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Abstract: Although many approaches have been developed for releasing network

data with a differential privacy guarantee, few studies have examined inferences in

network models with differential privacy data. Here, we propose releasing bi-degree

sequences of directed networks using the Laplace mechanism and making inferences

using the p0 model, which is an exponential random graph model with the bi-degree

sequence as its exclusively sufficient statistic. We show that the estimator of the

parameters without the so-called denoised process is asymptotically consistent and

normally distributed. This is in sharp contrast to some known results that valid

inferences (e.g., the existence and consistency) of an estimator require denoising.

We also show a new phenomenon, in which an additional variance factor appears

in the asymptotic variance of the estimator to account for the noise. An efficient

algorithm is proposed for finding the closest point in the set of all graphical bi-

degree sequences under the global L1-optimization problem. A numerical study

demonstrates our theoretical findings.

Key words and phrases: Asymptotic normality, consistency, differentially private,

p0 model, synthetic graph.

1. Introduction

As increasing amounts of network data (of all kinds, but especially social

data) have been collected and made publicly available, privacy has become an

important issue in network data analysis because data may contain sensitive infor-

mation about individuals and their relationships (e.g., sexual relationships, e-mail

exchanges). Publishing these sensitive data using anonymized or un-anonymized

nodes can cause severe privacy problems, or even lead to legal action. For exam-

ple, Netflix released the Netflix Prize data set for public analysis in 2007, which

contains anonymized network data about the viewing habits of its members. Two

years later, Netflix was involved in a lawsuit with one of its members who had been

victimized by privacy invasions, done by applying de-anonymization techniques

to re-identify individual information in the public data set (Task and Clifton
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(2012)). Nevertheless, the benefit of analyzing such data sets is significant in

terms of addressing a variety of important issues, including disease transmission,

fraud detection and precision marketing, among many others.

To prevent confidential information from being disclosed and to ensure ef-

fective analysis, sensitive network data must be treated carefully before being

made public. Although the technique of releasing an anonymized isomorphic

network (e.g., Backstrom, Dwork and Kleinberg (2011)) is easy to attack, some

refined anonymization techniques have been proposed; see, for example, Campan

and Truta (2009), Narayanan and Shmatikov (2009), Zhou, Pei and Luk (2008).

These methods transform the original graph into a new graph by adding/removing

edges and clustering nodes into groups. However, they depend on an attacker’s

background knowledge and may fail to protect the private information. Dwork

et al. (2006) developed a rigorous privacy standard called differential privacy

for randomized data-releasing mechanisms to achieve privacy protection. For an

algorithm to satisfy differential privacy, the outputs should not be significantly

different if the inputs are similar. Differential privacy provides strong guarantees

of privacy, without making assumptions about the background knowledge of at-

tackers, and has been widely used as a privacy standard when releasing network

data (e.g., Hay et al. (2009); Lu and Miklau (2014); Task and Clifton (2012);

Jorgensen, Yu and Cormode (2016)).

Although many differentially private algorithms have been developed for re-

leasing network data or their aggregate network statistics safely (e.g., Jorgensen,

Yu and Cormode (2016); Lu and Miklau (2014); Nguyen, Imine and Rusinowitch

(2016); Task and Clifton (2012)), statistical inference with noisy network data

is still in its infancy. In many network models, how to accurately estimate the

model parameters and analyze the asymptotic properties of their estimators us-

ing noisy data is still unknown or has not been properly explored. There have

been some recent developments in inferences with a differentially private degree

sequence of undirected graphs. Hay et al. (2009) used the Laplace mechanism

to release the degree partition, and proposed an efficient algorithm to find the

solution that minimizes the L2-distance between all possible graphical degree

partitions and the noisy degree partition. With this post-processing step, they

obtained an accurate estimate of the degree distribution of a graph. Karwa and

Slavković (2016) used a discrete Laplace mechanism to release the degree se-

quence. By using the techniques for proving the consistency of the maximum

likelihood estimator in the β-model in Chatterjee, Diaconis and Sly (2011) and

those for obtaining its asymptotic normality in Yan and Xu (2013), Karwa and

Slavković (2016) proved that a differentially private estimator of the parameter
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in the β-model is consistent and asymptotically normally distributed. Moreover,

they constructed an efficient algorithm to denoise the differentially private degree

sequence by solving an L1-optimization problem. Day, Li and Lyu (2016) pro-

posed approaches based on aggregation and cumulative histograms to publish the

degree distribution under node differential privacy. Sealfon and Ullman (2019)

proposed an efficient algorithm for estimating the parameter of an Erdös–Rényi

graph under node differential privacy.

