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NONPARAMETRIC DENSITY ESTIMATION FOR

INTENTIONALLY CORRUPTED FUNCTIONAL DATA

Aurore Delaigle and Alexander Meister

University of Melbourne and Universität Rostock

Abstract: We consider statistical models in which the functional data are artifi-

cially contaminated by independent Wiener processes in order to satisfy privacy

constraints. We show that the corrupted observations have a Wiener density that

uniquely determines the distribution of the original functional random variables

masked near the origin, and construct a nonparametric estimator of that density.

We derive an upper bound for its mean integrated squared error, which has a poly-

nomial convergence rate, and establish an asymptotic lower bound on the minimax

convergence rates that is close to the rate attained by our estimator. Our estimator

requires choosing a basis and two smoothing parameters. We propose data-driven

ways to do so and prove that the asymptotic quality of our estimator is not sig-

nificantly affected by the empirical parameter selection. Lastly, we examine the

numerical performance of our method using simulated examples.

Key words and phrases: Classification, convergence rates, differential privacy, infinite-

dimensional Gaussian mixtures, Wiener densities.

1. Introduction

Data privacy is an important feature of a database, where the collected data

are transformed and released so as to make it difficult to identify individuals

participating in a study. Various privatization methods are available, resulting in

different privacy constraints, such as differential privacy. Refer to Wasserman and

Zhou (2010) for a statistical introduction to differential privacy. The privatization

mechanism typically has an effect on the statistical analysis of the data; thus,

one of the research directions in statistical privacy is to find ways of ensuring

differential privacy, while keeping as much of the information as possible from the

original database (see, e.g., Hall, Rinaldo and Wasserman (2013) in the functional

data context, and Karwa and Slavkovi (2016) in the setting of synthetic graphs).

One simple way of ensuring differential privacy is to contaminate the data

artificially with additive random noise; see, for example, Wasserman and Zhou

(2010). In the functional data context, Hall, Rinaldo and Wasserman (2013)
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propose a data release mechanism where the observed functional data are con-

taminated by adding a random Gaussian process to each function (one per func-

tional observation) that is independent of the original data. Proposition 3.3 in

Hall, Rinaldo and Wasserman (2013) roughly states that the data can be made

differentially private whenever the scaling noise factor of the Gaussian process is

sufficiently large.

Here, we show that if the Gaussian process is a Wiener process and the val-

ues of the raw data are masked at the origin, then the contaminated data are

differentially private and have a density. This contrasts with the usual functional

data setting, where the assumption that all measures admitted to be the true

image measure of the functional random variables are dominated by a known

basic measure seems difficult to justify. There exists no canonical basic measure,

such as the Lebesgue measure for finite-dimensional Euclidean data, or the Haar

measure for data in general locally compact groups. As a result, inferences and

descriptive summaries of functional data are often based on pseudo-densities; see,

for example, Delaigle and Hall (2010) and Ciollaro, Genovese and Wang (2016).

Recently, Lin, Müller and Yao (2018) considered the estimation of densities for

functions that lie in a dense subset S of the Hilbert space L2(D), where D is a

finite interval. There, S is defined as the (non-closed) linear hull of an orthonor-

mal basis of L2(D), and does not contain the functional data contaminated by

Wiener processes that we consider. Privacy issues for functional data are also

discussed by Mirshani, Reimherr and Slavkovic (2017). Although the authors

deduce the existence of a Gaussian density for fixed functional observations, they

do not examine a nonparametric estimation of that density.

In contrast, in the the proposed privatization process, the privatized func-

tional data have a Radon–Nikodym derivative (and thus a true, non-pseudo den-

sity) with respect to the Wiener measure. Exploiting the fact that the con-

taminating distribution is usually known in this context, we consider statistical

inferences from such data.

To the best of our knowledge, most existing nonparametric approaches for

estimating a Wiener density are motivated by diffusion processes. Although these

do not include the type of functional data we consider, some of these methods

can be applied in our context. See, for example, Dabo-Niang (2004a), who sug-

gests an orthogonal series estimator, Dabo-Niang (2002, 2004b); Ferraty and Vieu

(2006), who propose kernel density estimators (see also Prakasa Rao (2010a) for

a generalization in the case of diffusion processes), and Prakasa Rao (2010b);

Chesneau, Kachour and Maillot (2013), who construct wavelet estimators. See

also Báıllo, Cuevas and Cuesta-Albertos (2011) for a parametric context in which
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the data and the reference measure are Gaussian. However, these methods ei-

ther suffer from slow logarithmic convergence rates, or are derived under abstract

assumptions that seem difficult to justify in our context or are difficult to imple-

ment in practice. We propose a fully data-driven estimator with fast polynomial

convergence rates under simple conditions. Although our estimator is motivated

by our privacy setting, our results can be extended to more general cases of

functional data that have a Wiener density.

This remainder of the paper proceeds as follows. In Section 2, we introduce

our statistical model, and show that the Wiener density exists and determines

uniquely the image measures of the raw functional random variables masked near

zero. Moreover, we prove that the privacy constraints are fulfilled when the noise

level is sufficiently large. In Section 3, we construct a nonparametric orthonormal

series estimator of the Wiener density, and propose data-driven procedures for

choosing the basis (Section 3.4) and the smoothing parameters (Section 3.5). In

Section 4, we derive an explicit upper bound for the mean integrated squared

error of our estimator, and show that it achieves polynomial convergence rates

under intuitive tail restrictions and metric entropy constraints on the measure of

the original data. Functional data problems in which such fast rates are available

are rare; usually, the achievable rates are only logarithmic or sub-polynomial;

see, for example, Dabo-Niang (2004a); Mas (2012); Meister (2016). Finally, we

derive a lower bound on the mean integrated squared error under our intuitive

conditions, and show that choosing the parameters in a data-driven way does

not significantly deteriorate the asymptotic performance of our procedure (thus,

we establish a weak adaptivity result). Numerical simulations are provided in

Section 5. All proofs are deferred to the online Supplementary Material.

