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NEW WAVELET SURE THRESHOLDS OF ELLIPTICAL

DISTRIBUTIONS UNDER THE BALANCE LOSS
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Abstract: In this paper, we introduce a new shrinkage soft-wavelet threshold esti-

mator based on Stein’s unbiased risk estimate (SURE) for elliptical and spherical

distributions under balanced loss functions. we focus on particular thresholding

rules to obtain a new threshold, and thus produce new estimators. In addition, we

obtain SURE shrinkage based on nonnegative subset of the mean vector. Finally,

we present a simulation to test the validity of the proposed estimator.
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1. Introduction

Mean vector (location) parameter estimation is an important problem in the

context of point estimation. In a point estimation, we want an estimator that

minimizes the risk function for all possible parameter values. However, this is

not possible in practice, given the size of the class of estimators. To evaluate

the performance of an estimator, we need to set a measure. Location vector

parameter estimation is can be performed using a variety of loss functions, one

of which is the balanced loss function. In this study, we use the balanced loss

function in the following two ways.

Definition 1. Suppose that X is a random vector with mean vector parameter θ

and scalar variational component Σ. The balanced error loss function, BEL(δ0),

is defined as

Lω,δ0(θ, δ) = ω (δ − δ0)T Σ−1 (δ − δ0) + (1− ω) (δ − θ)T Σ−1 (δ − θ) , (1.1)

where 0 ≤ ω < 1, δ0 is a target estimator, and Σ is symmetric nonsingular scale

matrix.

As a special case, suppose that X is a random vector with mean vector

parameter θ and scalar variational component σ2 (i.e., Σ = σ2Ip in Definition 1).
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Then, the balanced error loss function is as follows:

Lω,δ0(θ, δ) = ω
‖δ − δ0‖2

σ2
+ (1− ω)

‖δ − θ‖2

σ2
, 0 ≤ ω < 1. (1.2)

The corresponding risk is the expectation with respect to the loss function. Then,

the associated risk function with respect to (1.2) is R(θ, δ) = Eθ [L(θ, δ)]. A

special case of the balanced error loss function is the weighted quadratic loss when

ω = 0. The balanced loss function was introduced by Zellner (1994) to reflect

two criteria: goodness of fit and precision of estimation. For further information

on the use of this loss, refer to Jafari Jozani, Marchand and Parsian (2006), Cao

and He (2017) and Karamikabir, Afshari and Arashi (2018).

Shrinking and truncating either the data directly or the coefficients in their

Fourier series expansions is an popular technique in signal processing. For non-

local bases, such as the trigonometric bases, shrinking the coefficients can affect

the global shape of the reconstructed function and introduce unwanted artifacts.

In the context of function estimation using wavelets, the shrinkage has an addi-

tional feature; it is related to smoothing (denoising), because the measure the of

smoothness of a function depends on the magnitudes of its wavelet coefficients

(Vidakovic (2009)).

Shrinkage estimation improved a raw estimator, in some sense, by combining

it with other information. Although the shrinkage estimator is biased, it is well

known that it has a minimum quadratic risk compared to natural estimators

(mostly, the maximum likelihood estimator). The general form of the shrinkage

estimator is X+g(X). The shrinkage is usually performed by decreasing X using

g(X). Although in everyday life the notion of shrinkage may carry a negative

connotation, it is not so in the domain of statistical estimation. Many good

estimators are some sort of shrinkage estimators. For example, most Bayesian,

minimax, and Gamma-minimax estimators are shrinkage estimators.

Donoho and Johnstone (1995) developed a technique for selecting a thresh-

old by minimizing Stein’s unbiased risk estimator (SURE) (Stein (1981)). This

threshold is implemented in an adaptive denoising procedure, SureShrink. The

adaptation in SureShrink is achieved by specifying thresholds in a level-wise man-

ner.

One way to find an estimator for the parameter vector is to use the shrink-

age wavelet method. Hard thresholding and soft-thresholding are two examples

of shrinkages. The soft-thresholding wavelet shrinkage estimator of Antoniadis

(2007) is given by the following:
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δsoftλ (Xi) = (Xi − sign(Xi)λ)I(|Xi| > λ) =


Xi + λ, Xi < −λ,
0, |Xi| ≤ λ,
Xi − λ, Xi > λ,

where I(·) is an indicator function. Suppose that X = (X1, X2, . . . , Xp). In this

case, the δsoftλ (X) estimator can be written as

δsoftλ (X) = X + g(X), (1.3)

where g(X) = (g(X1), g(X2), . . . , g(Xp)), and g(Xi) is defined as

g(Xi) =


λ, Xi < −λ,
−Xi, |Xi| ≤ λ,
−λ, Xi > λ.

(1.4)

Thus far, we have considered using different types of thresholds as shrinkage

wavelets, such as the universal λU =
√

2 log p (p is the dim of the parameter

vector), percentile (Mallat (1989)), cross-validation (CV) (Nason (1996)), false-

discovery-rate (Benjamini and Hochberg (1995)), Lorentz (Lorentz (1905)), and

block thresholds (Cai and Silverman (2001)), as well as the SURE (Donoho and

Johnstone (1995)).

In this study, we generalize the result of Donoho and Johnstone (1995) for

SURE thresholds with changes in the class of family distributions and the loss

function. For this purpose, we derive new estimators for the location parame-

ter of the multivariate normal, elliptical, or spherically symmetric distribution

in classes of shrinkage estimators that are well behaved under a balanced error

loss. These results generalize those of Donoho and Johnstone (1995), Fourdrinier

and Ouassou (2000), Fourdrinier, Ouassou and Strawderman (2003), and Four-

drinier and Strawderman (2015) on the shrinkage wavelet approach. We derive

estimates of the risk using Stein’s lemma of the risk of those estimators. Fur-

thermore, we derive expressions for the optimal λ under the SURE in the multi-

variate normal, spherically symmetric, and elliptical cases. In addition, we find

the SURE shrinkage in the restricted parameter space. Here, we generalize pre-

vious works by Fourdrinier, Ouassou and Strawderman (2003) and Karamikabir,

Afshari and Arashi (2018) on the shrinkage wavelet approach. In this respect,

Chang and Strawderman (2017) studied a shrinkage estimation of p positive nor-

mal means under the sum of the squared error loss. More, recently Afshari, Lak

and Gholizadeh (2017), Krebs (2018) and Karamikabir and Afshari (2019) ap-
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plied wavelets for multivariate distributions. For more information refer to Van

Eeden (2006) and Karamikabir, Afshari and Arashi (2018), among others.