In this study, we focus on inferences by using the differentially private bi-

sequences of directed networks. As pointed by Hay et al. (2009), we may fail to

protect privacy if we release the degree sequence directly, because some graphs

have unique degree sequences. In other scenarios, the bi-degrees of the nodes are

themselves sensitive information. For instance, the out-degree of an individual in

a sexually transmitted disease network reveals sensitive information, such as how

many people that person may have infected. In this case, it is essential to limit

the disclosure of the bi-degrees. We propose using the Laplace mechanism to re-

lease the bi-degree sequence and conduct inferences using the noisy bi-sequence.

The main contributions are as follows. First, we show that the estimator of the

parameter in the p0 model based on the moment equation in which the unob-

served original bi-degree sequence is directly replaced by the noisy bi-sequence

is consistent and asymptotically normal without the denoised process. This is in

sharp contrast to some existing results (e.g., Fienberg, Rinaldo and Yang (2010);

Karwa and Slavković (2016)), in which ignoring the noisy process can lead to

inconsistency, and even nonexistent of parameter estimates. The p0 model is an

exponential random graph model with the bi-degree sequence as its exclusively

sufficient statistic. During our study, a new phenomenon is revealed in which an

additional variance factor appears in the asymptotic variance of the estimator

when the noise becomes large. To the best of our knowledge, this is the first time

this phenomenon has been discussed in the context of noisy network data analy-

sis. We further show that the differentially private estimator corresponding to the

denoised bi-sequence is also consistent and asymptotically normal. Second, we

propose an efficient algorithm to denoise the noisy bi-sequence, which finds the

closest point lying in the set of all possible graphical bi-degree sequences under

the global L1-optimization problem. The denoised bi-sequence can be used to

obtain an accurate estimate of the degree distribution of a directed graph. Along

the way, we also output a synthetic directed graph that can be used to infer the

graph structure. Note that the denoised step is needed for valid estimations of the

graph structures, because the noisy bi-sequence may not be graphical. Finally,

we provide simulation studies and an analysis of three real data sets to illustrate
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the theoretical results.

The remainder of the paper proceeds as follows. In Section 2, we first in-

troduce the necessary background on differential privacy. Then, we present the

estimation in the p0 model using the differentially private bi-sequence. In Sec-

tion 3, we present the consistency and asymptotic normality of the differentially

private estimator. In Section 4, we denoise the noisy bi-sequence and present the

asymptotic properties of the estimator corresponding to the denoised bi-sequence.

In Section 5, we carry out simulation studies to evaluate the theoretical results

and analyze three real network data sets. Section 6 concludes the paper. All

proofs of the theorems are relegated to the online Supplementary Material.

2. Estimation from a Differentially Private Bi-Degree Sequence

Let Gn be a simple directed graph on n ≥ 2 nodes that are labeled as “1, . . . ,

n.” Here, “simple” means there are no multiple edges and no self-loops in Gn.

Let A = (ai,j) be the adjacency matrix of Gn, where ai,j is an indictor variable

of the directed edge from head node i to tail node j. If there exists a directed

edge from i to j, then ai,j = 1; otherwise, ai,j = 0. Because Gn is loopless, we

set ai,i = 0 for convenience. Let d+i =
∑

j 6=i ai,j be the out-degree of node i

and d+ = (d+1 , . . . , d
+
n )> be the out-degree sequence of the graph Gn. Similarly,

define d−i =
∑

j 6=i aj,i as the in-degree of node i and d− = (d−1 , . . . , d
−
n )> as the

in-degree sequence. The pair d = ((d+)>, (d−)>)> or {(d+1 , d
−
1 ), . . . , (d+n , d

−
n )} is

called the bi-degree sequence.

In this section, we first introduce differential privacy. Then, we release the

bi-degree sequence under edge differential privacy (EDP) and estimate the degree

parameter in the p0 model.

2.1. Differential privacy

Consider an original database D containing a set of records of n individuals.

We focus on mechanisms that take D as input and output a sanitized database

S = (S1, . . . , Sk) for public use. The size of S may not be the same as D. A

randomized data-releasing mechanism Q(·|D) defines a conditional probability

distribution on the output S, given D. Let ε be a positive real number and S
denote the sample space of Q. The data-releasing mechanism Q is ε-differentially

private if for any two neighboring databases D1 and D2 that differ on a single

element (i.e., the data of one person), and all measurable subsets B of S (Dwork

et al. (2006)),

Q(S ∈ B|D1) ≤ eε ×Q(S ∈ B|D2).
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The privacy parameter ε, which is publicly available, is chosen by the data cu-

rator administering the privacy policy, and controls the trade-off between privacy

and utility. Here, a smaller value of ε means more privacy protection.

Differential privacy requires that the distribution of the output is almost the

same, regardless of whether an individual’s record appears in the database. We

illustrate why it protects privacy with an example. Suppose a hospital wants

to release statistics on patients’ medical records to the public. In response, a

patient may wish to have his/her record omitted from the study owing to a

privacy concern that the published results will reveal some of his/her personal

information. Differential privacy alleviates this concern because the probability

of a possible output is almost the same, regardless of whether whether the patient

participates in the study. From a theoretical viewpoint, test statistics have nearly

no power to test whether an individual’s data are in the original database; see

Wasserman and Zhou (2010) for a rigourous proof.

