
Statistica Sinica 31 (2021), 1807-1828
doi:https://doi.org/10.5705/ss.202018.0403

EXCHANGEABLE MARKOV MULTI-STATE

SURVIVAL PROCESSES

Walter Dempsey

University of Michigan

Abstract: We consider exchangeable Markov multi-state survival processes, which are

temporal processes taking values over a state-space S, with at least one absorbing

failure state [ ∈ S that satisfy the natural invariance properties of exchangeability

and consistency under subsampling. The set of processes contains many well-known

examples from health and epidemiology including survival, illness-death, compet-

ing risk, and comorbidity processes. Here, an extension leads to recurrent event

processes.

We characterize exchangeable Markov multi-state survival processes in both dis-

crete and continuous time. Statistical considerations impose natural constraints on

the space of models appropriate for applied work. In particular, we describe con-

straints arising from the notion of composable systems. We end with an application

to irregularly sampled and potentially censored multi-state survival data, developing

a Markov chain Monte Carlo algorithm for inference.

Key words and phrases: Composable systems, exchangeability, Markov chain Monte

Carlo, Markov process, multi-state survival process.

1. Introduction

In many clinical survival studies, a patient’s health status is monitored in-

termittently until either an event of interest (e.g., failure) or the end of the study

window. In a simple survival study, a person’s health status Y (t) at time t is

a binary variable, namely, dead (0) or alive (1). In clinical trials with health

monitoring, Y (t) is a more detailed description of the individual’s state of health,

containing relevant patient information such as pulse rate, cholesterol level, cog-

nitive score, or CD4 cell count (Diggle, Sousa and Chetwynd (2008); Farewell

and Henderson (2010); Kurland et al. (2009)).

In this study, we examine health processes that take values in some prespeci-

fied “state-space.” For example, in the illness-death model, the participant’s cur-

rent state takes one of three possible values {Healthy, Unhealthy, Dead}. Such

a process can be thought of as a coarse view of a patient’s state of health over
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time. When no baseline covariates are measured beyond the initial state Y (0),

the model for the set of patient state-space processes should satisfy natural con-

straints. First, the model should be agnostic to patient labeling. Second, the

model should be agnostic to sample size considerations. These natural constraints

(mathematically defined in Section 2) lead to exchangeable Markov multi-state

survival processes. The purpose of this study is to characterize this set of processes

and to show how the theory of exchangeable stochastic processes fits naturally

into the applied framework of an event-history analysis. Both the parametric

continuous-time Markov process with independent participants and the nonpara-

metric counting process are included as special cases. Next, we discuss the notion

of “composable systems” and its effect on model specification. A Markov chain

Monte Carlo (MCMC) algorithm is then derived for posterior computations, given

irregularly sampled multi-state survival data. We end with an application to a

cardiac allograft vasculopathy (CAV) multi-state survival study.

1.1. Related work

Odd Aalen was one of the first to recognize the importance of incorporating

the “theory of stochastic processes” into an “applied framework of event history

analysis” Aalen, Borgan and Gjessing (2008, p.457). Martingales and count-

ing processes form the basis of this nonparametric approach. Nonparametric

methods, however, do not adequately handle intermittent observations. For ex-

ample, Aalen et al. (2015) consider a dynamic path analysis for a liver cirrhosis

data set. In this study, the prothrombin index, a composite blood coagulation

index related to liver function, is measured initially at three-month intervals, and

subsequently at roughly 12-month intervals. To deal with the intermittency of

observation times, Aalen et al. (2015) use the “last-observation carried forward”

(LOCF) assumption. However, such an assumption is unsatisfactory for highly

variable health processes, and can lead to biased estimates (Little et al. (2012)).