2. Model, Data, and Applications

2.1. Model and data

We observe functional data Y1, . . . , Yn defined on [0, 1], without loss of gen-

erality, which, for reasons such as the differential privacy constraints discussed

in Section 1, have been intentionally contaminated by additive random noise.

Specifically, we assume that

Yj = Xj + σWj , j = 1, . . . , n ,

where the random functions Xj and Wj , for j = 1, . . . , n, are totally independent.

Here, Xj represents the jth function of interest, which is corrupted by a stan-
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dard Wiener process Wj with a deterministic scaling factor σ > 0. Unlike typical

measurement error problems, where contamination is due to imprecise measure-

ment or unavoidable perturbation, our data are contaminated artificially; thus,

we assume σ is known.

We assume Xj takes a value in C0,0([0, 1]); where C0,`([0, 1]) denotes the set

of `-times continuously differentiable (or just continuous when ` = 0) functions

f defined on [0, 1], such that f(0) = 0. Here, Xj has an unknown probability

measure PX on the Borel σ-field B(C0,0([0, 1])) of C0,0([0, 1]), where we equip

the space C0,0([0, 1]) with the supremum norm ‖ · ‖∞. Throughout, we use the

notation Vj = σWj , and use V , W , X, and Y to denote a generic function that

has the same distribution as Vj , Wj , Xj , and Yj , respectively. Critically here, the

functional data Xj are assumed to satisfy Xj(0) = 0. Indeed, because Wj(0) = 0,

Yj(0) = Xj(0), and if the value of Xj at zero is not masked, then individuals can

be identified from Yj(0). In practice, if the raw data do not satisfy Xj(0) = 0,

they can be pre-masked at zero before the contamination step, for example, by

replacing Xj with X̃j = Xj −Xj(0) or X̃j = Xjw, where w is a smooth function

such that w(0) = 0 and w(1) = 1.

2.2. Density of contaminated data and differential privacy

In this section, we show that Yj has a well-defined density with respect to

the scaled Wiener measure, and that this density characterizes the distribution of

Xj uniquely. Finally, we show that the contamination process ensures differential

privacy.

To ensure the existence of a density, we need the following assumption, which

we assume throughout this work.

Assumption 1. X ∈ C0,2([0, 1]) a.s.

Under Assumption 1, using Girsanov’s theorem (Girsanov (1960)), for any Borel

measurable mapping ϕ from C0,0([0, 1]) to [0, 1], we have

E{ϕ(Y )} = E{ϕ(X + σW )}

= E

{
ϕ(σW ) exp

( 1

σ

∫ 1

0
X ′(t)dW (t)

)
exp

(
− 1

2σ2

∫ 1

0
|X ′(t)|2dt

)}

= E

[
ϕ(V )E

{
exp

(
1

σ2

∫ 1

0
X ′(t)dV (t)

)
exp

(
− 1

2σ2

∫ 1

0
|X ′(t)|2dt

)∣∣∣∣∣V
}]

,

such that, by integration by parts, we have, almost surely,
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dPY
dPV

(V ) = E

[
exp

{
1

σ2

∫ 1

0
X ′(t)dV (t)− 1

2σ2

∫ 1

0
|X ′(t)|2dt

}∣∣∣∣∣V
]

=

∫
exp

{
1

σ2
x′(1)V (1)− 1

σ2

∫ 1

0
x′′(t)V (t)dt− 1

2σ2

∫ 1

0
|x′(t)|2dt

}
dPX(x) .

(2.1)

Applying the factorization lemma to this conditional expectation, we deduce

that there exists a Borel measurable mapping fY : C0,0([0, 1]) → R, such that

fY (V ) is equal to the right-hand side of (2.1), almost surely. This implies that

fY is the density of PY with respect to PV . Thus, the contaminated Yj has a

density fY . The next theorem establishes its connection with the measure of Xj .

Theorem 1. The functional density fY in (2.1) characterizes the probability

measure PX uniquely.

We deduce from this theorem that inferences about PX (e.g., goodness-of-fit tests

or classification problems; see Section 2.3) can be performed via fY . To use this

result in practice, it remains to see whether we can estimate fY nonparametrically

using the data Y1, . . . , Yn; see Section 3.

Throughout, we use the notation 〈·, ·〉 for the inner product of L2([0, 1]) and

‖ · ‖2 for the corresponding norm, and make the following assumption.

Assumption 2. For some constant CX,1 ∈ (0,∞), we have that ‖X ′‖2 ≤ CX,1,

a.s.

The following proposition shows that if the scaling factor σ is sufficiently

large, the contaminated data are privatized. For the definition of (α, β)-privacy,

refer to Hall, Rinaldo and Wasserman (2013); in our setting, this criterion means

that

P [x+ σW ∈ B] ≤ exp(α) · P [x̃+ σW ∈ B] + β , ∀B ∈ B(C0,0([0, 1])) ,

for all x, x̃ ∈ C0,2([0, 1]), with max{‖x′‖2, ‖x̃′‖2} ≤ CX,1.

Proposition 1. For any α, β > 0, choosing σ > 2CX,1
√

2 log(2/β)/α guarantees

(α, β)-privacy of the observation of Y = X + σW under Assumptions 1 and 2.

