results are very similar to those in Yan et al. (2016)

where the original bi-degree sequences are used to estimate the parameters.

Second, by comparing the QQ plots for ξ̂i,j (in black color) and ξ̄i,j (in red

color), we find that the performance of ξ̂i,j is much better than that of ξ̄i,j

for the pair (n− 1, n) when L ≥ log(log n), whose QQ plots derivative from

the diagonal line in both ends. When εn = log n/n1/4, the QQ-plots are in
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Figures 2, 3 and 4, corresponding to n = 100, 200, 500 respectively. These

figures exhibit similar phenomena. Moreover, the derivation of the QQ-

plots from the straight becomes smaller as n increases, and they match well

when n = 500. The QQ-plots under εn = log n/n1/2 are drawn in Figures 5,

6 and 7, corresponding to n = 100, 200, 500 respectively. In this case, the

condition in Theorem 2 fails and these figures shows obvious derivations

from the standard normal distribution. It indicates that εn should not go

to zero quickly as n increases in order to guarantee good utility. Lastly,

we observe that when L = log n for which the condition in Theorem 2

fails, the estimate did not exist in all repetitions (see Table 1). Thus the

corresponding QQ plot could not be shown.
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Figure 2: The QQ plots of of ξi,j with black color for ξ̂i,j and red color for ξ̄i,j (n = 100,
εn = log n/n1/4)
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Figure 3: The QQ plots of of ξi,j with black color for ξ̂i,j and red color for ξ̄i,j (n = 200,
εn = log n/n1/4)
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Figure 4: The QQ plots of of ξi,j with black color for ξ̂i,j and red color for ξ̄i,j (n = 500,
εn = log n/n1/4)
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Figure 5: The QQ plots of of ξi,j with black color for ξ̂i,j and red color for ξ̄i,j (n = 100,
εn = log n/n1/2)
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Figure 6: The QQ plots of of ξi,j with black color for ξ̂i,j and red color for ξ̄i,j (n = 200,
εn = log n/n1/2)
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Figure 7: The QQ plots of of ξi,j with black color for ξ̂i,j and red color for ξ̄i,j (n = 500,
εn = log n/n1/2)

In order to assess the effect of the additional variance factor (i.e.,

s2n/v̂
2
2n,2n) in Theorem 2, we draw the QQ-plots for (α̂i − αi)/σ̂

(1)
i denot-

ed by the black color and (α̂i−αi)/σ̂(2)
i by the red color in Figure 8, where

(σ̂
(1)
i )2 = 1/v̂i,i+1/v̂2n,2n+s2n/v̂

2
2n,2n, (σ̂

(2)
i )2 = 1/v̂i,i+1/v̂2n,2n, n = 100 and

ε = 2. From this figure, we can see that the empirical quantiles agree well

with the ones of the standard normality when the variance of α̂i is correctly

specified (i.e., σ̂
(1)
i ). When ignoring the additional variance factor, there

are obvious derivations for (α̂i − αi)/σ̂(2)
i . It indicates that the additional

variance factor can not be ignored when the noise is not very small, agreeing

with Theorem 2.
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Figure 8: The QQ plots of (α̂
(1)
i −αi)/σ̂i (n = 100 and εn = 2). The black color denotes

the QQ-plots for (α̂i − αi)/σ̂(1)
i and the red color for (α̂i − αi)/σ̂(2)

i .

Table 1 reports the coverage frequencies of the 95% confidence interval

for αi − αj, the length of the confidence interval, and the frequency that

the MLE did not exist. As expected, the length of the confidence interval

increases as L increases and decreases as n increases. We first look at the

simulation results in the case of εn = 2: when L ≤ log(log(n)), most of sim-
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ulated coverage frequencies for the estimates are close to the targeted level

and the non denoised estimate has better performance than the denoised

estimate; the values under the pair (n−1, n) corresponding to the denoised

estimate are lower than the nominal level when L = log(log(n)). When

L = (log n)1/2, both denoised and non denoised estimates failed to exist

with a positive frequency while the estimate did not exist in any of the rep-

etitions in the case of L = log n. The results in the case of εn = log n/n1/4

exhibit similar phenomena. However, the simulated coverage frequencies

are a little lower than the nominal level when n = 100, showing that small-

er εn needs larger n to guarantee high accuracy. The results in the case of

εn = log n/n1/2 are shown in Table 1 in the online supplementary material.

From this table, we can see that the simulated coverage frequencies are ob-

viously far away from the nominal level and the estimate fails to exist with

positive frequencies when L ≥ log(log(n)).
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Table 2: The reported values are the coverage frequency (×100%) for αi − αj for a pair
(i, j) / the length of the confidence interval / the frequency (×100%) that the estimate
did not exist. Type “A” denotes the estimate with the denoised process and “B” the
non denoised estimate.

n (i, j) Type L = 0 L = log(logn) L = (log(n))1/2 L = log(n)
εn = 2

100 (1,2) A 92.89/0.58/2.26 93.84/1.01/2.27 96.61/1.46/66.04 NA/NA/100
B 93.38/0.57/0 93.73/1.01/2.27 96.70/1.46/66.04 NA/NA/100

(50,51) A 93.11/0.58/2.26 93.81/0.76/2.27 92.99/0.94/66.04 NA/NA/100
B 93.54/0.57/0 93.81/0.76/2.27 93.02/0.94/66.04 NA/NA/100

(99,100) A 92.77/0.58/2.26 85.73/0.63/2.27 82.07/0.68/66.04 NA/NA/100
B 93.38/0.57/0 93.98/0.63/2.27 93.76/0.68/66.04 NA/NA/100

200 (1,2) A 94.12/0.40/0.13 94.25/0.75/0.02 96.35/1.11/19.36 NA/NA/100
B 94.26/0.40/0 94.24/0.75/0.02 96.35/1.11/19.36 NA/NA/100

(100,101) A 93.11/0.40/0.13 93.81/0.55/0.02 92.99/0.68/19.36 NA/NA/100
B 94.98/0/40/0 94.21/0.55/0.02 94.35/0/68/19.36 NA/NA/100

(199,200) A 92.77/0.40/0.13 85.73/0.45/0.02 82.07/0.48/19.36 NA/NA/100
B 94.73/0.40/0 94.30/0.45/0.02 93.89/0.48/19.36 NA/NA/100

500 (1,2) A 94.89/0.25/0 94.35/0.51/0 97.42/0.76/0.33 NA/NA/100
B 94.93/0.25/0 94.36/0.51/0 97.41/0.76/0.33 NA/NA/100

(250,251) A 94.57/0.25/0 94.48/0.36/0 94.82/0.45/0.33 NA/NA/100
B 94.60/0.25/0 94.48/0.36/0 94.83/0.45/0.33 NA/NA/100

(499,500) A 94.44/0.25/0 89.56/0.29/0 88.56/0.31/0.33 NA/NA/100
B 94.54/0.25/0 94.82/0.29/0 94.87/0.31/0.33 NA/NA/100

εn = logn/n1/4

100 (1,2) A 92.04/0.58/7.25 92.09/1.02/8.81 95.20/1.45/86.68 NA/NA/100
B 92.51/0.59/0 91.96/1.02/8.58 95.42/1.45/86.69 NA/NA/100

(50,51) A 92.20/0.58/7.25 92.15/0.76/8.81 93.02/0.94/86.68 NA/NA/100
B 92.70/0.58/0 92.16/0.76/8.58 93.01/0.94/86.69 NA/NA/100

(99,100) A 91.90/0.58/7.25 84.10/0.64/8.81 79.13/0.69/86.68 NA/NA/100
B 92.45/0.58/0 92.64/0.63/8.58 92.86/0.68/86.69 NA/NA/100

200 (1,2) A 93.60/0.40/1.41 92.77/0.75/0.25 95.10/1.11/45.94 NA/NA/100
B 93.80/0.40/0 92.74/0.75/0.25 95.08/1.11/45.94 NA/NA/100

(250,251) A 94.38/0.40/1.41 93.24/0.55/0.25 92.84/0.68/45.94 NA/NA/100
B 94.58/0.40/0 93.27/0.55/0.25 92.90/0.68/45.94 NA/NA/100