What is being protected in the differential privacy is precisely the difference

between two neighboring databases. Within network data, depending on the

definition of the graph neighbor, differential privacy is divided into node differ-

ential privacy (Kasiviswanathan et al. (2013)) and EDP (Nissim, Raskhodnikova

and Smith (2007)). Two graphs are called neighbors if they differ in exactly

one edge, in which case, differential privacy is EDP. Analogously, we can define

node differential privacy by letting graphs be neighbors if one can be obtained

from the other by removing a node and its adjacent edges. EDP protects edges

from being detected, whereas node differential privacy protects nodes and their

adjacent edges, which is a stronger privacy policy. However, it may be infeasible

to design algorithms that both support node differential privacy and have good

utility. As an example, Hay et al. (2009) showed that estimating node degrees is

highly inaccurate under node differential privacy because the global sensitivity in

Definition 2 is too large (in the worst case, having order n), rendering the output

useless. Following Hay et al. (2009), we use EDP here.

Let δ(G,G′) be the number of edges on which G and G′ differ. The formal

definition of EDP is as follows.

Definition 1. (EDP). Let ε > 0 be a privacy parameter. A randomized mecha-

nism Q(·|G) is ε-edge differentially private if

sup
G,G′∈G,δ(G,G′)=1

sup
S∈S

Q(S|G)

Q(S|G′)
≤ eε,

where G is the set of all directed graphs of interest on n nodes, and S is the set
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of all possible outputs.

Let f : G → Rk be a function. The global sensitivity (Dwork et al. (2006))

of the function f , denoted ∆f , is defined below.

Definition 2. (Global Sensitivity). Let f : G → Rk. The global sensitivity of f

is defined as

∆(f) = max
δ(G,G′)=1

‖f(G)− f(G′)‖1,

where ‖ · ‖1 is the L1-norm.

Global sensitivity measures the worst case difference between any two neigh-

boring graphs. The magnitude of the noise added in the differentially private

algorithm Q depends crucially on the global sensitivity. If the outputs are the

network statistics, then a simple algorithm to guarantee EDP is the Laplace mech-

anism (e.g., Dwork et al. (2006)), which adds the Laplace noise proportional to

the global sensitivity of f .

Lemma 1. (Laplace Mechanism). Suppose f : G → Rk is an output function

in G. Let e1, . . . , ek be independent and identically distributed (i.i.d.) Laplace

random variables with density function e−|x|/λ/λ. Then, the Laplace mecha-

nism outputs f(G) + (e1, . . . , ek) that are ε-edge differentially private, where

ε = −∆(f) log λ.

When f(G) is integer, we can use a discrete Laplace random variable as

the noise, as in Karwa and Slavković (2016), where it has the probability mass

function:

P(X = x) =
1− λ
1 + λ

λ|x|, x ∈ {0,±1, . . .}, λ ∈ (0, 1).

Lemma 1 still holds if the continuous Laplace distribution is replaced by the

discrete Laplace distribution.

One nice property of differential privacy is that any function of a differentially

private mechanism is also differentially private.

Lemma 2 (Dwork et al. (2006); Wasserman and Zhou (2010)). Let f be an

output of an ε-differentially private mechanism, and g be any function. Then,

g(f(G)) is also ε-differentially private.

By Lemma 2, any post-processing done on an output of a differentially private

mechanism is also differentially private.

2.2. The differentially private bi-degree sequence

We use the discrete Laplace mechanism in Lemma 1 to release the bi-degree

sequence d = (d+, d−) under EDP. Note that f(Gn) = (d+, d−). If we add or
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remove a directed edge i → j in Gn, then the out-degree of the head node i

and the in-degree of the tail node j increase or decrease by one each. Therefore,

the global sensitivity for the bi-degree sequence is two. The released steps are

described in Algorithm 1, which returns a differentially private bi-sequence.

Algorithm 1: Releasing d

Data: The bi-degree sequence d and privacy parameter εn
Result: The differentially private bi-sequence z

1 Let d = (d+, d−) be the bi-degree sequence of Gn;
2 for i = 1→ n do
3 Generate two independent e+i and e−i from discrete Laplace with

λn = exp(−εn/2);

4 Let z+i = d+i + e+i and z−i = d−i + e−i
5 end

2.3. Estimation based on the p0 model

To conduct statistical inferences from a noisy bi-sequence, we need to specify

a model on the original bi-degree sequence. If no prior information is given, we

can model d according to the maximum entropy principle (Wu (1997)). This

forces the probability distribution on the graph Gn into the exponential family

distribution, with the bi-degree sequence as the sufficient statistic, which admits

the maximum entropy when the expectation of a bi-degree sequence is given.