2.3. Applications

The existence of a density for contaminated data has important practical

applications. One of them is goodness-of-fit testing. Goodness-of-fit tests for

functional data have been considered in, for example, Bugni et al. (2009). In

our context, using the observed independent and identically distributed (i.i.d.)
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contaminated functional data Y1, . . . , Yn, the problem consists of testing the null

hypothesis H0 : X1 ∼ PX versus the alternative H1 : X1 6∼ PX , for some fixed

probability measure PX on B(C0,0([0, 1])). According to Theorem 1, H0 is equiv-

alent to the claim that Y1 has the functional density fY = d(PX ∗PV )/dPV . Using

the estimator f̂Y of fY introduced in Section 3, we can base a testing procedure

on

T (Y1, . . . , Yn) :=

{
1 , for

∫ ∣∣f̂Y (y)− fY (y)
∣∣2dPV (y) > ρ ,

0 , otherwise,

where ρ is a threshold parameter. In Theorem 2, we derive an upper bound

on the mean integrated squared error of our estimator f̂Y . Using the Markov

inequality, we deduce that the test can attain any given significance level α > 0

if we select ρ larger or equal to the ratio of this upper bound and α. While this

gives some insights about ρ, this upper bound does not provide a data-driven

rule for selecting ρ in practice. The latter is a difficult problem. For example, it

requires deriving the asymptotic distribution of the fully data-driven estimator.

Another possibility would be to select ρ using a bootstrap approach. However,

such a technique would require careful theoretical considerations to ensure the

validity of the bootstrap in this context. While these issues are interesting, they

go beyond the scope of this study; thus, we leave the practical choice of ρ for

future research.

Another interesting application is classification, which, in our context, can

be expressed as follows. We observe training contaminated data pairs (Yi, Ii), for

i = 1, . . . , n, where Yi = Xi + Vi, the Xi come from two distinct populations Π0

and Π1, and the class label Ii = k if Xi comes from population Πk, for k = 0, 1.

The Vi are Wiener processes independent of Xi, and are identically distributed

within each population, but the scaling noise parameter σ need not be the same

for the two populations. Using these data, the goal is to classify in Π0 or Π1 a

new random curve Y = X +V , where X comes from either Π0 or Π1, but has an

unknown class label.

It is well known in general classification problems that the optimal classi-

fier is the Bayes classifier, which, adapted to our context, assigns a curve to

Π1 if E(I|Y = y) > 1/2, and to Π0 otherwise. In the case where the prob-

ability measures PY,0 and PY,1 of the Yi that originate from Π0 and Π1, re-

spectively, have well-defined densities fY,0 and fY,1, respectively, the Bayes clas-

sifier can be expressed as follows: assign Y to Π1 if π1fY,1(Y ) > π0fY,0(Y ),

and to Π0 otherwise, where πk = P (I = k). In the particular Gaussian case,

Báıllo, Cuevas and Cuesta-Albertos (2011) showed that these densities are well
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defined and showed how to estimate them.

In our case, the Yi are, in general, not Gaussian, but they have functional

densities fY,k = dPY,k/dPV , for k = 0, 1. Because PX,0 6= PX,1 implies that

fY,0 6= fY,1 (see Theorem 1), these densities can be used to classify X from

observations on Y in the optimal Bayes classifier. In practice, we classify Y in Π1

if π1f̂Y,1(Y ) ≥ π0f̂Y,0(Y ), and in Π0 otherwise, where for k = 0, 1, f̂Y,k denotes

the estimator of fY,k from Section 3 constructed from the training data Yi, for

which Ii = k.

There exist many other classification procedures for functional data, often

based on pseudo-densities or finite-dimensional approximations. However, De-

laigle and Hall (2012) pointed that, except in the Gaussian case, such projec-

tions often do not ensure good finite-sample performance; see, for example, Hall,

Poskitt and Presnell (2001); Ferraty and Vieu (2006); Escabias, Aguilera and

Valderrama (2007); Preda, Saporta and Leveder (2007); Shin (2008). See also

Dai, Müller and Yao, (2017) for a recent example, where the authors approximate

the densities in two populations using the finite-dimensional surrogate densities

proposed in Delaigle and Hall (2010); see Delaigle and Hall (2013) for a related

classifier.

3. Methodology

In this section, we consider the problem of estimating the functional density

fY nonparametrically.

3.1. Existing methods

Several authors have examined nonparametric estimations of a density for

stochastic processes in which the probability measure has a Radon–Nikodym

derivative with respect to the Wiener measure. In Dabo-Niang (2002, 2004b), the

author proposes using a kernel density estimator; see also Prakasa Rao (2010a).

This estimator is simple, but it suffers from slow logarithmic convergence rates,

which are reflected in its practical performance. Wavelet estimators with poly-

nomial convergence rates were proposed by Prakasa Rao (2010a) and Chesneau,

Kachour and Maillot (2013), but their conditions are quite technical, and it is

not clear how their parameters can be chosen in practice. Moreover, their theory

is derived under abstract high-level conditions that might not be satisfied easily

in our context.