(499,500) A 94.13/0.40/1.41 86.20/0.45/0.25 84.41/0.48/45.94 NA/NA/100
B 94.34/0.40/0 93.55/0.45/0.25 93.78/0.48/45.94 NA/NA/100

500 (1,2) A 94.50/0.25/0.06 93.30/0.51/0 95.64/0.76/3.20 NA/NA/100
B 94.54/0.25/0 93.32/0.51/0 95.64/0.76/3.20 NA/NA/100

(250,251) A 93.96/0.25/0.06 93.74/0.36/0 93.78/0.45/3.20 NA/NA/100
B 93.98/0.25/0 93.74/0.36/0 93.78/0.45/3.20 NA/NA/100

(499,500) A 93.93/0.25/0.06 89.00/0.28/0 87.77/0.31/3.20 NA/NA/100
B 94.00/0.25/0 94.42/0.28/0 94.57/0.31/3.20 NA/NA/100

εn = logn/n1/2

100 (1,2) A 79.32/0.59/36.58 71.24/1.09/98.47 NA/NA/100 NA/NA/100
B 79.22/0.58/0.04 69.36/1.09/98.27 NA/NA/100 NA/NA/100

(50,51) A 78.46/0.59/36.58 71.90/0.79/98.47 NA/NA/100 NA/NA/100
B 78.52/0.58/0.04 74.57/0.79/98.27 NA/NA/100 NA/NA/100

(99,100) A 78.49/0.59/36.58 79.74/0.68/98.47 NA/NA/100 NA/NA/100
B 78.36/0.58/0.04 82.66/0.65/98.27 NA/NA/100 NA/NA/100

200 (1,2) A 82.03/0.41/30.56 70.86/0.79/91.73 NA/NA/100 NA/NA/100
B 82.02/0.41/0 70.86/0.79/91.01 NA/NA/100 NA/NA/100

(100,101) A 83.78/0.41/30.56 76.66/0.56/91.73 NA/NA/100 NA/NA/100
B 83.67/0.41/0 76.31/0.57/91.01 NA/NA/100 NA/NA/100

(199,200) A 82.73/0.41/30.56 79.56/0.47/91.73 NA/NA/100 NA/NA/100
B 82.65/0.41/0 80.53/0.45/91.01 NA/NA/100 NA/NA/100

500 (1,2) A 85.72/0.25/23.20 69.70/0.53/56.54 NA/NA/100 NA/NA/100
B 85.93/0.25/0 69.87/0.53/53.31 NA/NA/100 NA/NA/100

(250,251) A 85.16/0.25/23.20 77.80/0.36/56.54 NA/NA/100 NA/NA/100
B 85.11/0.25/0 77.81/0.37/53.31 NA/NA/100 NA/NA/100

(499,500) A 84.96/0.25/23.20 81.48/0.30/56.54 NA/NA/100 NA/NA/100
B 85.24/0.25/0 83.74/0.29/53.31 NA/NA/100 NA/NA/100
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S2 Two real data analyses

In this section, we present the simulation results for two real datasets.

1. We analyze the Children’s Friendship data [Anderson et al. (1999)],

downloaded from http://moreno.ss.uci.edu/data.html. This is a di-

rected network dataset about children’s friendships in elementary schools.

The original data were collected by Parker and Asher (1993) and contain

881 children in 36 classrooms in the third, fourth and fifth grades in five

US public elementary schools. Anderson et al. (1999) revisited this data

and construct the Children’s Friendship data by choosing three of the 36

classrooms, one from each grade. Here, we only use the dataset from the

third grade for analysis, which contains 22 nodes and 177 directed edges

representing the friendships from i to j that child i said j is his friend. We

chose ε equal to 1, 2 and 3 and repeated the simulation 1, 000 times for each

ε. Then compute the average private estimate and the upper (97.5th) and

the lower (2.5th) quantiles of the estimates.

The frequencies that the private estimate fails to exist are 86.9%, 27.4%

and 6.3% for ε = 1, 2, 3, respectively. The results are shown in Figure 9(a)

with the estimates of α (β) on the vertical axis and out-degree (in-degree)

on the horizontal axis. The black point indicates α̃ or β̃ and the red point

indicates the mean value of α̂ or β̂. Also plotted the upper (97.5th) and

http://moreno.ss.uci.edu/data.html
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the lower (2.5th) quantiles of the estimates. The results show that the

mean estimate is very close to the MLE and the MLE lies within the 95%

confidence interval. Moreover, as expected, as ε increases, the length of

confidence interval becomes smaller.

2. We analyze Lazega’s Law Firm data [Lazega (2001)], also download

from http://moreno.ss.uci.edu/data.html. This dataset comes from

a network study of corporate law partnership that was carried out in a

Northeastern US corporate law firm in New England during 1988–1991.

Lazega (2001) gave a description network analyses of this dataset. This

dataset includes three types of measurements of networks among the 71

attorneys of this firm–coworker, advice and friendship. We use the cowork

data set for analysis. The cowork relationship from attorney i to j means

that i said j had worked with himself in the past year. In this dataset,

node 8 is isolated and we removed it before analysis. The left data have 70

lawyers and 756 directed edges.

Similar to the analysis of Children’s Friendship data, we also chose ε

equal to 1, 2 and 3 and repeated the simulation 1, 000 times for each ε.

Then compute the average private estimate and the upper (97.5th) and the

lower (2.5th) quantiles of the estimates. The frequencies that the private

estimate fails to exist are 94.4%, 31.3% and 6.9% for ε = 1, 2, 3, respectively.

http://moreno.ss.uci.edu/data.html
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This is due to that this dataset is sparse and adding or removing a small

number of edges is easy to cause the nonexistence of the private estimate.

The results are shown in Figure 9(b). From this figure, we can see that

the mean value of α̂ or β̂ also agrees with the MLE well and the MLE still

lies in the 95% confidence interval. On the other hand, as ε increases, the

length of confidence interval becomes smaller.



S2. TWO REAL DATA ANALYSES

4 6 8 10 14

−8
−6

−4
−2

0
2

4

α e
sti

ma
te

ε = 1

MLE
Mean Estimate

4 6 8 10 12 14 16

−4
−2

0
2

4
6

8

β e
sti

ma
te

Upper
Lower

4 6 8 10 14
−6

−4
−2

0
2

4
out−degree

ε = 2

4 6 8 10 12 14 16

−4
−2

0
2

4
6

in−degree

4 6 8 10 14

−6
−4

−2
0

2

ε = 3

4 6 8 10 12 14 16

−2
0

2
4

(a) Children dataset

5 10 15 20 25

5
0

−5
−1

0

α e
sti

ma
te

ε = 1

MLE
Mean Estimate

5 10 15 20 25

−5
0

5
10

β e
sti

ma
te

Upper
Lower

5 10 15 20 25

−8
−6

−4
−2

0
2

out−degree

ε = 2

5 10 15 20 25

−4
−2

0
2

4
6

in−degree

5 10 15 20 25

−6
−4

−2
0

ε = 3

5 10 15 20 25

−2
0

2
4

(b) Lazega’s cowork dataset

Figure 9: The differentially private estimate (α̂, β̂) with the MLE. The plots show the
median and the upper (97.5th) and the lower (2.5th) quantiles.
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S3 Proof of Theorem 1

S3.1 Preliminaries

We present several results that we will use in this section.

Concentration inequality for sub-exponential random variables

A random variable X is sub-exponential with parameter κ > 0 if [e.g.,

Vershynin (2012)]

[E|X|p]1/p ≤ κp for all p ≥ 1.

Sub-exponential random variables satisfy the following concentration in-

equality.

Theorem 5 (Corollary 5.17 in Vershynin (2012)). Let X1, . . . , Xn be inde-

pendent centered random variables, and suppose each Xi is sub-exponential

with parameter κi. Let κ = max1≤i≤n κi. Then for every ε ≥ 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

[
−γ n ·min

( ε2
κ2
,
ε

κ

)]
,

where γ > 0 is an absolute constant.