Shrinkage wavelets have many applications in statistical estimation, some of

which lie on the boundaries between disciplines. For instance, recent applications

of wavelets to shape analysis are bridging statistical modeling, statistical theory

of shapes, computational geometry, and image processing; see Vidakovic (2009).

Parameter estimation is important in statistical inference, especially when

the goal is to estimate the parameter vector in a multivariate distribution. A

well-known class of multivariate distributions is that of elliptical distributions.

Definition 2. The p × 1 random vector X = (X1, . . . , Xp)
T is said to have an

elliptical distribution, denoted by Ep(θ,Σ, ψ), with p× 1 vector location param-

eters θ, p × p scale matrix Σ, and the characteristic generator ψ, if its density

function is of the form

Cm|Σ|−1/2f
(
(X − θ)TΣ−1(X − θ)

)
,

where Cm is a normalizing constant. Its characteristic function satisfies

φ(t) = E(eit
TX) = eit

T θψ
(
tTΣt

)
.

Examples of elliptical distributions include the multivariate normal distri-

bution Np(θ,Σ), multi-uniform distribution, multivariate Pearson type-II and

type-V II distributions, multivariate Laplace distribution, generalized slash dis-

tribution, multivariate Cauchy distribution, multivariate Bessel distribution, mul-

tivariate exponential power distribution, and multivariate Kotz distribution.

A p × 1 random vector X is said to have a spherically symmetric distribu-

tion (or simply a spherical distribution) if X and ΛX have the same distribution

for all p × p orthogonal matrices Λ. The elliptical family are spherically sym-

metric distributions with diagonal scale parameter σ2Ip, and are represented as

SS(θ, σ2Ip, ψ), where Ip is the identity matrix. Examples of spherical distribu-

tions include the multivariate normal distribution Np(0, σ
2Ip), “ε-contaminated”

normal distribution, multivariate t distribution, and scale mixture of multivariate

normal distributions.

Donoho and Johnstone (1995) found the SURE threshold in a multivariate

normal distribution Np(θ, Ip). However, thus far, no one has investigated the

SURE threshold for the spherical and elliptical distributions. There has also

been no research on the restricted parameter space. In this study, we attempt to

generalize this topics.

The reminder of the paper process as follows. In Section 2, we find a thresh-
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old based on the SURE under a balanced loss function in the class of elliptical

and spherical distributions. In Section 3, we discuss the SURE shrinkage in the

restricted parameter space, and in Section 4 the numerical performance of the

proposed estimator using a simulation study. Section 5 concludes the paper.

2. A Threshold Based on the SURE

In this section, we first review the method of Donoho and Johnstone (1995)

for finding the SURE threshold in a multivariate normal distribution Np(θ, Ip).

In the next step, we generalize the multivariate distribution and the loss func-

tion of the previous stage. In this way, instead of a multivariate normal distri-

bution Np(θ, Ip), we consider a multivariate normal distribution with a diago-

nal scale matrix σ2Ip, that is, Np(θ, σ
2Ip), a spherically symmetric distribution

SS(θ, σ2Ip, ψ), and an elliptical distribution Ep(θ,Σ, ψ). In all three cases, in-

stead of a general quadratic loss function we consider a balanced loss function.

Lemma 1. (Stein (1981)) Suppose that X ∼ Np(θ, σ
2Ip), with known σ2. Then

Eθ[(X − θ)T g(X)] = σ2E[∇ · g(X)],

where g : Rp → Rp is a function for which the two expectations Eθ[(X−θ)T g(X)]

and E[∇ · g(X)] both exist, and ∇ · g(X) is the divergence operator with respect

to the variable X:

∇ · g(X) =

p∑
i=1

∂

∂Xi
gi(X).

Donoho and Johnstone (1995) developed a technique for selecting a threshold

by minimizing the SURE. This threshold is implemented in an adaptive denoising

procedure, called SureShrink. The adaptation in SureShrink is achieved by using

a level-wise specification. Specifically, suppose that θ = (θ1, . . . , θp)
T and Xi ∼

N(θi, 1), for i = 1, . . . , p. Let δ(X) be an estimator of θ. If the function g =

{gi}pi=1 in the shrinkage estimator representation δ(X) = X + g(X) is weakly

differentiable (i.e., if there exists a function qθ(x) such that ∂/∂θEθ[δ(X)] =

E[δ(q(X))]), then under the quadratic loss function L(θ, δ) = ‖δ(X) − θ‖2, by

Lemma 1, we have the following expectation:

R(θ, δ(X)) = Eθ
(
‖δ(X)− θ‖2

)
= p+ Eθ

(
‖g(X)‖2

)
+ Eθ (2∇ · g(X)) . (2.1)

We consider the soft-threshold shrinkage estimator δsoftλ (X) = X+g(X) in (1.3),

where g(X) is given in (1.4). We need the following useful equations for g(X):
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∇ · g(X) = −
p∑
i=1

I(|Xi| ≤ λ), ‖g(X)‖2 =

p∑
i=1

(|Xi| ∧ λ)2. (2.2)

where (|Xi| ∧ λ) = min(|Xi|, λ). Because δsoftλ (X) is weakly differentiable in

Stein’s sense, and using Lemma 1 and Equation (2.2), we have from (2.1) that

the quantity

SURE(X,λ) = p− 2

p∑
i=1

I(|Xi| ≤ λ) +

p∑
i=1

(|Xi| ∧ λ)2

is an unbiased estimate of risk; that is, Eθ(‖δsoftλ (X)− θ‖2) = Eθ [SURE (X,λ)].

Consider using this estimator to select a threshold:

λsure = argmin
0≤λ≤λU

SURE (X,λ) .