A simpler estimator is the orthogonal series estimator of Dabo-Niang (2004a),

defined as follows. Let {ϕj}j∈N denote an orthonormal basis of real-valued func-
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tions of [0, 1], where each ϕj ∈ L2([0, 1]), and let (Hj)j≥1 denote the scaled Her-

mite polynomials defined by Hk(x) = (−1)kφ(k)(x)/{φ(x)
√
k!}, for all integers

k ≥ 0, where φ(x) = exp(−x2/2)/
√

2π. In addition, for x ∈ C0([0, 1]), let

β′x,` =

∫ 1

0
ϕ`(t)dx(t) . (3.1)

Using the results from Cameron and Martin (1947), as K → ∞, the Fourier–

Hermite series (Ψk1,...,kK )0≤k1≤K,...,0≤kK≤K , where, for x ∈ C0([0, 1]),

Ψk1,...,kK (x) ≡ Hk1,...,kK (β′x,1, . . . , β
′
x,K) ≡

K∏
`=1

Hk`(β
′
x,`) , (3.2)

forms an orthonormal basis of the Hilbert space of all square-integrable C0([0, 1])-

valued random variables with respect to the Wiener measure. Motivated by this,

the author proposes to estimate the Wiener density fT of the functional data

T1, . . . , Tn (that have a Wiener density) as

f̂KT (x) =

K∑
k1,...,kK=0

1

n

n∑
j=1

Hk1,...,kK (β′Tj ,1, . . . , β
′
Tj ,K) ·Hk1,...,kK (β′x,1, . . . , β

′
x,K) ,

(3.3)

where K is a smoothing parameter. This estimator is attractive for its simplicity,

but has the drawback that the rates derived by Dabo-Niang (2004a) are logarith-

mic. In the next two sections, we use a two-stage approximation approach (first

a sieve approximation of fY , followed by an estimator of the approximation) to

introduce a different regularization scheme that involves two parameters. This

increases the flexibility of the estimator, which, as we shall see, enables us to

obtain polynomial convergence rates. Moreover we provide data-driven choices

of the basis and the threshold parameters.

3.2. Finite-dimensional approximation of fY

Recall from (2.1) that for V = σW with W a standard Wiener process, we

have

fY (V ) = E

[
exp

{
1

σ2

∫ 1

0
X ′(t)dV (t)− 1

2σ2

∫ 1

0
|X ′(t)|2dt

}∣∣∣∣∣V
]
, a.s. ,

and that our goal is to estimate fY from the data Y1, . . . , Yn. Instead of directly

expressing fY in the Fourier–Hermite basis in (3.2), we first construct a sieve

approximation of fY . Then, we express our sieve approximation in the Fourier–
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Hermite basis (see Section 3.3).

Using the notation β′x,` =
∫ 1
0 ϕ`(t)dx(t) from Equation (3.1), where {ϕj}j∈N

is a real-valued orthonormal basis of L2([0, 1]), we can write∫ 1

0
X ′(t) dV (t)− 1

2

∫ 1

0
|X ′(t)|2 dt =

∞∑
j=1

β′X,j · β′V,j −
1

2

∞∑
j=1

β′X,j
2
,

where the infinite sums should be understood as mean squared limits. Trun-

cating the sums to m terms, with m ≥ 1 an integer, this suggests that we can

approximate fY (V ) by f
[m]
Y (β′V,1, . . . , β

′
V,m), where, for all s1, . . . , sm ∈ R,

f
[m]
Y (s1, . . . , sm) = E

{
exp

(
1

σ2

m∑
j=1

β′X,j · sj −
1

2σ2

m∑
j=1

β′X,j
2

)}

= exp

(
1

2σ2

m∑
j=1

s2j

)∫
exp

{
− 1

2σ2

m∑
j=1

(
sj − xj

)2}
dPX,m(x1, . . . , xm) , (3.4)

and PX,m denotes the measure of (β′X,1, . . . , β
′
X,m).

The following lemma shows that, as long as m is sufficiently large,

f
[m]
Y (β′V,1, . . . , β

′
V,m) is a good approximation to fY (V ), where V denotes a generic

Vi ∼ PV .

Lemma 1. Let Am denote the σ-field generated by β′V1,1
, . . . , β′V1,m

. Under As-

sumptions 1 and 2,

(a) f
[m]
Y (β′V1,1

, . . . , β′V1,m
) = E{fY (V1)|Am} a.s.

(b) we have

E
∣∣f [m]
Y (β′V1,1, . . . , β

′
V1,m)− fY (V1)

∣∣2
≤ 1

σ2
· exp

(
C2
X,1

σ2

)
·

( ∑
j,j′>m

∣∣〈ϕj ,ΓXϕj′〉∣∣2)1/2

,

where the linear operator ΓX : L2([0, 1])→ L2([0, 1]) is defined by

(
ΓXf

)
(t) = E

{
X ′(t)

∫ 1

0
X ′(s)f(s) ds

}
, t ∈ [0, 1], f ∈ L2([0, 1]) .

Because ΓX is a self-adjoint and positive-semidefinite Hilbert–Schmidt opera-

tor, the upper bound in Lemma 1(b) is finite for any orthonormal basis {ϕj}j
of L2([0, 1]), and converges to zero as m → ∞. Indeed, Assumption 2 guaran-
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tees that
∑

j,j′

∣∣〈ϕj ,ΓXϕj′〉∣∣2 ≤ E‖X ′1‖42 ≤ C4
X,1 < ∞. If X (and hence X ′) is

centered, then ΓX coincides with the covariance operator of X ′.

3.3. Estimating the sieve approximation of fY

Next, we estimate f
[m]
Y using a Fourier–Hermite series. For this, let PY,m and

fY,m denote, respectively, the measure and the m-dimensional Lebesgue density

of the observed random vector (β′Yj ,1, . . . , β
′
Yj ,m

), where

β′Yj ,k =

∫ 1

0
ϕk(t) dYj(t) = β′Xj ,k + β′Vj ,k , j = 1, . . . , n; k = 1, . . . ,m .

Let gσ denote the N(0, σ2Im)-density, with Im the m × m-identity matrix, let

L2,gσ(Rm) denote the Hilbert space of Borel measurable functions f : Rm → R
that satisfy ‖f‖2gσ ≡

∫
|f(t)|2gσ(t)dt < ∞, and let 〈·, ·〉gσ denote the inner

product of L2,gσ(Rm).