Note that if X is a κ-sub-exponential random variable with finite first

moment, then the centered random variableX−E[X] is also sub-exponential
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with parameter 2κ. This follows from the triangle inequality applied to the

p-norm, followed by Jensen’s inequality for p ≥ 1:

[
E
∣∣X − E[X]

∣∣p]1/p ≤ [E|X|p]1/p +
∣∣E[X]

∣∣ ≤ 2[E|X|p]1/p.

Lemma 1. Let X be a continuous Laplace random variable with the den-

sity f(x) = (2λ)−1e−|x|/λ or a discrete Laplace random variable with the

probability distribution

P(X = x) =
1− λ
1 + λ

λ|x|, x = 0,±1, . . . , λ ∈ (0, 1).

Then X is sub-exponential with parameter λ for the continuous case or

2(log 1
λ
)−1 for the discrete case.

Proof. If X is a continuous Laplace random variable, then it is easy to show

that

E|X|p = λp−1Γ(p),

where Γ(p) is a Gamma function. So we have

[E|X|p]1/p = [λp−1Γ(p)]1/p < λ1−1/p×(Γ([p]+1))1/p < λ([p]!)1/p < λp, p ≥ 1

where [p] denotes the integer part.
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If X is a discrete Laplace random variable, then

E|X|p =
2(1− λ)

1 + λ

∞∑
x=0

λxxp ≤ 2(1− λ)

1 + λ

∫ ∞
0

tpe−t log
1
λdt ≤ 2(1− λ)

1 + λ
(

1

log 1
λ

)p+1Γ(p).

It follows that

[E|X|p]1/p < 21/p(
1

log 1
λ

)1+1/pp < 2p
1

log 1
λ

.

Convergence rate for the Newton iterative sequence

Recall that the definition of F (θ) is

Fi(θ) = z+i −
∑n

k=1;k 6=i
eαi+βk

1+eαi+βk
, i = 1, . . . , n,

Fn+j(θ) = z−j −
∑n

k=1;k 6=j
eαk+βj

1+eαk+βj
, j = 1, . . . , n,

F (θ) = (F1(θ), . . . , F2n−1(θ))
>.

(S3.1)

For the ad hoc system of equations (S3.1), Yan et al. (2016) establish a

geometric convergence of rate for the Newton iterative sequence.
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Theorem 6 (Theorem 7 in Yan et al. (2016)). Define a system of equations:

Fi(θ) = di −
n∑

k=1,k 6=i

f(αi + βk), i = 1, . . . , n,

Fn+j(θ) = bj −
n∑

k=1,k 6=j

f(αk + βj), j = 1, . . . , n− 1,

F (θ) = (F1(θ), . . . , Fn(θ), Fn+1(θ), . . . , F2n−1(θ))
>,

where f(·) is a continuous function with the third derivative. Let D ⊂ R2n−1

be a convex set and assume for any x, y, v ∈ D, we have

‖[F ′(x)− F ′(y)]v‖∞ ≤ K1‖x− y‖∞‖v‖∞, (S3.2)

max
i=1,...,2n−1

‖F ′i (x)− F ′i (y)‖∞ ≤ K2‖x− y‖∞, (S3.3)

where F ′(θ) is the Jacobin matrix of F on θ and F ′i (θ) is the gradient

function of Fi on θ. Consider θ(0) ∈ D with Ω(θ(0), 2r) ⊂ D, where r =

‖[F ′(θ(0))]−1F (θ(0))‖∞. For any θ ∈ Ω(θ(0), 2r), we assume

F ′(θ) ∈ Ln(m,M) or − F ′(θ) ∈ Ln(m,M). (S3.4)

For k = 1, 2, . . ., define the Newton iterates θ(k+1) = θ(k)−[F ′(θ(k))]−1F (θ(k)).

Let

ρ =
c1(2n− 1)M2K1

2m3n2
+

K2

(n− 1)m
. (S3.5)
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If ρr < 1/2, then θ(k) ∈ Ω(θ(0), 2r), k = 1, 2, . . ., are well-defined and satisfy

‖θ(k+1) − θ(0)‖∞ ≤ r/(1− ρr). (S3.6)

Further, limk→∞ θ
(k) exists and the limiting point is precisely the solution

of F (θ) = 0 in the range of θ ∈ Ω(θ(0), 2r).

Approximate inverse for the matrix V

To quantify the accuracy of using S to approximate V , we define the matrix

maximum norm ‖ · ‖ for a general matrix A = (ai,j) by ‖A‖ := maxi,j |ai,j|.

The upper bound of the approximation error is given below.

Proposition 1 (Proposition 1 in Yan et al. (2016)). If V ∈ Ln(m,M) with

M/m = o(n), then for large enough n,

‖V −1 − S‖ ≤ c1M
2

m3(n− 1)2
.

where c1 is a constant that does not depend on M , m and n.

S3.2 Proofs for Theorem 1

We will use the Newton method to prove the consistency by applying Theo-

rem 6 to obtain the geometrically convergence rate of the Newton iterative

sequence. To achieve it, we verify the conditions in Theorem 6. Let F ′(θ)
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be the Jacobian matrix of F defined at (S3.1) on θ and F ′i (θ) is the gra-

dient function of Fi on θ. The first condition is the Lipchitz continuous

property on F ′(θ) and F ′i (θ). Note that the Jacobian matrix of F ′(θ) does

not depend on d̃. In Lemma 2 in Yan et al. (2016), they show that

‖[F ′(x)− F ′(y)]v‖∞ ≤ K1‖x− y‖∞‖v‖∞, (S3.7)

max
i=1,...,2n−1

‖F ′i (x)− F ′i (y)‖∞ ≤ K2‖x− y‖∞, (S3.8)

where K1 = n − 1 and K2 = (n − 1)/2. The second condition is that the

upper bound of ‖F (θ∗)‖ is in the order of (n log n)1/2, stated in the below

lemma.

Lemma 2. Let κn = 2(− log λn)−1 = 4/εn, where λn ∈ (0, 1). The following

holds:

max{max
i
|z+i − E(d+i )|,max

j
|z−j − E(d−j )|} = Op(

√
n log n+ κn

√
log n).

(S3.9)

Proof. Note that {e+i }ni=1 and {e−i }ni=1 are independently discrete Laplace

random variables and sub-exponential with the same parameter κn by Lem-
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ma 1. By the concentration inequality in Theorem 5, we have

P( max
i=1,...,n

|e+i | ≥ 2κn

√
log n

γ
) ≤

∑
i

P(|e+i | ≥ 2κn

√
log n

γ
) ≤ n× e−2 logn =

1

n

(S3.10)

and

P(|
n∑
i=1

e+i | ≥ 2κn

√
n log n

γ
) ≤ 2 exp(−γ

n
× n log n

γ
) =

2

n
, (S3.11)

where γ is an absolute constant appearing in the concentration inequality.

In Lemma 3 in Yan et al. (2016), they show that with probability at least

1− 4n/(n− 1)2,

max{max
i
|d+i −E(d+i )|,max

j
|d−j −E(d−j )|} ≤

√
(n− 1) log(n− 1). (S3.12)

So, with probability at least 1− 4n/(n− 1)2 − 2/n, we have

max
i=1,...,n

|z+i −E(d+i )| ≤ max
i
|d+i −E(d+i )|+max

i
|e+i | ≤

√
n log n+2κn

√
log n

γ
.

Similarly, with probability at least 1− 4n/(n− 1)2 − 2/n, we have

max
i=1,...,n

|z−i − E(d−i )| ≤
√
n log n+ 2κn

√
log n

γ
.



S3. PROOF OF THEOREM 1

Let A and B be the events:

A = {maxi=1,...,n |z+i − E(d+i )| ≤
√
n log n+ 2κn

√
logn
γ
},

B = {maxi=1,...,n |z−i − E(d−i )| ≤
√
n log n+ 2κn

√
logn
γ
}.

Consequently, as n goes to infinity, we have

P(A
⋂

B) ≥ 1− P(Ac)− P(Bc) ≥ 1− 8n/(n− 1)2 − 4/n→ 1.

This completes the proof.