One alternative is to consider parametric models such as continuous-time

Markov processes. Prior work (Saeedi and Bouchard-Côté (2011); Hajiaghayi

et al. (2014); Rao and Teh (2013)) has focused on estimating parametric contin-

uous-time Markov processes under intermittent observations. Most paramet-

ric models, however, make strong assumptions about the underlying state-space

process; in particular, most models assume independence among patients. One

implication of this is that observing sharp changes in health in prior patient tra-

jectories at a particular time since recruitment does not impact the likelihood of

a similar sharp change in a future patient at the same timepoint. The proposed

approach balances the nonparametric and parametric approaches.
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2. Multi-State Survival Models

In this section, we formally define the multi-state survival process and the

notions of exchangeability, Kolmogorov-consistency, and the Markov property.

We combine these in Section 3 to provide characterization theorems for these

processes in discrete and continuous time.

2.1. Multi-state survival process

Formally, the multi-state survival process, Y, is a function from the label

set N × T into the state space S. For now, we assume the cardinality is finite

(i.e., |S| < ∞). If the response is in discrete time, then the process is defined

on T = N. If the response is in continuous time, then the process is defined on

T = R+. Each label is a pair (u, t), and the value Y(u, t) is an element of S
corresponding to the state of patient u at time t.

The distinguishing characteristic of survival processes is flatlining (Dempsey

and McCullagh (2018)); that is, there exists an absorbing state [ ∈ S such

that Y (u, t) = [ implies Y (u, t′) = [, for all t′ > t. Thus, the survival time Tu for

unit u is a deterministic function of the multi-state survival process Y:

Tu = inf{t ≥ 0 : Y (u, t) = [}.

For all u ∈ N, we assume Y (u, 0) 6= [ at recruitment; thus, Tu > 0. Multiple

absorbing states {[c} representing different terminal events may occur.

Without loss of generality, we assume S = {1, . . . , s} =: [s]. For example,

if the state-space is S = {Alive,Dead}, we recode this to [2] = {1, 2}. At each

time t, the population-level process is given by Y(t) = {Y (u, t) |u ∈ N} ∈ [s]N.

We write y to denote a generic element of [s]N. We write YA to denote the

restriction of the state-space process to u ∈ A ⊂ N. We call Y[n] the n-restricted

state-space process for [n] := {1, . . . , n}. We write y[n] to denote a generic element

of [s]n. Finally, for y[n] we define an associated vector x[n], called the configuration

vector.

Definition 1 (Configuration vector). For y[n] ∈ [s]n, define x[n] ∈ [n]s as the

configuration vector, an s-vector summary of the number of units in each state.

For example, if s = 2, n = 4, and y[4] = (1, 2, 2, 1), then x[4] = (2, 2); for y[4] =

(1, 1, 2, 1), x[4] = (3, 1). We write xi to denote the ith entry of x[n].

Example 1 ((Bidirectional) illness-death process). To make these ideas concrete,

we employ the illness-death process as the running example in this paper. The

illness-death process has state space {Healthy, Unhealthy, Dead}, with transi-
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Figure 1. Graph representation of the illness-death process.

tions governed by the graph shown in Figure 1. The bi-directional illness-death

process includes an additional edge (Unhealthy, Healthy), allowing the patient to

recover. The state “Dead” (s = 3) is absorbing. Both processes can be viewed

as refinements of the survival process. We highlight many other examples in the

Supplementary Material, Section S3.

2.2. Transition graph for a multi-state survival process

The transition graph associated with a particular multi-state survival process

is a directed graph G = (V,E), which represents the set of potential transitions

among the states i ∈ [s]. The vertex set V = [s] is the set of all states; the directed

edge set E contains all edges (i, i′) such that, at jump times, the process can jump

from i to i′. In Example 1, a patient can jump from Healthy to Unhealthy, but not

back; therefore, (Healthy, Unhealthy) is in the edge set, but (Unhealthy, Healthy)

is not. In the bi-directional case, both edges are present in the transition graph.

In continuous-time, jumps can only occur between distinct states, so (i, i) 6∈ E,

for all i ∈ V . An absorbing state i ∈ [s] satisfies (i, i′) 6∈ E, for all i′ 6= i ∈ [s]. We

write PG to denote the set of s by s transition matrices P satisfying
∑

i′∈V Pi,i′ =

1, Pi,i′ ≥ 0 for all i, i′ ∈ V , and Pi,i′ = 0 for all (i, i′) 6∈ E. In the continuous-time

setting, define Pi,i = 1−
∑

i′,(i,i′)∈E Pi,i′ .