It is easy to deduce from (3.4) that

f
[m]
Y (s1, . . . , sm) =

fY,m(s1, . . . , sm)

gσ(s1, . . . , sm)
, (3.5)

and it can be proved that f
[m]
Y ∈ L2,gσ(Rm). Therefore, if Ψ1,Ψ2, . . . is an or-

thonormal basis of L2,gσ(Rm), we can write

f
[m]
Y =

∞∑
k=1

αk Ψk,

αk = 〈Ψk, f
[m]
Y 〉gσ =

∫
Ψk(y)fY,m(y) dy = E{Ψk(β

′
Y,1, . . . , β

′
Y,m)} .

Now, the sequence (Hk1,...,km)k1,...,km≥0 of functions Hk1,...,km(x1, . . . , xm) =
∏m
j=1

Hkj (xj) defined in (3.2) forms an orthonormal basis of L2,g1(Rm). Thus, we

can take Ψk(·) = Hk1,...,km(·/σ). To estimate f
[m]
Y , we replace αk with α̂k =

n−1
∑n

j=1 Ψk(β
′
Yj ,1

, . . . , β′Yj ,m).

Finally, for U a functional random variable independent of Y1, . . . , Yn that

has a density with respect to PV , we define our estimator of fY (U) as

f̂
[m,K]
Y (U)

=
∑

k1,...,km≥0

1

n

n∑
j=1

Hk1,...,km

(
β′Yj ,1

σ
, . . . ,

β′Yj ,m

σ

)
Hk1,...,km

(
β′U,1
σ
, . . . ,

β′U,m
σ

)
× ωK(k1 + · · ·+ km) 1{k1 + · · ·+ km ≤ K} , (3.6)
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where K ≥ 0 is a truncation parameter, and 0 ≤ ωK(x) ≤ 1 is a continuous

function defined on [0,K]. The term ωK(k1 + · · · + km) 1{k1 + · · · + km ≤ K}
prevents ki from being too large, which controls the variability of the estimator.

Using wavelet terminology, the function ωK dictates whether ki is chosen using

a soft or a hard rule. Specifically, a hard rule corresponds to ωK ≡ 1: here, all ki
summing to at most K are given equal weights, and as K increases, new indices

appear and play as big a role as older ones do. For a soft rule, ωK(x) is taken to

be a smooth decreasing function of x, for example, ωK(x) = 1−x/(K + 1); as K

increases, new indices start playing a role, but have less weight than the former

ones.

A major difference between (3.6) and Dabo-Niang (2004a) estimator in (3.3)

is our regularization scheme: because of the two-step construction of our estima-

tor (a sieve approximation followed by a basis expansion), we do not use all of the

indices (k1, . . . , kK) ∈ {0, . . . ,K}K . Instead, we use (k1, . . . , km) ∈ {0, . . . ,K}m,

such that k1 + · · ·+ km ≤ K, and we assign a weight ωK(k1 + · · ·+ km) to each

group of m indices. As shown in the next sections, our use of a second parameter

m and the restriction we put on k1 + · · ·+ km drastically improve the quality of

the estimator, both theoretically and practically. Moreover, in Section 3.4, we

introduce a data-driven way of choosing the basis {ϕj}j∈N used to construct the

coefficients β′Yj ,k and β′U,k.

3.4. Choosing ϕj

To compute our estimator in practice, we need to choose the basis {ϕj}j used

in (3.1). Lemma 1(b) implies that if we take ϕj equal to the eigenfunctions of

ΓX , ordered such that the sequence of corresponding eigenvalues (λj)j decreases

monotonically, then

E
∣∣f [m]
Y (β′V1,1, . . . , β

′
V1,m)− fY (V1)

∣∣2 ≤ 1

σ2
· exp

(
C2
X,1

σ2

)
·

(∑
j>m

λ2j

)1/2

.

This bound decreases monotonically as m increases, indicating that the first m

terms of the basis capture some of the main characteristics of fY .

Of course, in practice, ΓX is unknown, and thus ϕj is unknown. Therefore, we

need to estimate ΓX , but a priori, this does not seem to be an easy task because,

up to some mean terms, ΓX is the covariance function of the first derivative X ′ of

X. If we could observe X ′1, . . . , X
′
n, we could use standard covariance estimation

techniques, such as those of Hall and Hosseini-Nasab (2006); Mas and Ruymgaart

(2015); Jirak (2016). However, we observe only the contaminated Yj . If Yj were
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differentiable, we could take its derivative and estimate ΓX and its eigenfunctions,

as in the references just cited. However, it is not differentiable, and we cannot

take such a simple approach.

Instead, we propose the following approximation procedure. Let {ψj}j denote

an orthonormal basis of L2([0, 1]), and recall that ϕ` denotes the eigenfunction

of ΓX with eigenvalue λ`, where λ1 ≥ λ2 ≥ · · · . In the Supplementary Material,

we show that, for all k ≥ 1,

∞∑
j=1

ϕ`,j 〈ψk,ΓXψj〉 = λ` ϕ`,k , (3.7)

where ϕ`,j = 〈ϕ`, ψj〉. If we take ψj as continuously differentiable such that

ψj(0) = ψj(1) = 0, for example, if {ψj}j is the Fourier sine basis, then for

j, k = 1, 2, . . ., we have

〈ψk,ΓXψj〉 =Mj,k − σ2 · 1{j = k} , (3.8)

where Mj,k =
∫ 1
0 ψ
′
j(t)