Arguing heuristically, one would expect that, for a large dimension X, a sort of

statistical regularity would set in, the law of large numbers would ensure that the

SURE is close to the true risk, and λSURE would be almost the optimal threshold

for the case at hand.

The λsure threshold and the soft-thresholding rule are the core of the level-

dependent procedure of Donoho and Johnstone (1995), called SureShrink. If the

wavelet representation at a particular level is not sparse, the SURE threshold is

used.

2.1. Multivariate normal distribution with a diagonal scale matrix

Now, under the above condition, we consider the balanced loss function given

in (1.2). In this case, similarly to Jafari Jozani, Marchand and Parsian (2006)

and Karamikabir, Afshari and Arashi (2018), the target estimator can be part

of the soft-threshold shrinkage estimator δsoftλ (X). The target estimator is as

follows:

δ0(X) = X + (1− ω)g(X). (2.3)

Hence the soft-threshold shrinkage estimator is δsoftλ (X) = δ0(X) + ωg(X).

Theorem 1. Suppose that X ∼ Np(θ, σ
2Ip) with known σ2. For the soft-threshold

shrinkage estimator δsoftλ (X) and target estimator δ0(X), the value of the thresh-

old is given by

λsure = argmin
0≤λ≤λU

SURE(X,λ)(δ
soft
λ (X), δ0(X)),

where SURE(X,λ)(δ
soft
λ (X), δ0(X)) is given as follows:
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p(1− ω) +
(ω3 − ω + 1)

σ2

p∑
i=1

(|Xi| ∧ λ)2 − 2(1− ω)

σ2

p∑
i=1

I(|Xi| < λ).

Proof. By Lemma 1 and under BEL(δ0) in (1.2), Rω,δ0(θ, δ
soft
λ (X)) is given as

follows:

E
[
Lω,δ0(θ, δ

soft
λ (X))

]
=

1

σ2
E
(
ω‖δsoftλ (X)− δ0(X)‖2 + (1− ω)‖δsoftλ (X)− θ‖2

)
=

1

σ2
E
(
ω‖X + g(X)−X − (1− ω)g(X)‖2

+(1− ω)‖X + g(X)− θ‖2
)

=
1

σ2
E
(
ω3‖g(X)‖2 + (1− ω)‖X − θ‖2 + (1− ω)‖g(X)‖2

+2(1− ω)(X − θ)T g(X)
)

=
1

σ2
E
(

(ω3 − ω + 1)‖g(X)‖2 + (1− ω)‖X − θ‖2 + 2(1− ω)∇ · g(X)
)
.

Then, SURE(X,λ)(δ
soft
λ (X), δ0(X)) is equal to

p(1− ω) +
(ω3 − ω + 1)

σ2

p∑
i=1

(|Xi| ∧ λ)2 − 2(1− ω)

σ2

p∑
i=1

I(|Xi| < λ),

and SURE(X,λ) is an unbiased estimate of risk, that is,

E
(
Lω,δ0(θ, δ

soft
λ (X))

)
= E

[
SURE(X,λ)(δ

soft
λ (X), δ0(X))

]
,

and λsure = argmin0≤λ≤λUSURE(X,λ)(δ
soft
λ (X), δ0(X)).

Corollary 1. For ω = 0 and σ2 = 1, we have the result of Donoho and Johnstone

(1995) for the SURE threshold.

2.2. Spherically symmetric distribution

In this subsection, we consider unimodal spherically distributions and look

for a SURE threshold under the balanced loss function. Assume (X,U) is a p+k

random vector that follows a spherically symmetric distribution around the p+k

vector (θ, 0), where dim X = dim θ = p, and dim U = dim 0 = k, with spherically

symmetric density
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fX,U (x, u) =
1

σp+k
f

(
‖x− θ‖2 + uTu

σ2

)
, (2.4)

where σ ∈ R+. Furthermore, suppose that the scalar variational component σ2

is known. Under these conditions, we have the following lemma.

Lemma 2. (Fourdrinier and Strawderman (1996)) For every weakly differen-

tiable function g : Rp → Rp, integer m, and θ ∈ Rp, we have

Eθ[(U
TU)mg(X)T (X − θ)] =

1

k + 2m
Eθ[(U

TU)m+1∇ · g(X)],

provided these expectations exist.

The shrinkage estimator introduced in Fourdrinier and Ouassou (2000) is

δ(X,U) = X + UTUg(X), where g(·) is some measurable function from Rp into

Rp, and the soft-threshold shrinkage estimator can be written as follows:

δsoftλ (X,U) = X + UTUg(X).

Let the target estimator be

δ0(X,U) = X + (1− ω)UTUg(X).

Hence we can write δsoftλ (X,U) = δ0(X,U) + ωUTUg(X).

Theorem 2. Suppose that (X,U) ∼ SSp((θ, 0), σ2Ip) with known σ2. For the

soft-threshold shrinkage estimator δsoftλ (X,U) and target estimator δ0(X,U), the

threshold λsure is given by

λsure = argmin
0≤λ≤λU

SURE(X,λ)(δ
soft
λ (X,U), δ0(X,U)),

where SURE(X,λ)(δ
soft
λ (X,U), δ0(X,U)) is given as follows:

(ω3 − ω + 1)
(
UTU

)2
σ2

p∑
i=1

(|Xi| ∧ λ)2

+p(1− ω)− 2(1− ω)

σ2(k + 2)

(
UTU

)2 p∑
i=1

I(|Xi| ≤ λ).

Proof. By substituting m = 1 into Lemma 2, we have the following risk:

Rω,δ0(θ, δ
soft
λ ) = E

[
Lω,δ0(θ, δ

soft
λ (X,U))

]
=

1

σ2
E
(
ω‖δsoftλ (X,U)− δ0(X,U)‖2
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+(1− ω)‖δsoftλ (X,U)− θ‖2
)

=
1

σ2
E
(
ω‖X + UTUg(X)−X − (1− ω)UTUg(X)‖2

+(1− ω)‖X + UTUg(X)− θ‖2
)

=
1

σ2
E
[
ω3
(
UTU

)2 ‖g(X)‖2

+(1− ω)
(
‖X − θ‖2 +

(
UTU

)2 ‖g(X)‖2

+2(X − θ)TUTUg(X)
)]

=
1

σ2
E

[
(ω3 − ω + 1)

(
UTU

)2 ‖g(X)‖2

+(1− ω)

(
‖X − θ‖2 +

2

k + 2

(
UTU

)2∇ · g(X)

)]
.