It can be easily checked that −F ′(θ) ∈ Ln(m,M), where M = 1/4

and m = e2‖θ‖∞/(1 + e2‖θ‖∞)2. We are now ready to present the proof of

Theorem 1.

Proof of Theorem 1. Assume that equation (S3.9) holds. In the Newton

iterates, we choose θ∗ as the initial value θ(0). If θ ∈ Ω(θ∗, 2r), then

−F ′(θ) ∈ Ln(m,M) with

M =
1

4
, m =

e2(‖θ
∗‖∞+2r)

(1 + e2(‖θ∗‖∞+2r))2
. (S3.13)
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To apply Theorem 6, we need to calculate r and ρr in this theorem. Let

F̃2n(θ) =
n∑
i=1

Fi(θ)−
n−1∑
i=1

Fn+i(θ) = d−n −
n−1∑
i=1

eαi+βn

1 + eαi+βn
+

n∑
i=1

e+i −
n−1∑
i=1

e−i .

By (S3.11) and (S3.12), we have

|F̃2n(θ∗)| = Op((1 + κn)
√
n log n),

where κn = 4/εn. By Proposition 1, we have

r = ‖[F ′(θ∗)]−1F (θ∗)‖∞ ≤ max
i=1,...,2n−1

|Fi(θ∗)|
vii

+
|F̃2n(θ∗)|
v2n,2n

+ 2n‖V −1 − S‖‖F (θ∗)‖∞

≤ O(
(1 + κn)(n log n)1/2

(n− 1)
· (1 + e2‖θ

∗‖∞)2

e2‖θ∗‖∞
) +O(

(1 + e2‖θ
∗‖∞)6

e6‖θ∗‖∞
· (n log n)1/2 + κn(log n)1/2

n
)

= O(n−1/2(log n)1/2(1 + ε−1n )e6‖θ
∗‖∞)

= O(n−1/2(log n)1/2ε−1n e6‖θ
∗‖∞).

Note that if (1 + κn)e6‖θ
∗‖∞ = o((n/ log n)1/2), then r = o(1). By (S3.7),

(S3.8) and (S3.13), we have

ρ =
c1(2n− 1)M2(n− 1)

2m3n2
+

(n− 1)

2m(n− 1)
= O(e6‖θ

∗‖∞)

Therefore, if (1 + κn)e12‖θ
∗‖∞ = o((n/ log n)1/2), then ρr → 0 as n → ∞.

Consequently, by Theorem 6, limn→∞ θ̂
(n) exists. Denote the limiting point
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as θ̂, then it satisfies

‖θ̂ − θ∗‖∞ ≤ 2r = O

(
ε−1n (log n)1/2e6‖θ

∗‖∞

n1/2

)
= o(1).

By Lemma 2, equation (S3.9) holds with probability approaching one such

that the above inequality also holds with probability approaching one. The

uniqueness of the MLE is due to that −F ′(θ) is positive definite.

S4 Proofs for Theorem 2

The method of the proofs for the asymptotic normality of θ̂ is similar to

the method of the non-noisy case in Yan et al. (2016). Wherein they work

with the original bi-degree sequence d, here we do with its noisy sequence d̃.

The key step is to represent θ̂− θ as the sum of S(d̃−Ed) and a remainder

term. For sake of clarity of exposition, we restate one lemma in Yan et al.

(2016) below.

Lemma 3 (Lemma 8 Yan et al. (2016)). Let R = V −1 − S and U =

Cov[R(g − Eg)]. Then

‖U‖ ≤ ‖V −1 − S‖+
(1 + e2‖θ

∗‖∞)4

4e4‖θ
∗‖∞(n− 1)2

. (S4.14)

The following lemma gives an explicitly asymptotic expression of θ̂.
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Lemma 4. Let κn = 2(− log λn)−1 = 4ε−1n . If (1+κn)2e18‖θ
∗‖∞ = o((n/ log n)1/2),

then for any i,

θ̂i − θ∗i = [V −1(g̃ − Eg)]i + op(n
−1/2). (S4.15)

Proof. The proof is very similar to the proof of Lemma 9 in Yan et al.

(2016). It only requires verification of the fact that all the steps hold by

replacing d with d̃.

The asymptotic normality of g̃ − Eg is stated in the following proposi-

tion, whose proof is in section S4.1.

Proposition 2. Let κn = 2(− log λn)−1, where λn = exp(−εn/2). (i) If

κn(log n)1/2e2‖θ
∗‖∞ = o(1) and e‖θ

∗‖∞ = o(n1/2), then for any fixed k ≥ 1,

as n → ∞, the vector consisting of the first k elements of S(g̃ − Eg) is

asymptotically multivariate normal with mean zero and covariance matrix

given by the upper left k × k block of S.

(ii) Let

s2n = Var(
n∑
i=1

e+i −
n−1∑
i=1

e−i ) = (2n− 1)
2λn

(1− λn)2
.

Assume that sn/v
1/2
2n,2n → c for some constant c. For any fixed k ≥ 1, the

vector consisting of the first k elements of S(g̃ − Eg) is asymptotically k-

dimensional multivariate normal distribution with mean 0 and covariance
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matrix

diag(
1

v1,1
, . . . ,

1

vk,k
) + (

1

v2n,2n
+

s2n
v22n,2n

)1k1
>
k ,

where 1k is a k-dimensional column vector with all entries 1.

Proof of Theorem 2. By Lemma 7 and noting that V −1 = S +R, we have

(θ̂ − θ)i = [S(g̃ − Eg)]i + [R{g̃ − E(g)}]i + op(n
−1/2).

By (S3.10), ‖ĝ − g‖∞ = Op(κn
√

log n). So by proposition 1, we have

[R(g̃ − g)]i = Op(n
M2

m3n2
κn
√

log n) = Op(
κn(log n)1/2e6‖θ

∗‖∞

n
),

where

m =
(n− 1)e2‖θ

∗‖∞

(1 + e2‖θ∗‖∞)2
, M =

1

4
.

If κne
6‖θ∗‖∞ = o((n/ log n)1/2), then [R{g̃ − g}]i = op(n

−1/2). Combing

Lemma 3, it yields

[R(g̃ − Eg)]i = [R(g̃ − g)]i + [R(g − Eg)]i = op(n
−1/2).

Consequently,

(θ̂ − θ)i = [S(g̃ − Eg)]i + op(n
−1/2).
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Theorem 2 immediately follows from Proposition 2.

S4.1 Proofs for Proposition 2

Before beginning to prove Proposition 2, we need one result from Yan et

al. (2016).

Proposition 3 (Proposition 2 in Yan et al. (2016)). Assume that A ∼ Pθ∗.

If e‖θ
∗‖∞ = o(n1/2), then for any fixed k ≥ 1, as n → ∞, the vector con-

sisting of the first k elements of S{g−E(g)} is asymptotically multivariate

normal with mean zero and covariance matrix given by the upper left k× k

block of S.

Proof of Proposition 2. There are two cases to consider.

(i) κn(log n)1/2e2‖θ
∗‖∞ = o(1). Recall that

vi,j =
eαi+βj

(1 + eαi+βj)2
, 1 ≤ i 6= j ≤ n, vi,i =

n∑
j 6=i,j=1

vij; vn+i,n+i =
n∑

j 6=i,j=1

vji, 1 ≤ i ≤ n.

Since ex/(1+ex)2 is an increasing function on x when x ≥ 0 and a decreasing

function when x ≤ 0, we have

O(ne−2‖θ
∗‖∞) =

(n− 1)e2‖θ
∗‖∞

(1 + e2‖θ∗‖∞)2
≤ vi,i ≤

n− 1

4
, i = 1, . . . , 2n. (S4.16)

So if e‖θ
∗‖∞ = o(n1/2), then vi,i → ∞ for all 1 ≤ i ≤ 2n. By inequality
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S3.11, we have

|
n∑
i=1

e+i | = Op(κn(n log n)1/2), |
n∑
i=1

e−i | = Op(κn(n log n)1/2). (S4.17)

Since g̃i − gi = e+i and g̃n+i − gn+i = e−i for i = 1, . . . , n, we have

[S(g̃ − Eg)]i = [S(g − Eg)]i + [S(g̃ − g)]i

= [S(g − Eg)]i + (−1)1(i>n)
∑n

i=1 e
+
i −

∑n−1
i=1 e

−
i

v2n,2n

= [S(g − Eg)]i +Op(
κ(log n)1/2e2‖θ

∗‖∞

n1/2
),

where the last equation is due to (S7.27) and (S4.17). So if κn(log n)1/2e2‖θ
∗‖∞ =

o(1), then we have

[S(g̃ − Eg)]i = [S(g − Eg)]i + op(n
−1/2).