2.3. Consistency under subsampling

Statistical models for multi-state survival processes should be agnostic to

sample size, because this is often an arbitrary choice based on power consid-

erations and/or patient recruitment constraints. Informally, observing n units

should be equivalent to observing n + 1 units and then restricting to the first n

units; that is, the model should exhibit consistency under subsampling.

Consider the multi-state survival process Y[m] for m > n. Define the restric-

tion operator Rm,n as the restriction of Y[m] to the first n individuals. Then, the

process is consistent under subsampling if Rm,n(Y[m]) is equivalent in distribu-
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tion to Y[n], for all [m] ⊃ [n]. That is, for any finite subset t := (t1, . . . , tk) ⊂ T ,

Rm,n
(
Y[m](t)

)
=D Y[n](t). Stated another way, pr(Y[n] ∈ A) = pr(Y[m] ∈

R−1
m,n(A)), for any Borel measurable set A.

Under the consistency assumption, the process Y[n] satisfies lack of interfer-

ence; mathematically,

pr(Y[n] ∈ A |H[m](t)) = pr(Y[n] ∈ A |H[n](t)),

where H[l](t) is the σ-field generated by the variables Y (u, t′), for i ∈ [l] and t′ ≤ t.
Lack of interference is essential, because it ensures the n-restricted multi-state

survival process is unaffected by the multi-state survival processes of subsequent

components. Consistency under subsampling ensures the statistical models are

embedded in suitable structures that permit extrapolation.

2.4. Exchangeability

Given no covariates, patient labeling is also an arbitrary choice to which

any suitable multi-state survival process must be agnostic. Define a multi-state

survival process Y as [partially] exchangeable if for any permutation σ : [n]→ [n],

the relabeled process Yσ
[n] = {Y (σ(1), t), . . . , Y (σ(n), t) | t ∈ T } is equivalent in

distribution to Y[n]. That is, for any finite subset t ⊂ T , Yσ
[n](t) =D Y[n](t).

2.5. Time-homogeneous Markov process

Y[n] is a time-homogeneous Markov process if, for every t, t′ ≥ 0, the condi-

tional distribution of Y[n](t+t
′), given the multi-state survival process history up

to time t, H[n](t), depends only on Y[n](t) and t′. This Markovian assumption is a

simplifying assumption that leads to mathematically tractable conclusions. Here,

we restrict our attention to time-homogeneous processes; therefore, we simply say

Y[n] is Markovian.

3. Exchangeable Markov Multi-State Survival Processes

Define a multi-state survival process that is Markovian, exchangeable, and

consistent under subsampling as an exchangeable Markov multi-state survival pro-

cess. We next characterize these processes in both discrete and continuous time.

The behavior is markedly different in each setting, showing why the choice of

time scale matters in applied settings. All proofs are left to the Supplementary

Materials.
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3.1. Discrete-time multi-state survival models

In discrete-time, the exchangeable Markov multi-state survival process is

governed by a series of random transition matrices Pt, each drawn independently

from a probability measure Σ on PG. The initial state Y(0) is drawn from an

exchangeable distribution on [s]. Then, at time t, the transition distributions for

each u ∈ N are given by

pr(Y (u, t) = i′ |Y (u, t− 1) = i) ∼ [Pt]i,i′ ,

that is, the (i, i′) entry of Pt. Let Y?
Σ denote a discrete-time process constructed

using this procedure, with probability measure Σ. By construction, the process is

an exchangeable, Markov multi-state survival process in discrete time. Theorem 1

states that this procedure describes all such processes.

Theorem 1 (Discrete-time characterization). Let Y = {Y (u, t), u ∈ N, t ∈ N}
be an exchangeable Markov multi-state survival process. Then, there exists a

probability measure Σ on PG such that Y?
Σ is a version of Y.