Thus, SURE(X,λ)(δ
soft
λ (X,U), δ0(X,U)) is given as follows:

1

σ2
(ω3 − ω + 1)

(
UTU

)2
σ2

p∑
i=1

(|Xi| ∧ λ)2

+p(1− ω)− 2(1− ω)

σ2(k + 2)

(
UTU

)2 p∑
i=1

I(|Xi| ≤ λ).

Furthermore, the SURE(X,λ) is an unbiased estimate of risk, that is,

E
[
Lω,δ0(θ, δ

soft
λ (X,U))

]
= E

[
SURE(X,λ)(δ

soft
λ (X,U), δ0(X,U))

]
,

and λsure = argmin0≤λ≤λUSURE(X,λ)(δ
soft
λ (X,U), δ0(X,U)).

2.3. Elliptical distribution

In this subsection, the statistical distribution is of the elliptical contoured

distribution in Fourdrinier, Ouassou and Strawderman (2003).

Let (X,V ) = (X,V1, . . . , Vn) be an n + 1 random vector in Rp with an

elliptically contoured distribution of the form

f(x, v) =
∣∣Σ−1∣∣ f ((x− θ)TΣ−1(x− θ) +

n∑
i=1

vTi Σ−1vTi

)
, (2.5)

where X and Vi are p× 1 vectors, θ is a p× 1 unknown location vector, and Σ is

a p× p known matrix proportional to the covariance matrix. This density arises

as a joint density in the canonical form of the general linear model. Here X is a
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projection on the space spanned by θ, and Vi is a projection onto the orthogonal

complement of the space spanned by θ or X ∼ E(θ,Σ, ψ) and V = (V1, . . . , Vn) ∼
E(0,Σ, ψ). The class in (2.5) contains models such as the multivariate normal,

t, and Kotz-type distributions.

In the case of a normal distribution, (i.e., X ∼ Np(θ,Σ), V = (V1, . . . , Vn),

where Vi ∼ Np(0,Σ) denotes an independent and S = V V T ∼Wp(n,Σ) (Wishart

distribution) with n ≥ p), the following lemma is a straightforward extension of

Stein (1981) lemma and of Haff (1979) lemma.

Lemma 3. (Fourdrinier and Strawderman (2015)) Assume that (X,V ) = (X,

V1, . . . , Vn) is an n+ 1 random vector in Rp with a multivariate normal distribu-

tion, where X ∼ Np(θ,Σ), and V = (V1, . . . , Vn), Vi ∼ Np(0,Σ). In addition, let

g(X,S) be a p × 1 vector, such that the function g(X, ·) is weakly differentiable.

Then we have

Eθ
[
(X − θ)TΣ−1g(X,S)

]
= Eθ [∇ · g(X,S)] , (2.6)

provided the expectations in (2.6) exist. As defined before, ∇ · g(X,S) is the

divergence operator with respect to the variable X.

Similarly to Fourdrinier, Strawderman and Wells (2003), we define the ex-

pectations E∗θ with respect to the distribution C−1F ((X − θ)TΣ−1(X − θ) +∑n
j=1 V

T
j Σ−1Vj), where F and C are defined as follows:

F (t) =
1

2

∫ ∞
t

f(s)ds,

C =

∫
Rp×···×Rp

F

(x− θ)TΣ−1(x− θ) +

n∑
j=1

vTj Σ−1vj

 dxdv1 · · · dvn.

Lemma 4. (Fourdrinier, Strawderman and Wells (2003)) Let (X,V ) be an n+1

random vector in Rp with an elliptically contoured distribution, and let S = V V T .

Assume that g(X,S) is a function on Rp that is weakly differentiable in X and

differentiable in S. Then,

1. Eθ
[
gT (X,S)Σ−1(X − θ)

]
= E∗θ [∇ · g(X,S)] .

2. For any p× p matrix function T (X,S), we have

Eθ
[
tr(T (X,S))Σ−1

]
= 2CE∗θ

[
D∗1/2T (X,S)

]
+C(n− p− 1)E∗θ

[
tr(S−1T (X,S))

]
,
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where for any matrix A, tr(A) is the trace of A, and where D∗1/2 is the

differential operator with respect to the variable S:

D∗1/2g(X,S) =

p∑
i=1

∂gii(X,S)

∂Sii
+

1

2

∑
i 6=j

∂gij(X,S)

∂Sij
.

The shrinkage estimator introduced in Fourdrinier, Strawderman and Wells

(2003) and Fourdrinier and Strawderman (2015) is δ(X,S) = X+g(X,S), where

g(·) is some measurable function from Rp onto Rp and S = V V T . We consider

g(X,S) = g(X) in (1.4). As a result, the soft-threshold shrinkage estimator can

be the same as δsoftλ (X) in (1.3). In addition, we consider the target estimator

δ0(X) in (2.3). Under this condition, we have the following risk under BEL(δ0)

in (1.1):

Rω,δ0(θ, δ
soft
λ (X)) = E

[
Lω,δ0(θ, δ

soft
λ (X))

]
= E

(
ω
(
δsoftλ (X)− δ0(X)

)T
Σ−1

(
δsoftλ (X)− δ0(X)

)
+(1− ω) (δ(X)− θ)T Σ−1 (δ(X)− θ)

)
= E

(
ω3gT (X)Σ−1g(X)

+(1− ω) (X + g(X)− θ)T Σ−1 (X + g(X)− θ)
)

= E
[
(ω3 − ω + 1)gT (X)Σ−1g(X) + 2gT (X)Σ−1(X − θ)

+(1− ω)
(

(X − θ)T Σ−1 (X − θ)
)]
. (2.7)

Under the above conditions and for g(Xi) in (1.4), we have the following theorems.