Consequently, the first part of Proposition 2 immediately follows Proposi-

tion 3.

(ii) sn/v
1/2
2n,2n → c for some constant c. Let ẽ =

∑n
i=1 e

+
i −

∑n−1
i=1 e

−
i and
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ãi,j = ai,j − Eai,j. Denote

U :=



g1−Eg1
v
1/2
1,1

...

gk−Egk
v
1/2
r,r

g2n−Eg2n
v
1/2
2n,2n

ẽ
sn



=



∑k
j=1 ã1,j

v
1/2
1,1

...

∑k
j=1 ãk,j

v
1/2
r,r∑k

i=1 ãi,n

v
1/2
2n,2n

0



+



∑n
j=k+1 ã1,j

v
1/2
1,1

...

∑n
j=k+1 ãk,j

v
1/2
r,r∑n

i=k+1 ãi,n

v
1/2
2n,2n

ẽ
sn


:= I1 + I2.

Since |ai,j| ≤ 1 and vi,i → ∞ as n → ∞, |
∑k

j=1 ãi,j|/vi,i = o(1) for i =

1, . . . , k with fixed k. So I1 = o(1).

Next, we will consider I2. Recall that s2n = Var(ẽ). By the large

sample theory, (ẽ−Eẽ)/sn converges in distribution to the standard normal

distribution if sn →∞. By the central limit theorem for the bounded case

in Loéve (1977) (page 289),
∑n

j=k+1 ãi,j/v
1/2
i,i converges in distribution to

the standard normal distribution for any fixed i if e‖θ
∗‖∞ = o(n1/2). Since

ãi,j’s (1 ≤ i ≤ k, j = k + 1, . . . , n), ãi,n’s and ẽ are mutually independent,

I2 converges in distribution to a r + 2-dimensional standardized normal

distribution with covariance matrix Ir+2, where Ir denotes the (r+2)×(r+2)
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dimensional identity matrix. Let

C =



1√
v1,1

, 0, . . . , 0, 1√
v2n,2n

, sn
v2n,2n

0, 1√
v2,2

, . . . , 0, 1√
v2n,2n

, sn
v2n,2n

. . .

0, 0, . . . , 1√
vk,k

, 1√
v2n,2n

, sn
v2n,2n


.

Then

[S(g̃ − Eg)]i=1,...,k = CU.

Since s2n/v2n,2n → c2 for some constant c, all positive entries of C are in

the same order n1/2. So CU converges in distribution to the k-dimensional

multivariate normal distribution with mean (
k︷ ︸︸ ︷

µ, . . . , µ) and covariance ma-

trix

diag(
1

v1,1
, . . . ,

1

vk,k
) + (

1

v2n,2n
+

s2n
v22n,2n

)1k1
>
k ,

where 1k is a k-dimensional column vector with all entries 1.

S5 Proofs for Theorem 3

In this section, we show that Algorithm 2 finds a solution to the opti-

mization problem (8) in the main text. The main idea for the proof is to
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transform the directed Havel-Kakimi algorithm in Erdós et al. (2010) into

Algorithm 2, which is motivated by Karwa and Slavković (2016) who use

the Havel-Kakimi algorithm [Havel (1955); Hakimi (1962)] to solve the op-

timization problem in the undirected case. Similar to Karwa and Slavković

(2016), there are two main steps here. First, we reduce the global optimiza-

tion to a local optimization by ignoring the indices with negative entries in

z+ and z− and restricting to bi-degree sequences with their out-degrees and

in-degrees are point-wise bounded by z+ and z−, respectively. Second, we

use the so-called k-out-star graphs to decide the optimal directions. How-

ever, the technical steps in the directed case are much more complex than

those in the undirected case. All proofs for Lemmas and Propositions in

this section are put in the supplementary material.

To characterize the bi-degree sequence, Erdós et al. (2010) introduce the

notation: normal order. We say that the bi-degree sequence is in normal

order if the entries satisfy the following properties: for each i = 1, . . . , n−2,

we either have d−i > d−i+1 or d−i = d−i+1 and d+i ≥ d+i+1. We use d−(1), . . . , d
−
(n)

to denote the normal order. Note that we made no ordering assumption

about node n. The following theorem verifies whether a bi-degree sequence

is graphical.

Theorem 7 (Theorem 2 in Erdós et al. (2010)). Assume that the bi-degree
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sequence (d+, d−) (with d+j + d−j > 0, j ∈ [1, n]) is in normal order and

d+n > 0 (that is the out-degree of the last vertex is positive). Then (d+, d−)

is bi-graphical if and only if the bi-degree sequence b defined by

b+k =


d+k , k 6= n

0, k = n

, b−k =


d−k − 1, k ≤ d+n

d−k , k > d+n

with zero elements removed (those j for which d+j = d−j = 0) is bi-graphical.

Given a total number of nodes n, we say a graph is a k-out-star graph

with node i as the center if there are only k out-edges from i pointing to

k other nodes. The corresponding bi-degree sequence dk(i) = (d+k(i), d−k(i))

is said to be a k-out-star sequence with node i as the center. Node i is

called the center and the k nodes to which it points are called leaf nodes.

Similarly, we can define a k-in-star graph bk(i) with i as its center and k leaf

nodes pointing to i and the corresponding k-in-star sequence. In a k-out-

star sequence, the number of out-degrees equal to k is 1 and the number

of in-degrees equal to 1 is k. In Theorem 7, the degree sequence obtained

from d subtracting b with the point-by-point subtraction operation is in

fact the k-out-star sequence. Note that the total number of node is n.

So when k < n, the k-out star graph have n − k isolated nodes. If the

exact ordering of the leaf nodes have not specified, then dk(i) represents
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a set of bi-degree sequences. For example, ({3, 0, 0, 0, 0}, {0, 1, 1, 1}) and

({3, 0, 0, 0, 0}, {3, 1, 0, 1, 1}) are both 3-out-star sequences centered at node

1, all such sequences are denoted by d1(3) when doing so causes no confusion.

By Theorem 7, we can use a recursive method to check whether a bi-

sequence of integers is inBn. To speed up the recursive process, at each step,

we choose the node with the largest out-degree as the node “n” and arrange

the left nodes in normal order, although the node “n” is chosen arbitrarily.

At step 1, we choose the node with the largest out-degree as the node

“n” and remove d−n connections from vn to nodes with largest in-degrees.

Then remove the nodes that have lost both their in- and out- degrees in

the process. Repeat this step until all out-degrees become zeros. Since the

sum of out-degrees is equal to that of in-degrees, all in-degrees also become

zeros when all out-degrees become zeros. At the end of the procedure if we

are left with a bi-sequence of 0’s, the original bi-sequence is in Bn. Since

each node in this process is picked at most once, the number of recursions

is at most n. So the algorithm is fast and efficient. The above discussion

demonstrates that every bi-degree sequence d can be represented as a sum of

a set of k-out-star sequences. It can be formed as a directed Havel-Hakimi

decomposition that is defined as the set of k-out-star sequences obtained

after the application of Theorem 7 and is denoted by H(d) = {g1, . . . , gn}
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where gi = gki(li).

We first introduce one lemma that characterizes all bi-degree sequences

in terms of k-out-star degree sequences.

Lemma 5. Every bi-degree sequence d can be written as a sum of n k-out-

star sequences, each centered at a distinct node i.e., d =
∑n

i=1 g
ki(li) where

gki(li) ∈ Kn.