Hereafter, we refer to this model as the p0 model. The subscript “0” indicates that

it is a simpler model than the p1 model, which contains an additional reciprocity

parameter (Holland and Leinhardt (1981)). The p0 model can be represented as

P(Gn) =
1

c(α, β)
exp

(∑
i

αid
+
i +

∑
j

βjd
−
j

)
, (2.1)

where c(α, β) is a normalizing constant, α = (α1, . . . , αn)>, and β = (β1, . . . , βn)>.

The outgoingness parameter αi characterizes how attractive the node is, and the

incomingness parameter βi illustrates the extent to which the node is attracted

to others, as discussed in Holland and Leinhardt (1981). Although the p0 model

looks simple, it is still useful in applications where only the bi-degree sequence is

used. First, it serve as a null model for hypothesis testing (e.g., Holland and Lein-

hardt (1981); Fienberg and Wasserman (1981); Zhang and Chen (2013)). Second,

it can be used to reconstruct networks and make statistical inferences when only

the bi-degree sequence is available, owing to privacy considerations (e.g., Hel-

leringer and Kohler (2007)). Third, it can be used in a preliminary analysis to



2038 YAN

choose suitable statistics for network configurations (e.g., Robins, Pattison and

Wang (2009)).

Because an out-edge from node i pointing to j is the in-edge of j coming from

i, we have that the sum of the out-degrees is equal to the sum of the in-degrees.

If one transforms (α, β) to (α−c, β+c), the probability distribution in (2.1) does

not change. To identify the model parameters, we set βn = 0, as in Yan, Leng

and Zhu (2016). The p0 model can be formulated using an array of mutually

independent Bernoulli random variables ai,j , 1 ≤ i 6= j ≤ n, with the following

probabilities (Yan, Leng and Zhu (2016)):

P(ai,j = 1) =
eαi+βj

1 + eαi+βj
.

The normalizing constant c(α, β) is
∑

i 6=j log(1 + eαi+βj ). We use the following

equations to estimate the degree parameter:

z+i =
∑
j 6=i

eαi+βj

1 + eαi+βj
, i = 1, . . . , n,

z−j =
∑
i 6=j

eαi+βj

1 + eαi+βj
, j = 1, . . . , n− 1,

(2.2)

where z is the differentially private bi-sequence of Algorithm 1. The fixed-point

iteration algorithm can be used to solve the above system of equations. Be-

cause the discrete Laplace distribution is symmetrical with mean zero, the above

equations are also the moment equations. Let θ = (α1, . . . , αn, β1, . . . , βn−1)
>.

The solution θ̂ to the equations (2.2) is the differentially private estimator of θ,

according to Lemma 2, where θ̂ = (α̂1, . . . , α̂n, β̂1, . . . , β̂n−1)
> and β̂n = 0.

3. Asymptotic Properties of the Estimator

In this section, we present the consistency and asymptotical normality of the

differentially private estimator. For a subset C ⊂ Rn, let C0 and C denote the

interior and closure of C, respectively. For a vector x = (x1, . . . , xn)> ∈ Rn,

denote by ‖x‖∞ = max1≤i≤n |xi|, the `∞-norm of x. For an n × n matrix J =

(Ji,j), let ‖J‖∞ denote the matrix norm induced by the `∞-norm on vectors in

Rn; that is,

‖J‖∞ = max
x 6=0

‖Jx‖∞
‖x‖∞

= max
1≤i≤n

n∑
j=1

|Ji,j |.
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In general, the privacy parameter εn is small. Therefore, we assume that εn is

bounded by a fixed constant. This simplifies the notation.

Because the number of parameters increases with the number of nodes, clas-

sical statistical theories cannot be applied directly to obtain the asymptotic re-

sults of the estimator. We use the Newton method developed in Yan, Leng and

Zhu (2016) to establish the consistency. Here, we need to deal with the high-

dimensional issue and the noise; in contrast, Yan, Leng and Zhu (2016) only

considered the high-dimensional issue. The proof for the existence and consis-

tency of θ̂ can be briefly described as follows. Define a system of functions:

Fi(θ) = z+i −
n∑

k=1;k 6=i

eαi+βk

1 + eαi+βk
, i = 1, . . . , n,

Fn+j(θ) = z−j −
n∑

k=1;k 6=j

eαk+βj

1 + eαk+βj
, j = 1, . . . , n, (3.1)

F (θ) = (F1(θ), . . . , F2n−1(θ))
>.

Note that the solution to the equation F (θ) = 0 is precisely the estimator. We

construct the Newton iterative sequence: θ(k+1) = θ(k) − [F ′(θ(k))]−1F (θ(k)). If

the initial value is chosen as the true value θ∗, then it is left to bound the error

between the initial point and the limiting point to show the consistency. This is

done by establishing a geometric convergence rate for the iterative sequence; see

the online Supplementary Material. The existence and consistency of θ̂ is stated

below.