Theorem 3. Let (X,V ) be an n + 1 random vector in Rp with the elliptically

contoured distribution in (2.5), with known Σ, and let S = V V T . Assume that

g(X) is a function onto Rp that is weakly differentiable in X and differentiable

in S. For the soft-threshold shrinkage estimator δsoftλ (X) and target estimator

δ0(X), the threshold λsure is given by

λsure = argmin
0≤λ≤λU

SURE(X,λ)(δ
soft
λ (X), δ0(X)),

where SURE(X,λ)(δ
soft
λ (X), δ0(X)) is

p(1− ω)− 2

p∑
i=1

I(|Xi| ≤ λ)
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+C(ω3 − ω + 1)(n− p− 1)E∗θ

 p∑
i=1

g2(Xi)aii +
∑
i 6=j

g(Xi)g(Xj)aij

 ,
and S−1 = A = (aij)1≤i,j≤p.

Proof. Suppose that T (X) = g(X)gT (X). By Lemma 4 and Equation (2.7) under

BEL(δ0) in (1.1), Rω,δ0(θ, δ
soft
λ (X)) is equal to

E
[
(1− ω) (X − θ)T Σ−1 (X − θ)

]
+2C(ω3 − ω + 1)E∗θ

[
D∗1/2

(
g(X)gT (X)

)]
+C(ω3 − ω + 1)(n− p− 1)E∗θ

[
gT (X)S−1g(X)

]
+ 2E∗θ

[
∇ · gT (X)

]
.

Suppose that S−1 = A = (aij)1≤i,j≤p. As a result gT (X)Ag(X) =
∑p

i=1 g
2(Xi)aii

+
∑

i 6=j g(Xi)g(Xj)aij . Thus, the SURE(X,λ) is given as follows:

p(1− ω)− 2

p∑
i=1

I(|Xi| ≤ λ)

+C(ω3 − ω + 1)(n− p− 1)E∗θ

 p∑
i=1

g2(Xi)aii +
∑
i 6=j

g(Xi)g(Xj)aij

 .
The proof is complete.

The value of the expectation E∗θ [
∑p

i=1 g
2(Xi)aii +

∑
i 6=j g(Xi)g(Xj)aij ] in

Theorem 3 can be obtained using numerical methods. In addition, the multivari-

ate normal distribution X ∼ Np(θ,Σ) is a special case of an elliptical distribution,

in which case we have the following corollary, without computing E∗θ (·) using nu-

merical methods.

Corollary 2. Suppose the random variable X ∼ Np(θ,Σ) with known Σ. For

the soft-threshold shrinkage estimator δsoftλ (X) and target estimator δ0(X), the

threshold λsure is given by

λsure = argmin
0≤λ≤λU

SURE(X,λ)(δ
soft
λ (X), δ0(X)),

where SURE(X,λ)(δ
soft
λ (X), δ0(X)) is given as follows:

p(1− ω)− 2(1− ω)

p∑
i=1

I(|Xi| < λ) + (ω3 − ω + 1)

p∑
i=1

g2(Xi)bii
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+
∑
i 6=j

g(Xi)g(Xj)bij ,

and Σ−1 = B = (bij)1≤i,j≤p.

Proof. The proof is similar to that of Theorem 3. However, we use Lemma 3

instead of Lemma 4.

3. SURE threshold of nonnegative location parameter

In this section, we discuss the SURE threshold in a nonnegative parameter

space under a balanced loss function in the class of elliptical and spherical distri-

butions. Mean vector (location) parameter estimation is an important problem

in the context of shrinkage estimation, particularly when some components of the

location parameter are restricted to a specific space.

As in Subsection 2.2, assume (X,U) is a p+k random vector with a spherically

symmetric distribution around the p + k vector (θ, 0), dim X = dim θ = p, and

dim U = dim 0 = k. Furthermore, suppose that the scalar variational component

σ2 is known, with density function (2.4). We wish to estimate θ = (θ1, . . . , θp)
T

using δsoftλ = (δ1, . . . , δp)
T under a balanced loss function. Here, we consider

cases where a subset of θi ≥ 0, for i = 1, . . . , p, is nonnegative; that is, θ1 ≥
0, θ2 ≥ 0, . . . , θq ≥ 0 and θq+1, θq+2, . . . , θp are unrestricted.

Define γq(X) = (γq(X1), . . . , γq(Xp)) as:

γq(Xj) =

{
−Xj , Xj < 0,

0, Xj ≥ 0,
j = 1, 2, . . . , q and γq(Xj) = 0 if j > q.

Then, similarly to Fourdrinier, Ouassou and Strawderman (2003) and Karamik-

abir, Afshari and Arashi (2018), the soft-threshold shrinkage estimators is defined

as

δsoftλ,q (X,U) = X + γq(X) + UTUg(X). (3.1)

In addition, we consider spherical distributions. Consider the following two target

estimators:

δ0(X,U) = X + (1− ω)UTUg(X),

δ∗0(X) = X + (1− ω)γq(X).

We can write δsoftλ,q (X,U) = δ0(X,U) + γq(X) +ωUTUg(X) = δ∗0(X) +ωγq(X) +

UTUg(X). Note that all remarks in this section applied to cases in witch the

subset of θ is nonnegative (θ1 ≥ 0, θ2 ≥ 0, . . . , θq ≥ 0).



1842 KARAMIKABIR AND AFSHARI

Now, our goal is to find the risk for the soft-threshold shrinkage estima-

tor δsoftλ,q (X,U) under BEL(δ0) in (1.2). Thus, by using the target estimators

δ0(X,U) and δ∗0(X) and by substituting m = 1 in Lemma 2, we obtain the risks

Rω,δ0(X,U)(θ, δ
soft
λ,q (X,U)) = R1 and Rω,δ∗0 (X)(θ, δ

soft
λ,q (X,U)) = R2, as follows:

R1 =
1

σ2
E
(
ω‖δsoftλ,q (X,U)− δ0(X,U)‖2 + (1− ω)‖δsoftλ,q (X,U)− θ‖2

)
=

1

σ2
E

[
(ω3 − ω + 1)

(
UTU

)2 ‖g(X)‖2 + ‖γq(X)‖2

+2UTU(ω2 − ω + 1)γTq (X)g(X)

+(1− ω)

(
‖X − θ‖2 + 2∇.γq(X) +

2

k + 2

(
UTU

)2∇.g(X)

)]
.