∫ 1
0 E

{
Y (t)Y (s)

}
ψ′k(s) ds dt (see the proof in the Supple-

mentary Material). We propose approximating ϕ` using
∑M

j=1 ϕ̂`,jψj , with M a

large positive integer, where ϕ̂`,j denotes an estimator of ϕ`,j . Next, we show

how to compute ϕ̂`,1, . . . , ϕ̂`,M from our data. First, combining (3.7) and (3.8),

we have
∑∞

j=1 ϕ`,j
(
Mj,k − σ2 · 1{j = k}

)
= λ` ϕ`,k, such that

M∑
j=1

ϕ`,j
(
Mj,k − σ2 · 1{j = k}

)
= λ` ϕ`,k +Rk,` , (3.9)

where Rk,` is a remainder term resulting from the truncation of the sum to M

terms. Let IM and M denote the M × M -identity matrix and the M × M -

matrix with components defined by Mj,k, for j, k = 1, . . . ,M , respectively, and

let Φ` = (ϕ`,1, . . . , ϕ`,M )T and R` = (R1,`, . . . , RM,`)
T . Then, (3.9) implies that

(M− σ2IM )Φ` = λΦ` +R`.

Note that |R`| shrinks to zero as M →∞ because |R`|2 ≤ C4
X,1

∑
j>M |ϕ`,j |2.

Thus,
(
M− σ2IM )Φ` ≈ λ`Φ`, which motivates us to approximate Φ` using the

unit eigenvector v` of the matrix M − σ2IM correponding to the `th largest

eigenvalue. Now,
(
M− σ2IM )v` = λ`v` implies that Mv` = (λ` + σ2)v`. Thus,

v` is also the eigenvector of M corresponding to its `th largest eigenvalue. Of

course, M is unknown, but it can be estimated as

M̂ =
1

n

n∑
`=1

{∫ 1

0

∫ 1

0
ψ′j(t)Y`(t)Y`(s)ψ

′
k(s)ds dt

}
j,k=1,...,M

.
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For ` = 1, . . . ,M , let v̂` denote the M unit eigenvectors of M̂ (ordered so that

the corresponding eigenvalues decrease monotonically). We propose estimating

Φ` as Φ̂` = (ϕ̂`,1, . . . , ϕ̂`,M )T = v̂`. Finally, we estimate ϕ` as ϕ̂` =
∑M

j=1 ϕ̂`,j ψj .

3.5. Choosing the parameters M , m, and K

To compute the estimator in (3.6) in practice, we need to choose three pa-

rameters: M , the parameter used in Section 3.4 to construct the basis functions

ϕj employed to compute the projections in (3.1); m, which dictates the dimension

of our approximation of fY using f
[m]
Y in (3.4); and K, the truncation parameter

of our orthogonal series expansion in (3.6). Having ϕ̂j close to the eigenfunctions

of ΓX is likely to give better practical performance, but it is not necessary for the

consistency of our estimator. This suggests that the choice of M is not crucial,

and we take M = 20. In contrast, m and K are important smoothing parameters

that influence consistency, and need to be chosen with care. We suggest choosing

(m,K) by minimizing the cross-validation (CV) criterion

CV(m,K) =

∫ ∣∣f̂Y (v)
∣∣2dPV (v)− 2

n

n∑
i=1

f̂
(−i)
Y (Yi) , (3.10)

with f̂
(−i)
Y defined in the same way as in the estimator in (3.6), except that it

uses only the data Y1, . . . , Yi−1, Yi+1, . . . , Yn. To compute the integral at (3.10),

we generate a large sample (10,000, in our numerical work) of Vj from PV , and

approximate the integral using the mean of |f̂Y (Vj)|2.
As in standard nonparametric density estimation problems, our CV criterion

can have multiple local minima, and the global minimum is not necessarily a good

choice. In the case of multiple local minima, we choose the one that produces

the smallest value of m+K. Moreover, when minimizing CV (K,m), we discard

all pairs of values (K,m) for which more than 50% of f̂
(−i)
Y or f̂Y are negative.

For the (K,m) that remain, we replace each negative f̂
(−i)
Y (Yi) and f̂Y (Vj) by

recomputing these estimators. To do so, we repeatedly replace K with K−1 and

m with m− 1 until the negative estimators become positive.

4. Theoretical Properties

In this section, we derive the theoretical properties of our estimator. For

simplicity, we derive our results in the case where the weight function ωK in (3.6)

is equal to one. Similar results can be established for a more general weight

function, but at the expense of more technical proofs. In Section 4.1, we derive
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an upper bound on the mean integrated squared error of our estimator that is

valid for all n. Next, in Section 4.2, we derive the asymptotic properties of our

estimator.

4.1. Finite-sample properties

In the next theorem, we give an upper bound on the mean integrated squared

error,

R(f̂
[m,K]
Y , fY ) = E

∫ ∣∣f̂ [m,K]
Y (v)− fY (v)

∣∣2dPV (v),

of the estimator in (3.6) when the orthonormal basis {ϕj}j and the parameters

m and K are deterministic. Our result is nonasymptotic and is valid for all n.

Theorem 2. Under Assumptions 1 and 2 and the selection ωK ≡ 1, we have

R(f̂
[m,K]
Y , fY ) ≤ V + B +D, where

V =
1

n
exp

(
KC2

X,1

σ2

)
·
(
K +m

K

)
, B = inf

h∈Hm,K

∥∥f [m]
Y (σ·)− h

∥∥2
g1
,

D =
1

σ2
· exp

(
C2
X,1

σ2

)
·

( ∑
j,j′>m

∣∣〈ϕj ,ΓXϕj′〉∣∣2)1/2

,

and Hm,K denotes the linear hull of Hk1,...,km for which k1 + · · ·+ km ≤ K.