Theorem 1. Assume that A ∼ Pθ∗, where Pθ∗ denotes the probability distribu-

tion (2.1) on A under the parameter θ∗. If ε−1n e12‖θ
∗‖∞ = o((n/ log n)1/2), then

with probability approaching one as n goes to infinity, the estimator θ̂ exists and

satisfies

‖θ̂ − θ∗‖∞ = Op

(
1

εn

(log n)1/2e6‖θ
∗‖∞

n1/2

)
= op(1).

Furthermore, if θ̂ exists, it is unique.

Remark 1. The condition ε−1n e12‖θ
∗‖∞ = o((n/ log n)1/2) in Theorem 1 that

guarantees the consistency of the estimator exhibits an interesting trade-off be-

tween the privacy parameter εn and ‖θ∗‖∞. If ‖θ∗‖∞ is bounded by a constant,

εn can be as small as n1/2/(log n)−1/2. Conversely, if e‖θ
∗‖∞ grows at a rate of

n1/12/(log n)1/12, then εn can only be a constant magnitude.

In order to present the asymptotic normality of θ̂, we introduce a class of
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matrices. Given two positive numbers m and M , with M ≥ m > 0, we say the

(2n−1)×(2n−1) matrix V = (vi,j) belongs to the class Ln(m,M) if the following

holds:

m ≤ vi,i −
2n−1∑
j=n+1

vi,j ≤M, i = 1, . . . , n− 1; vn,n =

2n−1∑
j=n+1

vn,j ,

vi,j = 0, i, j = 1, . . . , n, i 6= j,

vi,j = 0, i, j = n+ 1, . . . , 2n− 1, i 6= j, (3.2)

m ≤ vi,j = vj,i ≤M, i = 1, . . . , n, j = n+ 1, . . . , 2n− 1, j 6= n+ i,

vi,n+i = vn+i,i = 0, i = 1, . . . , n− 1,

vi,i =

n∑
k=1

vk,i =

n∑
k=1

vi,k, i = n+ 1, . . . , 2n− 1.

Clearly, if V ∈ Ln(m,M), then V is a (2n− 1)× (2n− 1) diagonally dominant,

symmetric, nonnegative matrix. Define v2n,i = vi,2n := vi,i −
∑2n−1

j=1;j 6=i vi,j , for

i = 1, . . . , 2n− 1 and v2n,2n =
∑2n−1

i=1 v2n,i. Yan, Leng and Zhu (2016) proposed

approximating the inverse of V , V −1, using the matrix S = (si,j), which is defined

as

si,j =



δi,j
vi,i

+
1

v2n,2n
, i, j = 1, . . . , n,

− 1

v2n,2n
, i = 1, . . . , n, j = n+ 1, . . . , 2n− 1,

− 1

v2n,2n
, i = n+ 1, . . . , 2n− 1, j = 1, . . . , n,

δi,j
vi,i

+
1

v2n,2n
, i, j = n+ 1, . . . , 2n− 1,

(3.3)

where δi,j = 1 when i = j, and δi,j = 0 when i 6= j.

We use V to denote the Fisher information matrix of θ in the p0 model. It

can be shown that

vij =
eαi+βj

(1 + eαi+βj )2
, 1 ≤ i 6= j ≤ n.

Because ex/(1 + ex)2 is an increasing function on x when x ≥ 0, and a decreasing

function when x ≤ 0, we have

(n− 1)e2‖θ‖∞

(1 + e2‖θ‖∞)2
≤ vii ≤

n− 1

4
, i = 1, . . . , 2n.

Therefore, V ∈ Ln(m,M), where m is the left expression and M is the right
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expression in the above inequality. The asymptotic distribution of θ̂ depends on

V . Let g = (d+1 , . . . , d
+
n , d

−
1 , . . . , d

−
n−1)

> and g̃ = (z+1 , . . . , z
+
n , z

−
1 , . . . , z

−
n−1)

>. If

we apply Taylor’s expansion to each component of g̃−Eg, then the second-order

term in the expansion is V (θ̂ − θ). Because V −1 does not have a closed form,

we work with S defined at (3.3) to approximate it. Then, we represent θ̂ − θ
as the sum of S(g̃ − Eg) and a remainder. The central limit theorem is proved

by establishing the asymptotic normality of S(g̃ − Eg) and showing that the

remainder is negligible. We formally state the central limit theorem as follows.

Theorem 2. Assume that A ∼ Pθ∗ and ε−2n e18‖θ
∗‖∞ = o((n/ log n)1/2).