R2 =
1

σ2
E
(
ω‖δsoftλ,q (X,U)− δ∗0(X)‖2 + (1− ω)‖δsoftλ,q (X,U)− θ‖2

)
=

1

σ2
E

[ (
UTU

)2 ‖g(X)‖2 + 2UTU(ω2 − ω + 1)γTq (X)g(X)

+(ω3 − ω + 1)‖γq(X)‖2

+(1− ω)

(
‖X − θ‖2 + 2∇.γq(X) +

2

k + 2

(
UTU

)2∇.g(X)

)]
.

In the following remark, similarly to Theorem 2, we obtain the SURE using the

above risk expressions.

Remark 1. Suppose that (X,U) ∼ SSp((θ, 0), σ2Ip) with known σ2. For the

soft-threshold shrinkage estimator δsoftλ,q (X,U) under the balanced loss BEL(δ0)

in (1.2), the threshold λsure is given by

λsure = argmin
0≤λ≤λU

SURE(X,λ)(δ
soft
λ,q (X,U), δ0),

where SURE(X,λ)(δ
soft
λ,q (X,U), δ0) has the following cases:

1. For the target estimator δ0(X,U), the risk estimate is equal to

(ω3 − ω + 1)

σ2
(
UTU

)2 p∑
i=1

(|Xi| ∧ λ)2

+
1

σ2

p∑
i=1

X2
i I(Xi < 0) + p(1− ω)

+
2(ω2 − ω + 1)

σ2

p∑
i=1

γq(Xi)g(Xi)

+
2(1− ω)

σ2

p∑
i=1

I(Xi < 0)− 2(1− ω)

σ2(k + 2)

(
UTU

)2 p∑
i=1

I(|Xi| ≤ λ).
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2. For the target estimator δ∗0(X), the risk estimate is equal to(
UTU

)2
σ2

p∑
i=1

(|Xi| ∧ λ)2 + p(1− ω)

+
2(ω2 − ω + 1)UTU

σ2

p∑
i=1

γq(Xi)g(Xi)

+
(ω3 − ω + 1)

σ2

p∑
i=1

X2
i I(Xi < 0) +

2(1− ω)

σ2

p∑
i=1

I(Xi < 0)

− 2(1− ω)

σ2(k + 2)

(
UTU

)2 p∑
i=1

I(|Xi| ≤ λ).

As in Subsection 2.3, assume that (X,V ) = (X,V1, . . . , Vn) is an n+1 random

vector in Rp with an elliptically contoured distribution of the form (2.5), with

known Σ. We wish to estimate θ = (θ1, . . . , θp)
T using δsoftλ = (δ1, . . . , δp)

T under

the balanced loss function and, again, we consider the cases where a subset of

θi ≥ 0, i = 1, . . . , p is nonnegative. The soft-threshold shrinkage and target

estimators are respectively defined as follows:

δsoftλ,q (X) = X + γq(X) + g(X),

δ0(X) = X + (1− ω)g(X).

Again, our purpose is to find a risk for the soft-threshold shrinkage estimator

δsoftλ,q (X) under BEL(δ0) in (1.1). Suppose that T (X) = g(X)gT (X), T ∗(X) =

γ(X)γ(X)T , T>(X) = γ(X)gT (X), and S−1 = A = (aij)1≤i,j≤p. Using the

target estimators δ0(X) and δ∗0(X) and Lemma 4, we obtain the risks Rω,δ0(X)(θ,

δsoftλ,q (X)) = R3 and Rω,δ∗0 (X)(θ, δ
soft
λ,q (X)) = R4, as follows:

R3 = E
(
ω
(
δsoftλ,q (X)− δ0(X)

)T
Σ−1

(
δsoftλ,q (X)− δ0(X)

)
+(1− ω) (δ(X)− θ)T Σ−1 (δ(X)− θ)

)
= E

(
(1− ω)(X − θ)TΣ−1(X − θ) + 2(1− ω)(X − θ)TΣ−1γq(X)

+2(1− ω)(X − θ)TΣ−1g(X) + 2(ω2 − ω + 1)γTq (X)Σ−1g(X)

+(ω3 − ω + 1)gT (X)Σ−1g(X) + γTq (X)Σ−1γq(X)
)

= E
(

(1− ω)(X − θ)TΣ−1(X − θ) + 2(1− ω)∇ · γq(X)

+2C(ω2 − ω + 1)(n− p− 1)E∗θ
[
γq(X)S−1g(X)

]
+2(1− ω)∇ · g(X) + 4C(ω2 − ω + 1)E∗θ

[
D∗1/2

(
γq(X)gT (X)

)]
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+C(ω3 − ω + 1)(n− p− 1)E∗θ
[
gT (X)S−1g(X)

]
+2C(ω3 − ω + 1)E∗θ

[
D∗1/2

(
g(X)gT (X)

)]
+C(n− p− 1)E∗θ

[
γTq (X)S−1γq(X)

]
+ 2CE∗θ

[
D∗1/2

(
γq(X)γTq (X)

)])
.

R4 = E
(
ω
(
δsoftλ,q (X)− δ∗0(X)

)T
Σ−1

(
δsoftλ,q (X)− δ∗0(X)

)
+(1− ω) (δ(X)− θ)T Σ−1 (δ(X)− θ)

)
= E

(
(1− ω)(X − θ)TΣ−1(X − θ) + 2(1− ω)(X − θ)TΣ−1γq(X)

+2(1− ω)(X − θ)TΣ−1g(X) + 2(ω2 − ω + 1)γTq (X)Σ−1g(X)

+(ω3 − ω + 1)γTq (X)Σ−1γq(X) + gT (X)Σ−1g(X)
)

= E
(

(1− ω)(X − θ)TΣ−1(X − θ) + 2(1− ω)∇ · γq(X)

+2(1− ω)∇ · g(X) + 2C(ω2 − ω + 1)(n− p− 1)E∗θ
[
γq(X)S−1g(X)

]
+4C(ω2 − ω + 1)E∗θ

[
D∗1/2

(
γq(X)gT (X)

)]
+C(ω3 − ω + 1)(n− p− 1)E∗θ

[
γTq (X)S−1γq(X)

]
+2C(ω3 − ω + 1)E∗θ

[
D∗1/2

(
γq(X)γTq (X)

)]
+C(n− p− 1)E∗θ

[
gT (X)S−1g(X)

]
+ 2CE∗θ

[
D∗1/2

(
g(X)gT (X)

)])
.