Example 1 (cont.). We provide an illustrative construction for example 1. First,

assume all units start in the state “Healthy”. Next, for each t ∈ N, define

a set {Z(t)
i,i′} of independent beta random variables, with parameters γαi,i′ and

γβi,i′ , respectively. Set [Pt]1,2 = Z1,2, [Pt]1,3 = (1 − Z1,2) × Z1,3, [Pt]1,1 = 1 −
[Pt]1,2 − [Pt]1,3, [Pt]2,3 = Z2,3, [Pt]2,2 = 1 − [Pt]2,3, and [Pt]3,3 = 1. The random

matrix Pt governs the illness-death process at time t. We show simulation results

for t = 1, 2, 3, with αi,i′ = βi,i′ = 1, for all i, i′. For γ = 100, we simulate

P1 =

0.26 0.51 0.23

0.00 0.54 0.46

0.00 0.00 1.00

 , P2 =

0.25 0.50 0.26

0.00 0.54 0.46

0.00 0.00 1.00

 , P3 =

0.25 0.48 0.27

0.00 0.50 0.50

0.00 0.00 1.00

 .
For γ = 1 and the same random seed, we simulate

P1 =

0.13 0.45 0.43

0.00 0.16 0.84

0.00 0.00 1.00

 , P2 =

0.29 0.52 0.20

0.00 0.19 0.81

0.00 0.00 1.00

 , P3 =

0.01 0.69 0.30

0.00 0.62 0.38

0.00 0.00 1.00

 .
As γ → ∞, Pt converges to a deterministic matrix P ?. In this limiting case,

Y (u, ·) evolves as an independent Markov process with transition matrix P ?.
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3.2. Continuous-time multi-state survival models

In continuous time, the exchangeable Markov multi-state survival process is

governed by a measure on the transition matrices, denoted by Σ, and a set of

constants associated with the edge set, denoted by c = {ci,i′ | (i, i′) ∈ E}. Unlike

the discrete time case, transitions occur at random times (called jump times).

For the n-restricted process Y[n], the holding time in any state y[n] is ex-

ponentially distributed, with a rate parameter that depends on the number of

units in each state, that is, the current configuration x[n] (see Definition 1). At

jump time t, one of two events can occur: (a) a single unit u ∈ [n] experiences

a transition; or (b) a subset of [n] (potentially a singleton) experiences a simul-

taneous transition. If the jump time is of type (a), a state i ∈ [s] is chosen with

probability proportional to xi · ci,•, where ci,• :=
∑

i′:(i,i′)∈E ci,i′ . Among the xi
units satisfying Y (u, t−) = i, for u ∈ [n], choose one at random, and transition

that unit to state i′ ∈ [s], such that (i, i′) ∈ E with probability proportional

ci,i′/ci,•. If the jump time is of type (b), a transition matrix P (t) is obtained

from a measure Σ on PG. Given P (t), all units transition according to P (t) ∈ PG
under the constraint that at least one unit transitions to a new state. Unlike the

discrete-time setting, the measure Σ need not be integrable.

The above procedure provides a high-level construction of a continuous-time

process Y?
Σ,c. In Section 5, a detailed version of this procedure is given. Theo-

rem 2 states that this procedure describes all such processes.

Theorem 2 (Continuous-time characterization). Let Y = (Y(t), t ∈ R+) be an

exchangeable Markov multi-state survival process; and let Is be the s× s identity

matrix. Then, there exists a probability measure Σ on PG satisfying

Σ({Is}) = 0 and

∫
PG

(1− Pmin)Σ(dP ) <∞, Pmin = min
i∈[s]

Pi,i (3.1)

and constants c = {ci,i′ ≥ 0 | (i, i′) ∈ E}, such that Y?
Σ,c is a version of Y.

Theorem 2 generalizes Proposition 4.3 in Dempsey and McCullagh (2017)

from the survival setting. The result contains many well-known examples from

health and epidemiology including survival, illness-death, competing risk, and

comorbidity processes.