(i) If ε−1n (log n)1/2e2‖θ
∗‖∞ = o(1), then for any fixed k ≥ 1, as n → ∞, the

vector consisting of the first k elements of (θ̂ − θ∗) is asymptotically multi-

variate normal with mean 0 and covariance matrix given by the upper left

k × k block of S, defined in (3.3).

(ii) Let

s2n = Var

( n∑
i=1

e+i −
n−1∑
i=1

e−i

)
= (2n− 1)

2e−εn/2

(1− e−εn/2)2
.

If sn/v
1/2
2n,2n → c for some constant c, then for any fixed k ≥ 1, the vector

consisting of the first k elements of (θ̂ − θ∗) follows an asymptotically k-

dimensional multivariate normal distribution with mean 0 and covariance

matrix

diag

(
1

v1,1
, . . . ,

1

vk,k

)
+

(
1

v2n,2n
+

s2n
v22n,2n

)
1k1

>
k ,

where 1k is a k-dimensional column vector with all entries one.

Remark 2. First, if we change the first k elements of (θ̂ − θ∗) to an arbitrarily

fixed k elements with the subscript set {i1, . . . , ik}, Theorem 2 still holds. This is

because all steps in the proof are valid if we change the first k subscript set from

{1, . . . , k} to {i1, . . . , ik}. Second, the asymptotic variance for the difference of

the pairwise estimators (θ̂ − θ∗)i − (θ̂ − θ∗)j is 1/vi,i + 1/vj,j , regardless of the

additional variance factor 1/v2n,2n + s2n/v
2
2n,2n.

Remark 3. In the second part of Theorem 2, the asymptotic variance of θ̂i has

an additional variance factor s2n/v
2
2n,2n. This is different from Theorem 2 in Yan,

Leng and Zhu (2016), in which they consider nondifferential private case. The

asymptotic expression of θ̂i contains a term
∑n

i=1 e
+
i −

∑n−1
i=1 e

−
i . Its variance

is in the magnitude of ne−εn/2. When εn becomes small, the variance increases
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quickly, such that its impact on θ̂i cannot be ignored when it increases to a certain

level. This leads to the appearance of the additional variance factor.

4. The Denoised Bi-Degrees and Synthetic Directed Graphs

In general, the output z of Algorithm 1 is not the graphical bi-degree se-

quence, for which several characterizations exist (e.g., Fulkerson (1960); Kleitman

and Wang (1973); Majcher (1985)). A necessary condition for graphical bi-degree

sequences is that the sum of the in-degrees is equal to that of the out-degrees, and

all in- and out- degrees are between zero and n− 1. To determine the likelihood

of this condition holding, we carry out some simulations. We use the p0 model to

generate the random graphs and record their bi-degree sequences. Then, we use

Algorithm 1 to output the bi-sequence z. We set αi, βi ∼ U(0, 1) and n = 100. We

conduct 10,000 simulations and record the frequency with which
∑

i z
+
i =

∑
i z
−
i

holds. The simulation results show that this condition holds in, at most, 1% of

the cases.

To make z graphical, we need to denoise z. The denoising process appears

to be complex. First, the number of parameters to be estimated (d+i , d
−
i , i =

1, . . . , n) is equal to the number of observations (z+i , z
−
i , i = 1, . . . , n). Second,

the parameter space is discrete and very large, with a cardinality that grows in

at least an exponential magnitude. Let Bn be the set of all possible bi-degree

sequences of graph Gn. It is natural to use the closest point d̂ lying in Bn as

the denoised bi-sequence, with some distance between d̂ and d. We use the L1-

distance here, and define the estimator as

d̂ = argmin
d∈Bn

(‖z+ − d+‖1 + ‖z− − d−‖1). (4.1)

Note that the maximum likelihood estimation leads to the same solution. Specif-

ically, because the parameter λn in the noise-addition process of Algorithm 1 is

known, the likelihood on observation z with the parameter d in Bn is

L(d|z) = c(λn) exp

{
−

(
n∑
i=1

|z+i − d
+
i |+

n−1∑
i=1

|z−i − d
−
i |

)}
.

We can see that the MLE of d is also d̂.

We propose Algorithm 2 to produce the MLE d̂. The algorithm also outputs

a directed graph with d̂ as its bi-degree sequence. The correctness of Algorithm

2 is given in Theorem 3; see the online Supplementary Material for the proof.

Theorem 3. Let z = (z+, z−) be a bi-sequence of integers obtained from Algo-
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Algorithm 2: Denoising z

Data: A bi-sequence of integers z = (z+, z−)

Result: A directed graph Gn on n vertices with bi-degree sequence d̂
1 Let Gn be the empty graph on n vertices;

2 Let S = {1, . . . , n} \ {i : z+i ≤ 0};
3 while |S| > 0 do
4 T = {1, . . . , n} \ {i : z−i ≤ 0};
5 Let z+i∗ = maxi∈S z

+
i and i∗ = min{i ∈ S : z+i = z+i∗};

6 Let T = T \ {i∗} and pos = |T |;
7 Let hi∗ = min(z+i∗ , pos);
8 Let I =indices of hi∗ highest values in z−(T ) where z−(T ) is the sequence

z−;
9 restricted to the index set T ;

10 Add a directed edge from i∗ to k in Gn for each k ∈ I;

11 Let z−i = z−i − 1 for all i ∈ I and S = S \ {i∗}
12 end

rithm 1. The bi-degree sequence of Gn produced by Algorithm 2 is d̂, defined in

(4.1).