In the following remark, similarly to Theorem 3, we obtain the SURE using the

above risks.

Remark 2. Let (X,V ) an n + 1 random vector in Rp following an elliptically

contoured distribution (2.5) with known Σ and S = V V T . Assume that g(X) is

a function on Rp that is weakly differentiable in X and differentiable in S. For

the soft-threshold shrinkage estimator δsoftλ,q (X) under the balanced loss BEL(δ0)

in (1.1), the threshold λsure is given by

λsure = argmin
0≤λ≤λU

SURE(X,λ)(δ
soft
λ,q (X), δ0),

where SURE(X,λ)(δ
soft
λ,q (X), δ0) has the following cases:

1. For the target estimator δ0(X), the risk estimate is equal to

p(1− ω) + 2(1− ω)I(Xi ≤ 0)− 2(1− ω)

p∑
i=1

I(|Xi| ≤ λ)

−2C(ω2 − ω + 1)(n− p− 1)(|X| ∧ λ)2E∗θ
[
γq(X)S−1g(X)

]
+C(ω3 − ω + 1)(n− p− 1)E∗θ

 p∑
i=1

g2(Xi)aii +
∑
i 6=j

g(Xi)g(Xj)aij
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+C(n− p− 1)E∗θ

 p∑
i=1

γ2q (Xi)aii +
∑
i 6=j

γq(Xi)γq(Xj)aij

 .
2. For the target estimator δ∗0(X), the risk estimate is equal to

p(1− ω) + 2(1− ω)I([Xi ≤ 0])− 2(1− ω)I(|Xi| ≤ λ)

−2C(ω2 − ω + 1)(n− p− 1)2E∗θ
[
γq(X)S−1g(X)

]
+C(ω3 − ω + 1)(n− p− 1)E∗θ

 p∑
i=1

γ2q (Xi)aii +
∑
i 6=j

γq(Xi)γq(Xj)aij


+C(n− p− 1)E∗θ

 p∑
i=1

g2(Xi)aii +
∑
i 6=j

g(Xi)g(Xj)aij

 .
4. Simulation study

In this section, we compare our theoretical outcomes with numerical compu-

tations and simulations to investigate the performance of the soft-wavelet shrink-

age estimator. All calculations in this section are performed using the R software

package. For denoising or shrinkage coefficients, one of the most important con-

cepts in wavelets and denoising is using thresholds. Shrinking of the empirical

wavelet coefficients works best in problems where the underlying set of the true

coefficients of f is sparse. The wavelet shrinkage method algorithm is as follows:

1. The discrete wavelet transform is derived from the noisy observations. In

other words, let Y1, . . . , Yn be data observed from the model

Yi = f(Xi) + ηi, (4.1)

where {ηi} is some noise, and {Xi} is some set of points from the domain

of f(·). Typically, n is an integer power of two. If W denotes the discrete

wavelet transform matrix, then multiplying equation (4.1) by the orthogonal

matrix W yields

X = WY = Wf + Wη = θ + ε.

Note that the observations are sampled from distribution f , but with some

noise, which we went to remove. To achieve this aim, observations or noisy

data are converted to wavelet coefficients.

2. Using the threshold value, the wavelet coefficients are divided into two
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Figure 1. Top left: Density function of a t2(0,Σ) with N = 128. Top right: Density
function of a t2(0,Σ) with added i.i.d. N(0, 1) noise, with N = 128. Bottom left:
Contour plot of a t2(0,Σ) with N = 128. Bottom right: Contour plot of a t2(0,Σ) with
added i.i.d. N(0, 1) noise, with N = 128.

groups: high effect (important) and low effect coefficients. If the wavelet co-

efficient is greater than the threshold value, it is categorized as an important

coefficients, otherwise the set of coefficients negligible. Then, the low-effect

coefficients are removed, and the important coefficients with respect to the

shrinkage function are given by follows. In a hard shrinkage function, the

coefficients are less than the threshold value of zero and the other coeffi-

cients remain unchanged. In a soft elimination function, the coefficients are

less than the threshold value of zero, and the other coefficients decrease to

the threshold value.

3. The last signal is reconstructed using the inverse wavelet transform.

For this purpose, a noise value using the standard normal distribution is

added to the two-variate t-distribution t2(µ,Σ), where µ = (0, 0)T = 0 and Σ =
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Figure 2. Density function and contour plot of a noisy t2(0,Σ) signal after new threshold
denoising with N = 128.
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Figure 3. Density function and contour plot of a noisy t2(0,Σ) signal after new threshold
denoising with N = 256.

[
2 1

1 3

]
. Figure 1 shows the density functions of t2(µ,Σ) and t2(µ,Σ) with added

independent and identically distributed (i.i.d.) N(0, 1) noise with N = 128 (noisy

t2(0,Σ)) along with their contour plot. Now, by denoising the noisy t2(0,Σ), we

are looking for the main t2(0,Σ). The minimization over the SURE is simply a

grid search. The SURE value is first calculated for all X values, and then we find

λsure from among these values. Using the SURE threshold, the noisy t2(0,Σ)

is converted to wavelet coefficients and denoised coefficients using the inverse

discrete wavelet transformation, giving an approximation of the main t2(0,Σ).

Figures 2, 3, and 4, for N = 128, 256, 512, show the density function and

contour plot of the noisy t2(0,Σ) signal after the SURE threshold denoising.
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Figure 4. Density function and contour plot of a noisy t2(0,Σ) signal after new threshold
denoising with N = 512.