Proof. Let d = (d+, d−) be any bi-degree sequence of the graph Gn. Consid-

er repeated applications of Theorem 7 in the main text to d. Note that at

the end of each application, some nodes may loss their out-degrees and in-

degrees. In this case, we still work with bi-sequences of the same length 2n

and append 0s in the appropriate locations. Specifically, let ri = (ri+, ri−)

be the bi-sequence obtained at the end of each application, call it the ith

residual bi-sequence. Its construction is described below.

At the initial step, r1 = d. At step i, ri+1 is obtained from ri by

subtracting a k-out-star sequence, i.e., ri+1 = ri − gki(li). gki(li) is the bi-

degree sequence of a k-out-star graph G′n centered at node li where li is the

index of the ith largest element of ri+ and k = rili . The leaf nodes of G′n are

the nodes with k largest elements in {ri−1 , . . . , ri−n } \ {ri−li }. If there are leaf

nodes with the same in-degrees, arrange them into the decreasing order of

their out-degrees.
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Since at each step, one out-degree becomes zero, this procedure termi-

nates after at most n steps. Thus it generates at most n residual sequences.

Moreover, as d is graphical, rn is the 0 sequence. Finally, ri+1 − ri = gki(li)

for i = 2, . . . , n and r1 = d, rn = 0. Adding these inequalities, we get

d =
∑

i g
ki(li). Since each gki(li) is a k-out-star sequence, gki(li) ∈ Kn.

Lemma 5 shows that every bi-degree sequence can be written as a sum

of k-out-star sequences, thus every bi-degree sequence has a directed Havel-

Hakimi decomposition. The proposition below gives a condition when the

resulting sequence is always graphical.

Proposition 4. Let d be a bi-degree sequence.

(1)Let k ≤ d+i . Then there exists a k-out-star sequence d′ in gk(i), such that

d− d′ is also graphical.

(2)Let k ≤ d−i . Then there exists a k-in-star sequence d′ in bk(i), such that

d− d′ is also graphical.

Proof. (1) Since d is a graphical bi-degree sequence, it follows that node i

points to d+i other nodes. Since k ≤ d+i , it is possible to delete these k out-

edges with the head node i in the graph. Clearly, the bi-degree sequence of

this graph is d− d′.

(2) Since d is a graphical bi-degree sequence, it follows that d−i nodes points
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to i. Since k ≤ d−i , it is possible to delete these k in-edges with the tail

node i in the graph. Clearly, the bi-degree sequence of this graph is d− d′.

In many proofs below, we reduce a bi-degree sequence by a k-out-star

sequence.

The next two propositions narrow down the search scope for the op-

timal bi-degree sequence. One states that if the coordinates of z+ or z−

are negative, the values of the optimal solution d̂ in the corresponding co-

ordinates are zeros. The other shows that the optimization can be found

only in the set of bi-degree sequences, whose out-degrees and in-degrees are

point-wise bounded by z+ and z−, respectively.

Proposition 5. Let z+ = (z+1 , . . . , z
+
n ) and z− = (z−1 , . . . , z

−
n ) be sequences

of integers. Let I1 = {i : z+i > 0} and I2 = {i : z−i > 0}. Let fz(a) =∑
i |z

+
i − a+i |+

∑
i |z
−
i − a−i |. Let d be any degree sequence such that f(d) =

mina∈Bn fz(a) = d.

(1)If d+(Ic1) > 0, then there exists a degree sequence d+∗ such that d+∗ (Ic) = 0

and f(d) = f(d∗).

(2)If d−(Ic2) > 0, then there exists a degree sequence d−∗ such that d−∗ (Ic) = 0

and f(d) = f(d∗).

Proof. The proofs of the first part and second part are similar. We only
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give the proof of the first part. If d+i = 0, ∀i ∈ Ic1, the proposition is true

by letting d∗ = d. Hence assume that there exists at least one i ∈ Ic such

that d+i > 0. Let d∗ be the bi-degree sequence obtained from d by reducing

it with a gd
+
i (i) out-star sequence, as follows:

d+∗k =


0, k = i

d+k , k 6= i

, d−∗k =


d−k − 1, k ∈ J

d−k , k ∈ J c
,

where J is the set of d+i nodes to which the center node i points to. Here,

J ⊂ {i : d+i > 0} and |J | = d+i . By Proposition 4 (1), d∗ is graphical. Next

let us show that f(d∗) ≤ f(d).

f(d∗) =
∑
i

|z+i − d+∗i|+
∑
i

|z−i − d−∗i|

=
∑
j 6=i

|z+i − d+i |+ |z+i |+
∑
i∈J

|z−i − d−i + 1|+
∑
i∈Jc
|z−i − d−i |

≤
∑
j 6=i

|z+i − d+i |+ |z+i |+
∑
j∈J

|z−i − d−i |+
∑
i∈J

1 +
∑
i∈Jc
|z−i − d−i |

=
∑
j 6=i

|z+i − d+i |+ |z+i |+ |d+i |+
∑
i

|z−i − d−i |

≤
∑
i

|z+i − d+i |+
∑
i

|z−i − d−i |

= f(d)

But d is such that arg mina∈Bn fz(a) = d, hence f(d∗) = f(d). If there is

more than one j ∈ I1 such that dj > 0, we can redefine d∗ iteratively until
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there are no such j left.

Proposition 6. Let z = (z+, z−) be a bi-sequence of n nonnegative integers.

Let fz(a) =
∑

i |z
+
i − a−i |+

∑
i |z
−
i − a−i |. Let d be any degree sequence such

that f(d) = mina∈Bn fz(a).

(1)There exists a degree sequence d∗ such that d+∗i ≤ z+i , ∀ i and fz(d∗) =

fz(d).

(2)There exists a degree sequence d∗ such that d−∗i ≤ z−i , ∀ i and fz(d∗) =

fz(d).

Proof. The proofs of parts (1) and (2) are similar and we only give the proof

of part (1). If d+i ≤ z+i , ∀ i, the proposition is true by letting d∗ = d. Hence

assume that there exists at least one i such that d+i > z+i . Let d∗ be defined

as follows:

d+∗k =


z+k , k = i

d+k , k 6= i

, d−∗k =


d−k − 1, k ∈ I

d−k , k ∈ Ic
,

where I is the index set such that |I| = d+i − z+i . Clearly, by Proposition

4, d∗ is a bi-degree sequence because it is obtained by reducing d with a

k-out-star sequence, where k = z+i − d+i ≤ z+i .
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Next let us show that fz(d∗) ≤ fz(d).

fz(d∗) =
∑
i

|z+i − d+∗i|+
∑
i

|z−i − d−∗i|

=
∑
k 6=i

|z+k − d
+
k |+ |z

+
i − z+i |+

∑
k∈I

|z−i − d−i + 1|+
∑
k∈Ic
|z−k − d

−
k |

≤
∑
k 6=i

|z+k − d
+
k |+ |z

+
i − z+i |+ |I|+

∑
k∈I

|z−i − d−i |+
∑
k∈Ic
|z−k − d

−
k |

= fz(d).

But d is such that f(d) = mina∈Bn fz(a), hence f(d∗) = f(d). If there is

more than one i such that d+i > z+i , we can redefine d∗ iteratively until

there are no such i left.

Let Kn be the set of all k-out-star bi-degree sequences on n nodes. Let

K≤z be the set of all possible k-out-star sequences with their out-degrees

and in-degrees pointwise bounded by z+ and z−, respectively. The follow-

ing proposition characterizes the optimal solution for K≤z in terms of L1

distance.

Proposition 7. Given a nonnegative bi-sequence z, the solution that min-

imizes ‖z − g‖1 when z ∈ K≤z is the k-out-star sequence of the following

graph G∗: Let i∗ = {i : z+i∗ = maxi z
+
i }, and k = zi∗. Let I be the index set

of k largest elements of z− excluding i∗. In G∗, add an out-edge from i∗ to

i for all i ∈ I.
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Proof. Any k-out-star sequence can be selected by selecting a node c as

center and connecting k out-edges from it to k other tail nodes. Thus, if

E = {j: there exists an out-edge from c to j }, then the objective function

that we need to minimize is

∑
i∈E

|z−i − 1|+ |z+c − k|+
∑

i∈Ec\{c}

(|z+i |+ |z−i |).