The procedure defined in Section 5 characterizes Y[n] in terms of (1) expo-

nential holding rates, and (2) the transition matrix at the jump times. In order

to define this procedure formally, we require an additional definition.

Definition 2 (Characteristic index). For any y[n] ∈ [s]n, the characteristic index,
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denoted by ζ(y[n]), is defined as

ζn(y[n]) =

∫
PG

1−
s∏
j=1

P
xj

j,j

Σ(dP ) +
∑
i∈[s]

xi
∑

i′:(i,i′)∈E

ci,i′ ,

where the sum is set to zero when {i′ ∈ V s.t. (i, i′) ∈ E} = ∅. Condition (3.1)

implies the characteristic index is finite, for any y[n] ∈ [s]n.

At a jump time t, let At,[n] ⊆ [n] denote the subset of units that experience

a transition. If |At,[n]| > 1, then the jump is a transition of type (b), governed

by Σ. If |At,[n]| = 1, then the jump may be a transition of type (a) or (b) and,

therefore, will depend on both c and Σ. The transition probability from Y[n](t−)

to Y[n](t), denoted q(Y[n](t−),Y[n](t)), is equal to

1

ζn(Y[n](t−))

∫
PG

∏
u∈[n]

P [Y (u, t−), Y (u, t)] Σ(dP )

︸ ︷︷ ︸
Term 1

+ δ(|At,[n]| = 1)
∑
u∈[n]

δ(u ∈ At,[n])
∑

i′:(i,i′)∈E

ci,i′ δ(Y (u, t−) = i, Y (u, t) = i′)


︸ ︷︷ ︸

Term 2

=:
λ(Y[n](t−),Y[n](t))

ζn(Y[n](t−))
,

where P [i, i′] = Pi,i′ , δ(·) is the indicator function, and λ(·, ·) is the non-normalized

transition function from [s]n × [s]n → R+. Term 1 depends on the measure Σ,

and is associated with a positive fraction of the population transitioning at time t

according to P ∼ Σ. Term 2 depends on the constants c, and is associated

with the single unit u ∈ At,[n] in state i transitioning to state i′ with probability

proportional to ci,i′ . A critical question is how to specify Σ and c. In applied

work, because single-unit transitions are unrelated to the rest of the population,

we recommend setting c ≡ 0; we discuss an appropriate family of parametrized

measures ΣΨ in Section 5.4.

4. Discretization and Rounding

It has been argued that “there may be no scientific reason to prefer a true

continuous time model over a fine discretization” (Breto et al., 2009, p. 325).

We tend to disagree with this viewpoint; a basic and very important issue in
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multi-state survival analysis is the distinction between inherently discrete data

(coming from intrinsically time-discrete phenomena) and grouped data (coming

from the rounding of intrinsically continuous phenomena). Theorems 1 and 2

supplement this scientific distinction with a mathematical one, because we see

distinct characterizations of discrete- and continuous-time processes. One exam-

ple of the former in survival analysis is the time taken to get pregnant, which

should be measured in menstrual cycles. Continuous-time processes represent the

majority of multi-state survival data. For this reason, we focus the remainder of

this paper on the continuous-time case.

5. Description of Continuous-Time Process

5.1. Holding times

Let t be the jump time at which the state vector Y[n] transitions into

state y[n] ∈ [s]n. To each such state y[n], we associate an independent exponen-

tially distributed holding time. By choosing the rate functions in an appropriate

way, the Markov multi-state survival process can be made both consistent under

subsampling and exchangeable under permutation of units.

Corollary 1. A set of rate functions {τn : [s]n → R+}∞n=1 is consistent if it is

proportional to the characteristic index τn(y[n]) ∝ ζn(y[n]).

Corollary 1 follows from Theorem 2, and shows how the exponential holding rate

relates to the characteristic index; in particular, the difference is a proportionality

constant ν, which depends on the choice of time scale.