We compare the SURE method and four commonly used shrinkage strategies:

hard and soft-thresholding with the universal threshold, CV, and Bayes thresh-

olding. To assess the performance, we calculated the average mean squared error

(AMSE) from n = 1,000 replications of the simulation. The AMSE is obtained

as follows:

1

n

n∑
j=1

N∑
i=1

f(xi)− f̂(xi,j)

N
,

where f(xi) is the true signal, and f̂(xi,j) is the estimate of the function from

simulation j. Lower values of AMSE represent a more accurate estimate.

Table 1, presents the AMSE with respect to p and σ2 for the wavelet estimator

of the target function based on the hard and soft universal threshold, CV, Bayes

thresholding, and SURE for ω = 0.2, ω = 0.5 and ω = 0.8. The simulations in

this table assume an N2(0, σ
2I2) distribution.

As can be seen in the table increasing σ2 reduces the accuracy of all methods.

In addition, the AMSE obtained using the SURE method is lower than that of

the other methods, particularly when decreasing p. In general, the estimation

accuracy decreases with an increase in ω.

We calculated the AMSE for the target estimators in the nonnegative location

parameter space from 1,000 replications of the simulation. Table 2 shows the

AMSE with respect to p, σ2, and ω for the target estimators for N2(0, σ
2I2). In

this table, we can see the following:

• The AMSE of δ
(1)
0 (X) for the corresponding values is lower than that of

δ
(2)
0 (X).
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Table 1. AMSE for hard and soft universal thresholds, CV, Bayes thresholds, and SURE.

σ2 p SURE Universal Universal CV Bayes
ω = 0.3 ω = 0.5 ω = 0.8 Soft Hard threshold

4 0.7303 0.7307 0.7326 0.7141 0.8542 – 0.7617
8 0.5762 0.5781 0.5894 0.5805 0.7571 0.5797 0.6733

0.5 16 0.4948 0.5006 0.5248 0.5318 0.6581 0.5247 0.5997
32 0.4511 0.4607 0.4870 0.5165 0.5761 0.5068 0.5464
64 0.4293 0.4416 0.4715 0.5073 0.5410 0.4998 0.5213
4 0.8756 0.8742 0.8707 0.8811 0.9642 – 0.9426
8 0.7860 0.7765 0.7630 0.8682 0.9745 0.8422 0.9352

1 16 0.7394 0.7233 0.7038 0.9229 0.9939 0.8952 0.9584
32 0.6968 0.6749 0.6514 0.9660 0.9879 0.9409 0.9772
64 0.6668 0.6443 0.6247 0.9830 0.9954 0.9657 0.9885
4 1.2249 1.2170 1.1991 1.2172 1.1801 – 1.3089
8 1.2523 1.2212 1.1877 1.4512 1.4216 1.3699 1.4551

2 16 1.2364 1.2026 1.1440 1.7153 1.6719 1.6387 1.6986
32 1.1730 1.1330 1.0618 1.8651 1.8133 1.8104 1.8420
64 1.1241 1.0791 1.0131 1.9345 1.9032 1.8917 1.9210

Table 2. AMSE for target estimators.

δ
(1)
0 (X) δ

(2)
0 (X)

σ2 p ω = 0.3 ω = 0.5 ω = 0.8 ω = 0.3 ω = 0.5 ω = 0.8
4 0.7407843 0.7519258 0.8225013 0.7526715 0.7759163 0.8344153
8 0.5957935 0.6122736 0.7792235 0.606251 0.6403176 0.8134959

0.5 16 0.4993819 0.5126939 0.5041723 0.5041723 0.5375324 0.8085041
32 0.4561108 0.462669 0.7590374 0.4577497 0.4710982 0.8202242
64 0.4452455 0.4394154 0.760832 0.4484006 0.4470308 0.831343
4 0.8114424 0.7984361 0.8405045 0.8118768 0.8103646 0.8509157
8 0.7162636 0.7110568 0.8133852 0.7180052 0.7234461 0.8324369

1 16 0.661435 0.6648597 0.8010723 0.6699519 0.6887543 0.8348478
32 0.6443929 0.632851 0.7926348 0.6554189 0.6594202 0.8386649
64 0.6331861 0.6178847 0.781318 0.6505679 0.645038 0.8312735
4 0.9136572 0.8933877 0.896154 0.9043011 0.8834847 0.8984375
8 0.8717649 0.8417345 0.8602557 0.8579672 0.8360454 0.8681166

2 16 0.8301697 0.7927979 0.8357576 0.8183334 0.794737 0.8558379
32 0.8228262 0.7835409 0.8329445 0.8042471 0.7827455 0.8580542
64 0.8224749 0.7801745 0.8206946 0.8023012 0.7719847 0.8491778

• Increasing σ2 reduces the accuracy of all methods.

• Increasing the value of dim p increases the precision of the estimator.

• Increasing of the value of ω, decreases the estimation accuracy.

Figures 5 and 6 show the risk curves of the soft-threshold shrinkage estimator (3.1)

for a nonnegative location parameter space and a multivariate normal distribution
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Figure 5. Risk curve for the target estimator δ0(X,U) with p = 16, q = 6 (left), q = 10
(right), and for different values of ω.
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Figure 6. Risk curve for the target estimator δ∗0(X) with p = 16, q = 6 (left), q = 10
(right), and for different values of ω.

Np(0, 2Ip), with p = 16. These figures were plotted with respect to the target

estimators δ0(X,U), and δ∗0(X) for q = 6, 10 and ω = 0.2, 0.5, 0.8. Figures 5 and

6 also show that the risk is reduces by increasing ω. After increasing q from 6

to 10, the difference in the risk of the estimators decreases. In general, the risk

values of the target estimator δ∗0(X) are lower than those of δ0(X,U).

5. Conclusion

We have generalized the SURE threshold for elliptical and spherical multi-

variate distributions under a balanced loss function. We also found the SURE

threshold for the nonnegative mean vector of these distributions. The perfor-
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mance of the soft-threshold shrinkage estimator with SURE thresholding was

investigated using a simulation study. The results demonstrate that the target

estimator is appropriate, and that increasing the sample size, increases the accu-

racy of the new shrinkage estimator. In addition, the AMSE of the soft-threshold

shrinkage estimator is shown to be lower than that of other estimators.
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