We prove Theorem 3 by converting the directed Havel–Hakimi algorithm

(Erdós, Miklós, I. and Toroczkai (2010)) into Algorithm 2 to perform an L1-

“projection” on the set Bn. This is motivated by Karwa and Slavković (2016),

who used the Havel–Hakimi algorithm (Havel (1955); Hakimi (1962)) to find

the solution to the undirected L1-optimalization problem. Although the Havel–

Hakimi algorithm had been proposed 60 years previously, the directed version was

derived much later, by Erdós, Miklós, I. and Toroczkai (2010). In the directed

case, one needs to consider the in-degree and out-degree sequences simultaneously.

Therefore, our algorithm is not a trivial extension of that of the undirected case

in Karwa and Slavković (2016).

Remark 4. In step 8 of Algorithm 2, if some in-degrees of z−(T ) are equal, we

arrange them in decreasing order of their corresponding out-degrees. Assume

that the order is z−i1 ≥ · · · ≥ z−ik . Then, we select their top hi∗ values. This rule

applies hereafter.

The next theorem characterizes the error between d̂ and d in terms of the

privacy parameter εn.

Theorem 4. When εn(c+ 1) ≥ 4 log n, we have

P(‖d̂− d‖∞ > c) ≤ 4

n
,
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where for two bi-sequences a = (a+, a−) and b = (b+, b−), ‖a− b‖∞ is defined as

‖a− b‖∞ = max{‖a+ − b+‖∞, ‖a− − b−‖∞}. (4.2)

As expected, a smaller privacy parameter εn means there is a larger error

between the original bi-degree and its MLE d̂. For any fixed τ ∈ (0, 1/2), if

εn = Ω(n−(1/2−τ)), then

‖d̂− d‖∞ = Op(n
(1/2−τ) log n). (4.3)

Both d̃ and d̂ are EDP estimators of d, where the latter results from Lemma

2. We can replace d̂ with d̃ in the equations in (2.2) to obtain the denoised

estimator of the parameter θ; denote the solution as θ̄. By repeatedly using

Lemma 2, θ̂ and θ̄ are both EDP estimators. By noting that (4.3) holds, and

using a similar argument to those in Theorems 1 and 2, θ̄ is also consistent and

asymptotically normal. This is stated in Theorem 5, the proof of which is given

in the Supplementary Material.

Theorem 5. Assume that A ∼ Pθ∗.

(i) If e12‖θ
∗‖∞ = o((n/ log n)1/2) and εn = Ω((log n/n)1/2), then as n goes to

infinity, with probability approaching one, the EDP estimator θ̄ exists and

satisfies

‖θ̄ − θ∗‖∞ = Op

(
(log n)1/2e6‖θ

∗‖∞

n1/2

)
= op(1).

Furthermore, if θ̄ exists, it is unique.

(ii) If e18‖θ
∗‖∞ = o((n/ log n)1/2) and ε−1n e6‖θ

∗‖∞ = o(n1/2/ log n), then for any

fixed k ≥ 1, as n → ∞, the vector consisting of the first k elements of

(θ̄− θ∗) is asymptotically multivariate normal, with mean 0 and covariance

matrix given by the upper left k × k block of S defined in (3.3).

Remark 5. Because the distribution of the difference d̂− d is difficult to obtain,

we do not have an asymptotic result such as that in Theorem 2 (ii). By Theorem

5, the convergence rate of θ̄i is 1/v
1/2
i,i , for any fixed i. Because (n−1)e−2‖θ

∗‖∞/4 ≤
vi,i ≤ (n−1)/4, the rate of convergence is between O(n−1/2e‖θ

∗‖∞) and O(n−1/2),

which is the same as the nonprivate estimator (Yan, Leng and Zhu (2016)).

5. Numerical Studies

The simulation results to assess the performance of the estimator for finite

sizes of networks under different n, εn, and θ are given in the online Supple-
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mentary Material. Three real-data analyses are also provided. We only present

one real-data analysis here; the other two are provided in the Supplementary

Material.