5.2. Density function

Because the evolution of the process Y[n] is Markovian, providing an expres-

sion for the probability density function for any specific temporal trajectory is

straightforward. The probability that the first transition occurs in the interval

dt1, with transition from Y[n](t1−) to Y[n](t1), is

νζn(Y[n](t1−)) exp
(
−νζn(Y[n](t1−))t1

)
dt1 × q(Y[n](t1−),y[n](t1))

= exp
(
−νζn(Y[n](t1−))t1

)
dt1 × λ(Y[n](t1−),Y[n](t1)),

where λ(·, ·) denotes the non-normalized transition probabilities. Continuing in

this way, the joint density for a particular temporal trajectory Y[n] consisting of

k transitions with jump times 0 < t1 < · · · < tk is
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exp

(
−
∫ ∞

0
νζn(Y[n](s)) ds

)
k∏
j=1

λ
(
Y[n](tj−),Y[n](tj)

)
. (5.1)

The number of transitions k is a random variable, the distribution of which is

determined by (5.1), and hence by ζn.

Although the argument leading to (5.1) did not explicitly consider censor-

ing, the density function has been expressed in integral form so that censoring

is accommodated correctly. The pattern of censoring affects the evolution of

Y[n], and thus affects the integral, but the product involves only transitions and

transition times. As long as the censoring mechanism is exchangeability preserv-

ing (Dempsey and McCullagh (2017)), inference based on the joint density given

by equation (5.1) is possible. Simple type I censoring and independent censoring

mechanisms both preserve exchangeability.

5.3. Sequential description

Kolmogorov consistency permits ease of computation for the trajectory of

a new unit u′ = n + 1, given trajectories for the first n units Y[n] = y[n]. The

conditional distribution is best described using a set of paired measures consisting

of a continuous component Λ
(c)
i,i′ and an atomic measure Λ

(a)
i,i′ , with positive mass

only at the observed transition times of y[n], for (i, i′) ∈ E.

For a time t, not a transition time of y[n], consider the new unit transitioning

from state i to i′; that is, y[n+1](t−) = (y[n](t−), i) and y[n+1](t) = (y[n](t), i
′).

The continuous component has hazard and cumulative hazard

hi,i′(t) = λ(y[n+1](t−),y[n+1](t)) and Hi,i′(t) =

∫ t

0
hi,i′(s)ds,

respectively. The non-normalized transitions λ(·, ·) are piecewise constant as a

function of t. Therefore, so the integral is trivial to compute. However, censoring

implies it is not necessarily constant between transition times.

Now, let t be an observed transition time (i.e., y[n](t−) 6= y[n](t)) and con-

sider the atomic measure Λ
(a)
i,i′ associated with switching from state i to i′. At

each such point, the conditional hazard has an atom with finite mass

Λ
(a)
i,i′({t}) = log

ζn(y[n](t−)) q(y[n](t−),y[n](t))

ζn+1(y[n+1](t−)) q(y[n+1](t−),y[n+1](t))
,

or, on the probability scale,
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exp(−Λ
(a)
i,i′({t})) =

λ(y[n+1](t−),y[n+1](t))

λ(y[n](t−),y[n](t))
.

The above calculations define the conditional holding time of the new unit

after it enters state i at time t (i.e., Y (n + 1, t−) 6= i and Y (n + 1, t) = i),

conditional on Y[n] = y[n]. For s > 0, let {tj}Lj=1 denote the observed transition

times of y[n] within the time window (t, t+s]. The probability that the unit stays

in state i for at least s > 0 time points is

exp

− ∑
i′:(i,i′)∈E

ν(Hi,i′(t+ s)−Hi,i′(t))

 · L∏
j=1

exp

− ∑
i′:(i,i′)∈E

Λ
(a)
i,i′({tj})

 ,

which serves as the basis for the proposed MCMC procedure in Section 7.

5.4. Self-similar harmonic process

Theorem 2 implies tied failures are an intrinsic aspect of Markov multi-state

survival processes. However, grouped data are often the result of the rounding

of intrinsically continuous data. For these models to be useful in biomedical

applications, it is essential that they not be sensitive to rounding. This has

been addressed previously by restricting attention to processes with conditional

distributions that are weakly continuous; that is, small perturbations of transition

times imply small perturbations of the conditional distributions.