In Theorem 2, V represents a variance term, and B represents a bias term that

depends on the smoothness properties of f
[m]
Y . Both are typical of nonparametric

estimators, but the term D is of a different type. It reflects the error of the

finite-dimensional approximation of the density fY using the function f
[m]
Y .

4.2. Asymptotic properties

Next, we derive the asymptotic properties of our density estimator. For this,

we need an additional assumption, which we use when dealing with the term D
from Theorem 2:

Assumption 3. There exist constants CX,2, CX,3 ∈ (0,∞) and γ > 0, such that

∑
j,j′>m

∣∣∣ ∫ 1

0
ϕj(s)

(
ΓXϕj′

)
(s)ds

∣∣∣2 ≤ CX,2 · exp
(
− CX,3mγ

)
, ∀m ∈ N .

For example, ifX1 is centered and {ϕj}j is the principal component basis with

eigenvalues λ1 ≥ λ2 ≥ · · · discussed in Section 3.4, then Assumption 3 is satisfied

as soon as
∑∞

j=1 exp(C ′X,3j
γ) · λ2j < ∞, for some C ′X,3 > CX,3. In this case,
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Assumption 3 can be interpreted as an exponential decay of the eigenvalues of

ΓX ; specifically, Assumption 3 is satisfied if there exist some C ′′X,3 > C ′X,3 > CX,3
and some C ′′′X,3 > 0 such that λj ≤ C ′′′X,3 exp(−C ′′X,3jγ/2), for all integer j ≥ 1.

The next theorem establishes an upper bound on the convergence rates of

the mean integrated squared error of our estimator f̂
[m,K]
Y as the sample size n

tends to infinity. We establish the upper bound uniformly over the class FX =

FX
(
CX,1, CX,2, CX,3, γ, {ϕj}j

)
of all admitted image measures of X1, such that

Assumptions 1 to 3 are satisfied for some deterministic orthonormal basis {ϕj}j
of L2([0, 1]). The next three theorems consider functions in this class, which

implies that they are derived under Assumptions 1 to 3.

Theorem 3. Assume that γ ∈ (0, 1), and select the weight function ωK ≡ 1 and

the parameters K and m, such that K = Kn = bγ(log n)/ log(log n)c, m = mn =

b
(
CM · log n

)1/γc, for some finite constant CM > 2/CX,3. Then, our estimator

f̂ [m,K] satisfies

lim sup
n→∞

sup
PX∈FX

log
{
R
(
f̂
[m,K]
Y , fY

)}
log n

≤ −γ .

Theorem 3 shows that the risk of our estimator converges to zero faster than

O(n−γ
′
), for any γ′ < γ < 1. In particular, our estimator achieves polyno-

mial convergence rates, which is usually impossible in problems of nonparametric

functional regression or density estimation. In standard problems of that type,

where the data range over an infinite-dimensional space, only logarithmic or sub-

algebraic rates can usually be achieved (e.g., Mas (2012); Chagny and Roche

(2014); Meister (2016)). In our case, the dimension of the data is infinite as well;

however, the density fY forms an infinite-dimensional Gaussian mixture, and its

smoothness degree is sufficiently high to overcome the difficulty caused by the

high dimensionality.

The next theorem provides an asymptotic lower bound for the problem of

estimating fY nonparametrically. For simplicity, we restrict this to the case where

CX,1 = 1.

Theorem 4. Assume that γ ∈ (0, 1), and let CX,1 = 1 in Assumption 2. More-

over, assume that the orthonormal basis {ϕj}j of L2([0, 1]) is such that all ϕj
are continuously differentiable. Then, for any sequence (f̂n)n of estimators of fY
computed from the data Y1, . . . , Yn, we have

lim inf
n→∞

sup
PX∈FX

log
{
R
(
f̂n, fY

)}
log n

≥ −γ +
(γ − 1)2

(γ − 2)
.

We learn from the theorem that, in this problem, no nonparametric estimator
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can reach the parametric squared convergence rate n−1. This is significantly dif-

ferent from the simpler problem of nonparametric estimation of one-dimensional

Gaussian mixtures, where the parametric rates are achievable up to a logarith-

mic factor (see Kim (2014)). Note that the upper bound in Theorem 3 is usually

larger than the lower bound in Theorem 4, although the two bounds are very

close to each other for γ close to one. Rather than our estimator being subop-

timal, we suspect that our lower bound is not sufficiently sharp. Deriving the

exact minimax rates seems a very challenging problem, and thus is left to future

research.

As is standard in nonparametric estimation problems requiring the choice

of smoothing parameters, Theorem 3 is derived under deterministic choices of m

and K. Next, using CV, we establish an asymptotic result when (m̂, K̂) is chosen

using CV as in (3.10), where the minimization is performed over the mesh

G =
{
blog nc, . . . , b(log n)1/γ0c

}
×
{

1, . . . ,

⌊
(log n)

log(log n)

⌋}
, (4.1)

for some constant γ0 ∈ (0, γ). The following theorem shows that the convergence

rates from Theorem 3 can be maintained, at least in a weak sense.

Theorem 5. Our estimator f̂
[m̂,K̂]
Y , where ωK ≡ 1 and (m̂, K̂) is selected using

CV over the mesh G in (4.1), satisfies

lim
n→∞

sup
PX∈FX

P

{
nγ
∫ ∣∣f̂ [m̂,K̂]

Y (x)− fY (x)
∣∣2dPV (x) ≥ nd

}
= 0 ,

for all γ ∈ [γ0, 1) and d > 0.