5.1. Real-data analysis

We evaluate how close the estimator (α̂, β̂) is to the MLE (α̃, β̃), fitted in

the p0 model with the original bi-degree sequence using three real network data

sets: the Children’s Friendship data, Lazega’s Law Firm data, and UC Irvine

messages data. We present the analytical results of the UC Irvine messages data

only; the other results are provided in Supplementary Material. Note that (α̂, β̂)

is the edge differentially private estimator of the vector parameters α and β. If

only the private estimator is released, then whether an edge is present or not

in the original data set is almost undetectable. We chose εn equal to one, two

and three, as in Karwa and Slavković (2016), and released the bi-degree sequence

using Algorithm 1 1,000 times for each εn. Then, we computed the average private

estimate and the upper 97.5 quantile (in blue) and the lower 2.5th quantile (in

orange) of the estimates, conditional on the event that the private estimate exists.

The UC Irvine messages network data were collected from an online com-

munity of students at the University of California, Irvine (Opsahl and Panzarasa

(2009)). It has a total of 1,899 nodes, and each node represents a student. A

directed edge is established from one student to another if one or more messages

have been sent from the former to the latter. In total, there are 20,296 edges, and

the edge density is 0.56%, indicating a very sparse network. Of the 1,899 nodes,

586 have no out-edges or in-edges. We remove these, because a nonprivate MLE

does not exist in this case. To guarantee nonzero out-degrees and in-degrees af-

ter adding noise with a large probability, we analyze a subgraph with out-degrees

and in-degrees both larger than five. After data preprocessing, only 696 nodes

remain. The quantiles of 0, 1/4, 1/2, 3/4 and 1 are 3, 8, 14, 26, and 164 for the

out-degrees, and 4, 10, 16, 27 and 121 for the in-degrees, respectively.

When many nodes have few links to others, large noise easily causes output

with nonpositive elements in Algorithm 1. When ε = 1, the average `∞-distance

between d and d̃ is 15.6, and all private estimates fail to exist. In this case, we try

ε = log n/n1/4 (≈ 1.27). The frequencies that the private estimate fails to exist

are 99.3%, 54.9%, and 8.3% for ε = log n/n1/4, 2, and 3, respectively. The results

are shown in Figure 1. From this figure, we can see that the mean values of α̂

and β̂ are very close to the MLE; and the MLE still lies in the 95% confidence

interval.
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Figure 1. The differentially private estimate (α̂, β̂) with the MLE for the UC Irvine
messages network.

6. Conclusion

We have presented the consistency of the differentially private estimator of

the parameter in the p0 model under some mild conditions when discrete Laplace

noise is added to the bi-degree. We have revealed a phase transition for the

asymptotic variance of the estimator in which an additional variance factor ap-

pears when the variance of the noise increases. The simulation shows that ig-

noring this factor could lead to invalid confidence intervals. The added noise

introduces considerable error when applying the noisy bi-sequence to estimate

the degree distribution. We propose an efficient algorithm to denoise the noisy

bi-sequence. The denoised bi-sequence can be used to obtain an accurate es-
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timate of the degree distribution of a directed graph. Our simulation studies

show that the non-denoised estimator outperforms than the denoised estimator

for finite network sizes. On the other hand, when the privacy parameter εn is

small, the private estimate fails to exist with positive frequencies, according to

our numerical studies, especially when the network data set is sparse. Approaches

to avoiding this problem include adding positive Laplace random noise or using

f -differential privacy. We will investigate this problem in future research.

The conditions in Theorems 1 and 2 induce an interesting trade-off between

the private parameter measuring the magnitude of the noise and the growing rate

of the parameter θ. If the parameter εn is large, θ can be allowed to be relatively

large. For instance, if εn = O(1), then the condition (i.e., (1 + 4ε−1n )e12‖θ
∗‖∞ =

o((n/ log n)1/2)) in Theorem 1 becomes e12‖θ
∗‖∞ = o((n/ log n)1/2). Moreover,

the condition in Theorem 2 is much stronger than that in Theorem 1. The

asymptotic behavior of the estimator is not only determined by the growing rate

of the parameter θ, but also by the configuration of the parameter. Thus, it

would be of interest to see whether these conditions can be relaxed.

There are two different tasks in the data-privacy problem. The first is data

protection. If the network model contains other network features, such as k-

stars and triangles and only these network statistics are of interest, then the

additive noisy mechanism presented here can be used to disclose them safely. In

addition, it satisfies the EDP if the Laplace noise is added. The second is making

inferences from the noisy data. In order to extend our method of deriving the

consistency of the estimator to other network models, one needs to establish a

geometrical rate of convergence for the Newton iterative sequence. This is not

easy for network models with other network features because it is difficult to

derive the upper bound of the matrix norm for the inverse matrix of the Fisher

information matrix without some special matrix structures. At the same time,

it is difficult to extend the method of deriving the asymptotic normality of the

estimator to network models with other network features because, in general, it is

difficult to derive the approximate inverse matrix of a general Fisher information

matrix.

Supplementary Material

The online Supplementary Material contains the simulation results, two real-

data analyses, and the proofs of Theorems 1–5.
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