The result follows by noticing that the optimal k-out-star sequence can be

selected by first selecting the star center c and then selecting E. Clearly, the

optimal center is the node with highest “demand”, i.e., dc = di∗ = maxi z
+
i .

Next, connecting this node to di∗ nodes with highest “demand” gives the

optimal k-out-star sequence.

The next lemma shows that we can reduce the L1 distance of any

bi-degree sequence d by replacing the k-out-star sequences in its direct-

ed Havel-Hakimi decomposition with an appropriately chosen k-out-star

sequences by solving a sequential optimization problem. Let B≤z be the set

of all possible bi-degrees sequences with their out-degrees and in-degrees

pointwise bounded by z+ and z−, respectively.

Lemma 6. Let d be any bi-degree sequence in B≤z and let H(d) = {gij}nj=1

be its directed Havel-Hakimi decomposition where gij is a k-out-star se-
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quence centered at node ij. Let xi1 , . . . , xin be the following k-out-star se-

quences defined recursively:

xi1 = arg min
g∈K≤z+ ,g+

∑
j 6=1 g

ij∈B≤z+
fz(g),

xik+1 = argmin

g ∈ K≤z \ {xij}kj=1

∑k
j=1 x

ij + g +
∑n
j=k+2 g

ij ∈ B≤z

fz(
k∑
j=1

xij + g)

Let dk for k = 1, . . . , n be constructed sequentially by replacing the k-out-

star sequence in H(dk−1) centered at node ik by xik as follows:

d1 = xi1 +
∑
j 6=1

gij , dk =
k∑
j=1

xij +
n∑

j=k+1

gij .

Then, fz(d
n) ≤ fz(d) and each dk ∈ B≤z.

Proof. For two bi-sequences z and a, let ‖z−a‖1 = ‖z+−a+‖1+‖z−−a−‖1.
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Then we have

fz(d
k)− fz(dk+1) = ‖z −

k∑
j=1

xij −
n∑

j=k+1

gij‖1 − ‖z −
k+1∑
j=1

xij −
n∑

j=k+2

gij‖1

= xik+1 − gik+1 = ‖z −
k∑
j=1

xij − gik+1‖1 − ‖z −
k∑
j=1

xij − xik+1‖1

= fz(
k∑
j=1

xij + gik+1)− fz(
k∑
j=1

xij + xik+1)

≥ 0,

where the second equality due to that each bi-sequence is pointwise bounded

by z. Adding these inequalities for k = 0 to k = n − 1, we get fz(d
0) −

fz(d
n) ≥ 0, as required. Moreover, each dk is clearly a bi-degree sequence,

as dk is obtained from dk+1 by replacing a k-out-star sequence from its

directed Havel-Hakimi decomposition.

Now we present the proof of Theorem 3.

Proof of Theorem 3. Let d∗ be the optimal degree sequence. Let I1 = {zi :

z+i ≤ 0} and I2 = {zi : z−i ≤ 0}. By Proposition 5, we can set d+∗ (I1) = 0

and d∗(I2) = 0. This is done by Steps 2 and 4 of Algorithm 2. By Propo-

sition 6, we reduce a global optimization problem into a local optimization

problem by restricting the bi-degree sequences bounded point-wise by z.

As a result, we only need to find the optimum over the set B≤z.
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By Lemma 6, we can construct the optimal bi-degree sequence over B≤z

by starting with any bi-degree sequence d0 and replacing it by k-out-star

sequences defined in Lemma 6. Since 0 is also a bi-degree sequence, we set

d0 = 0. This is done in Step 1. Then, using the notation in Lemma 6, the

optimal bi-degree sequence is dn =
∑n

j=1 x
ij , where

xik+1 = argmin

g ∈ K≤z \ {xij }k
j=1∑k

j=1 x
ij + g ∈ B≤z

fz(
k∑
j=1

xij + g)

Next show that Steps 3 to 10 of Algorithm 2 construct xij iteratively. Let

zk = z −
∑k

j=1 x
ij , then

xik+1 = argmin

g ∈ K≤zk
\ {xij }k

j=1

g ∈ B≤zk

fzk(g)

Thus, each xik+1 can be found using the result in Proposition 7. Note that

to enforce the condition g ∈ K≤zk \ {xij}kj=1, we need to exclude the nodes

with non-positive in-degrees from consideration. This is done in Step 4.

Step 5 select i∗ (i.e., ik+1). Steps 7 and 8 decide the optimal set of in-

neighborhoods of the center node i∗ according to Proposition 7. Note that

step 7 is needed to make sure that the out-degree is not larger than the
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number of nodes available to connect to. Finally, Steps 5 to 9 construct

the optimal bi-degree sequence xij = xi∗ and add the directed edges from

i∗ pointing to nodes in I to Gn.

S6 Proof of Theorem 4

Proof of Theorem 4. Note that d̂+i ≤ z+i if z+i ≥ 0 and d̂+i = 0 if z+i < 0.

Thus, we have

max
i
|d̂+i − d+i | ≤ max

i
|z+i − d+i | = max

i
|e+i |.

Similarly, we also have maxi |d̂−i − d−i | ≤ maxi |e−i |. Let e1, . . . , en be inde-

pendent and identically distributed random variables with probability mass

function

P(e1 = e) =
1− p
1 + p

p|e|, e ∈ Z, p ∈ (0, 1).

Let [c] be the integer part of c (c > 0). Then we have

P(|e1| ≤ c) =
1− p
1 + p

[(1+p1+. . .+p[c])+(p1+. . .+p[c])] =
1 + p− 2p[c]+1

1 + p
= 1−2p[c]+1

1 + p
.
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Therefore, we have

P(max
i
|ei| > c) = 1−

n∏
i=1

P(|ei| ≤ c) = 1− (1− 2p[c]+1

1 + p
)n,

So,

P(max{max
i
|d̂+i − d+i |,max

i
|d̂−i − d−i |} ≥ c)

≤ P (max{max
i
|e+i |,max

i
|e−i |} ≥ c)

= 1− (1− 2e−εn(c+1)/2

1 + e−εn/2
)2n.

Note that when εn(c+ 1) > 2 log 2, e−εn(c+1)/2 < 1/2. Here, εn(c+ 1) ≥

4 log n. Since the function f(x) = 1− (1− x)n is an increasing function on

x when x ∈ (0, 1), we have

1− (1− 2e−εn(c+1)/2

1 + e−εn/2
)2n ≤ 1− (1− 2e−εn(c+1)/2)2n.

On the other hand, (1− x)n ≥ 1− nx when x ∈ (0, 1). So, we have

1− (1− 2e−εn(c+1)/2)2n ≤ 1− (1− 2n× 2e−εn(c+1)/2) = 4ne−εn(c+1)/2.
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When εn(c+ 1) ≥ 4 log n, we have

P(max{max
i
|d̂+i − d+i |,max

i
|d̂−i − d−i |} ≥ c) ≤ 4n

n2
→ 0.

S7 Proofs for Theorem 5

We give the proof of the first part (consistency) of Theorem 5 in section

S7.1 and the proof of the second part (asymptotic normality) in section

S7.2, respectively.

S7.1 Proof of consistency in Theorem 5

The steps to prove the consistency of the edge DP estimator with the de-

noised process are very similar to those in the proof of Theorem 1 without

the denoised process. Both ideas for the proofs are constructing a Newton

iterative sequence that converges to the edge DP estimate and obtaining the

convergence rate of the sequence. They are done by verifying the conditions

in Theorem 6. In contrast with the proof of Theorem 1, some additional

steps for establishing the upper bound of ‖d̂− Ed‖|infty are needed.

Proof of consistency in Theorem 5. For the denoised bi-sequence d̂ with d̂+ =
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(d̂+1 , . . . , d̂
+
n ) and d̂− = (d̂−1 , . . . , d̂

−
n ), define a system of equations:

Fi(θ) = d̂+i −
∑n

k=1;k 6=i
eαi+βk

1+eαi+βk
, i = 1, . . . , n,

Fn+j(θ) = b̂−j −
∑n

k=1;k 6=j
eαk+βj

1+eαk+βj
, j = 1, . . . , n,

F (θ) = (F1(θ), . . . , F2n−1(θ))
>.