5. Simulation Results

To illustrate the performance of our density estimation procedure, we per-

formed simulations in different settings. For a grid of T = 101 points 0 =

t0 < t1 < · · · < tT = 1 equispaced by ∆t = 1/(T − 1), we generated data

Yi(tk) =
∑J

j=1

√
λjZik φj(tk) + σWi(tk), where Zik is i.i.d., each Zik is the aver-

age of the two independent U [−0.1, 0.1] random variables, Wi(t0) = 0, and, for

k = 1, . . . , T , Wi(tk) = Wi(tk−1) + εik, where εik is i.i.d. ∼ N(0,∆t). We consid-

ered five settings: (i) J = 20, σ = 0.1, λj = exp(−j), and φj(t) =
√

2 sin(πtj);

(ii) as in (i), but with J = 40; (iii) as in (ii), but with σ = 0.075; (iv) as in (i), but

with σ = 0.075, φj(t) =
√

2 cos(πtj)κ(t), κ(t) = 2 exp(10t)/{1 + exp(10t)} − 1;

(v) as in (i), but with σ = 0.075, φj(t) =
√

2 sin(πtj)κ(t).

In each case, we generated B = 200 samples of Yi(tk) of sizes n = 500,
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Table 1. Simulation results for density estimation: 104× median [first quartile, second
quartile] of 2× 106 values of the SE.

Model Method n = 500 n = 1,000 n = 2,000 n = 5,000

(i) DM 635[145, 2,242] 492[120, 1,660] 395[103, 1,252] 316[ 86, 953]

DN 891[171, 4,122] 800[166, 3,439] 664[125, 2,970] 527[100, 2,271]

(ii) DM 683[152, 2,427] 506[123, 1,732] 409[108, 1,293] 343[ 94, 1,051]

DN 911[179, 4,133] 823[168, 3,568] 659[124, 2,990] 544[101, 2,420]

(iii) DM 1,134[237, 4,538] 898[188, 3,529] 813[175, 3,237] 784[165, 3,197]

DN 1,375[209, 8,046] 1,200[186, 7,325] 1,081[174, 6,611] 1,025[177, 5,574]

(iv) DM 908[194, 3,788] 801[172, 3,158] 744[154, 3,135] 590[124, 2,399]

DN 1,468[232, 8,351] 1,151[183, 6,878] 1,097[190, 6,514] 1,052[196, 5,460]

(v) DM 849[187, 3,287] 751[163, 2,812] 654[143, 2,500] 565[122, 2,273]

DN 1,097[170, 6,389] 1,024[172, 5,817] 914[160, 5,133] 865[160, 4,309]

Table 2. Average computational time (in seconds) to compute one density estimator
(including the CV choice of smoothing parameters).

Model Method n = 500 n = 1,000 n = 2,000 n = 5,000

(i) DM 94 114 130 198

DN 42 46 54 77

(ii) DM 95 113 135 200

DN 49 55 68 96

(iii) DM 102 116 138 218

DN 50 53 71 97

(iv) DM 104 110 127 191

DN 46 47 59 82

(v) DM 91 130 125 182

DN 41 47 65 100

1000, 2000 and 5000. Then, for b = 1, . . . , B, using the bth sample of Yi(tk), we

computed our density estimator f̂
[m,K]
Y (V ) in (3.6) for 104 functions V generated

from the same distribution as σW , where m and K were chosen using CV by

minimizing (3.10), and where we took the weight function ωK(x) = 1−x/(K+1).

The basis functions ϕj were computed as in Section 3.4, with M = 20 and

ψj(t) =
√

2 sin(πtj); we denote by DM the resulting estimator. Each time the

m and K selected using CV produced a negative estimator f̂Y (v) for a new data

curve v, we repeatedly replaced, K with K − 1 and m with m − 1 for the new

curve until the resulting value of (m,K) was such that f̂Y (v) > 0.

In each case, we also computed the estimator of Dabo-Niang (2004a) with
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our adaptive basis of ϕj , which we denote by DN. We chose K by minimizing the

CV criterion in (3.10), replacing our estimator with this estimator and (m,K)

with K. As for our estimator, each time the selected value of K produced a

negative estimator for a new curve v, for that curve v, we replaced K with the

largest value smaller or equal to K that produced a positive estimator.

We also considered the kernel density estimator of Dabo-Niang (2004b),

which requires choosing a bandwidth. We considered several versions of CV

and a nearest-neighbour bandwidth version of the estimator. However, we en-

countered major numerical issues with denominators getting too close to zero,

and did not manage to obtain reasonable results. Therefore, we do not consider

this estimator in our numerical work.

The results of our simulations are summarized in Table 1, where, for each

case and each sample size n, we present 104 times the median and the first and

third quartiles of the squared error SE = {f̂Y (V ) − fY (V )}2 computed for the

200× 104 V values. As expected by the theory, both estimators improved as the

sample size increased and, overall, our estimator significantly outperformed that

of Dabo-Niang (2004a). In Table 2, for our estimator and that of Dabo-Niang

(2004a), we also show the average time (in seconds and averaged over 10 simulated

examples) required to compute one density estimator and its associated data-

driven smoothing parameters on a Windows computer with Intel Xeon processor

E5-2643 v4 and 32 GB memory. Recall that our estimator requires choosing two

smoothing parameters m and K using CV, whereas that of Dabo-Niang (2004a)

requires choosing one smoothing parameter K. It is unsurprising then that our

estimator requires a longer computational time: this is the price for the additional

accuracy brought by choosing, in a data-driven way, two parameters instead of

one.

Supplementary Material

The online Supplementary Material provides side results and all proofs.
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