(S7.18)

Let F ′(θ) be the Jacobian matrix of F defined at (S7.18) on θ and F ′i (θ)

is the gradient function of Fi on θ. The first condition in Theorem 6 is

the Lipchitz continuous property on F ′(θ) and F ′i (θ). The Jacobian matrix

of F ′(θ) does not depend on d̂ and therefore is the same as the Jacobian

matrix of F ′(θ) defined in Yan et al. (2016). In Lemma 2 in Yan et al.

(2016), they show that

‖[F ′(x)− F ′(y)]v‖∞ ≤ K1‖x− y‖∞‖v‖∞, (S7.19)

max
i=1,...,2n−1

‖F ′i (x)− F ′i (y)‖∞ ≤ K2‖x− y‖∞, (S7.20)

where K1 = n − 1 and K2 = (n − 1)/2. The second condition is that the

upper bound of ‖F (θ∗)‖ is in the order of (n log n)1/2. In Lemma 3 in Yan

et al. (2016), they shew that with probability at least 1− 4n/(n− 1)2, the



S7. PROOFS FOR THEOREM 5

following holds:

max{max
i
|d+i −E(d+i )|,max

j
|d−j −E(d−j )|} ≤

√
(n− 1) log(n− 1). (S7.21)

By Theorem 4, we have

‖d̂− d‖∞ = Op(
log n

εn
). (S7.22)

If εn = Ω((log n/n)1/2), then we have

‖d̂− d‖∞ = Op((n log n)1/2). (S7.23)

Combining (S7.21) and (S7.23), it yields

‖d̂− Ed‖∞ ≤ ‖d̂− d‖∞ + ‖d− Ed‖∞ = Op((n log n)1/2). (S7.24)

This verifies the second condition.

In the Newton iterates, we choose θ∗ as the initial value θ(0). If θ ∈

Ω(θ∗, 2r), then −F ′(θ) ∈ Ln(m,M) with

M =
1

4
, m =

e2(‖θ
∗‖∞+2r)

(1 + e2(‖θ∗‖∞+2r))2
. (S7.25)

To apply Theorem 6, we need to calculate r and ρr in this theorem. Since
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d̂ is graphical, we have
∑

i d̂
+
i =

∑
j d̂
−
j . So,

F̄2n(θ) :=
n∑
i=1

Fi(θ)−
n−1∑
i=1

Fn+i(θ) = d̂−n −
n−1∑
i=1

eαi+βn

1 + eαi+βn
.

Assume that ‖d̂− Ed‖∞ = O((n log n)1/2). Then we have

‖F (θ∗)‖∞ = O((n log n)1/2), |F̄2n(θ∗)| = O((n log n)1/2).

By Proposition 1, we have

r = ‖[F ′(θ∗)]−1F (θ∗)‖∞ ≤ max
i=1,...,2n−1

|Fi(θ∗)|
vii

+
|F̄2n(θ∗)|
v2n,2n

+ 2n‖V −1 − S‖‖F (θ∗)‖∞

≤ O(
(1 + e2‖θ

∗‖∞)2

e2‖θ∗‖∞
+

(1 + e2‖θ
∗‖∞)6

e2‖θ∗‖∞
)×O((n log n)1/2)

= O(n−1/2(log n)1/2e6‖θ
∗‖∞).

Note that if (1 + κn)e6‖θ
∗‖∞ = o((n/ log n)1/2), then r = o(1). By (S7.19),

(S7.20) and (S7.25), we have

ρ =
c1(2n− 1)M2(n− 1)

2m3n2
+

(n− 1)

2m(n− 1)
= O(e6‖θ

∗‖∞)

Therefore, if (1 + κn)e12‖θ
∗‖∞ = o((n/ log n)1/2), then ρr → 0 as n → ∞.

Consequently, by Theorem 6, limn→∞ θ̂
(n) exists. Denote the limiting point
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as θ̂, then it satisfies

‖θ̂ − θ∗‖∞ ≤ 2r = O

(
(log n)1/2e6‖θ

∗‖∞

n1/2

)
= o(1).

In view of S7.24, the above inequality holds with probability approaching

one. Since −F ′(θ) is positively definite, θ̄ is unique if it exists.

S7.2 Proof of asymptotic normality in Theorem 5

The proof of the asymptotic normality of θ̄ is similar to the proof of Theorem

2. Wherein the noisy bi-degree sequence d̄ is directly used, here we do

with its denoised estimator d̂. Let g = (d+1 , . . . , d
+
n , d

−
1 , . . . , d

−
n−1)

> and

ĝ = (d̂+1 , . . . , d̂
+
n , d̂

−
1 , . . . , d̂

−
n−1)

>. The proof proceeds in three main steps.

First, we show that the first k elements of ĝ−Eg is asymptotical normality.

Second, we apply Taylor’s expansion to the system of equations, F (θ) = 0,

and obtain the expression of θ̄, where the main item is V −1(ĝ−Eg). Third,

we work with the approximate inverse S, instead of V −1, to bound the

remainder.

Lemma 7. If ‖θ∗‖∞ < τ log n and τ < 1/36, then for any i, for any i,

θ̂i − θ∗i = [V −1(ĝ − Eg)]i + op(n
−1/2). (S7.26)
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Proof. The proof is very similar to the proof of Lemma 9 in Yan et al.

(2016). It only requires verification of the fact that all the steps hold by

replacing d with d̂.

The asymptotic normality of ĝ − Eg is stated in the following proposi-

tion.

Proposition 8. Assume that A ∼ Pθ∗. If ε−1n e2‖θ
∗‖∞ = o(n1/2/ log n) and

e‖θ
∗‖∞ = o(n1/2), then for any fixed k ≥ 1, as n→∞, the vector consisting

of the first k elements of S(ĝ − Eg) is asymptotically multivariate normal

with mean zero and covariance matrix given by the upper left k× k block of

S.

Proof of Proposition 8. Recall that

vi,j =
eαi+βj

(1 + eαi+βj)2
, 1 ≤ i 6= j ≤ n, vi,i =

n∑
j 6=i,j=1

vij; vn+i,n+i =
n∑

j 6=i,j=1

vji, 1 ≤ i ≤ n.

Since ex/(1+ex)2 is an increasing function on x when x ≥ 0 and a decreasing

function when x ≤ 0, we have

O(ne−2‖θ
∗‖∞) =

(n− 1)e2‖θ
∗‖∞

(1 + e2‖θ∗‖∞)2
≤ vi,i ≤

n− 1

4
, i = 1, . . . , 2n. (S7.27)
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By (S7.22), we have

‖ĝ − g‖∞ = Op(
log n

εn
).

So if ε−1n e2‖θ
∗‖∞ = o(n1/2/ log n), then we have

ĝi − Egi
vii

=
ĝi − gi
vii

+
gi − Egi
vii

=
ĝi − gi
vii

+
gi − Egi
vii

= op(n
−1/2) +

gi − Egi
vii

,

Consequently, Proposition 8 immediately follows Proposition 3.

Proof of asymptotic normality in Theorem 5. By Lemma 7 and noting that

V −1 = S +R, we have

(θ̄ − θ)i = [S(ĝ − Eg)]i + [R{ĝ − E(g)}]i + op(n
−1/2).

By (S7.22), we have

‖ĝ − g‖∞ = Op(
log n

εn
).

So if ε−1n e2‖θ
∗‖∞ = o(n1/2/ log n), then we have

[R(ĝ − g)]i = Op(n log n
M2

m3n2εn
) = Op(

log ne6‖θ
∗‖∞

nεn
) = op(n

−1/2),
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where M and m are given in (S7.25). Combing Lemma 3, it yields

[R(ĝ − Eg)]i = [R(ĝ − g)]i + [R(g − Eg)]i = op(n
−1/2).

Consequently,

θ̄i − θi = [S(ĝ − Eg)]i + op(n
−1/2).

Theorem 5 (ii) immediately follows from Proposition 8.
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