Dempsey and McCullagh (2017) originally studied this question in the con-

text of exchangeable Markov survival processes. In particular, they show that

the harmonic process is the only Markov survival process with weakly con-

tinuous conditional distributions. Here, we extend the harmonic process to

a multi-state survival process by associating with each edge (i, i′) ∈ E with

an independent harmonic process with parameters (νi,i′ , ρi,i′). For (i, i′) ∈ E,

let t
(i,i′)
1 < · · · < t

(i,i′)
k(i,i′) denote the unique observed transition times from i to i′

for Y[n], and let Y]
[n](t; i) = #{u ∈ [n] s.t. Yu(t) = i}; then, the continuous

component of the hazard is given by

Hi,i′(t) =
∑

l:t
(i,i′)
l ≤t

νi,i′
t
(i,i′)
l − t(i,i

′)
l−1

Y]
[n](t

(i,i′)
l−1 ; i) + ρi,i′

+ νi,i′
t− t(i,i

′)
m

Y]
[n](t

(i,i′)
m ; i) + ρi,i′

,

where the sum runs over the transition times t
(i,i′)
l ≤ t, and t

(i,i′)
m is the last such

event. The discrete component is a product over the transition times,
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∏
l:t

(i,i′)
l ≤t

Y]
[n](t; i) + ρi,i′

Y]
[n](t−; i) + ρi,i′

. (5.2)

For small {ρi,i′}(i,i′)∈E , the combined discrete components are essentially the same

as those of the right-continuous version of the Aalen–Johansen estimator.

We call this process the self-similar harmonic process with transition graph G.

The associated measure Σ on PG is

Σ(dP ) = δ[#{pi,i′ > 0, (i, i′) ∈ E} = 1] ν?(1− p?)−1pρ?−1
? dp?,

where p? is the single nonzero, off-diagonal entry, δ[·] is the indicator function,

and (ν?, ρ?) are the associated parameters.

While the self-similar harmonic process has strong appeal for use in applied

work, we argue it is not universally optimal. The independence assumption im-

plies that at each transition time, only transitions along a single edge (i, i′) ∈ E
are possible. While this may make sense in specific cases, additional care is

needed when expressing appropriate models in general.

6. Composable Multi-State Survival Models

We now discuss constraints on the multi-state survival models based on de-

compositions of the state-space [s]. We start with the illness-death process (Ex-

ample 1) as our illustrative example. The state “Dead” is unique, while the states

“Healthy” and “Unhealthy” both require the individual to be categorized more

broadly as alive. Suppose the labels “Healthy” and “Unhealthy” are uninfor-

mative with respect to failure transitions. Then, the refinement is immaterial,

and the transition rules should collapse to the transition rule for an exchangeable

Markov survival process.

This leads to two natural constraints: (1) state “Dead” is distinct; and (2)

states “Healthy” and “Ill” should be considered partially exchangeable (De Finetti

(1972)). To satisfy this, we constrain the measure Σ to take only positive mass

on one of two sets of transition matrices: (I) P , with off-diagonal positive mass

in entries (1, 3) and/or (2, 3) only; and (II) P , with off-diagonal positive mass in

entries (1, 2) and/or (2, 1) only. The first represent transitions from “Healthy” or

“Ill” to “Dead.” The second represent transitions between “Healthy” and “Ill.”

The partition B = {B1, B2} = {{1, 2}, {3}} splits the state space. We then say

the process is partially exchangeable with respect to the partition B.

Let (n1, n2) denote the number of individuals in states “Healthy” and “Un-

healthy” directly preceding a transition to state “Dead.” Then, the probability
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that d1 ≤ n1 and d2 ≤ n2 individuals, respectively, transition is proportional

to
∫
pn1−d1

1,1 pd11,3p
n1−d1
2,2 pd22,3Σ̃(dP ), where Σ̃ is the measure Σ restricted to type-(I)

transition matrices; that is, Σ̃ puts positive mass on transition matrices P such

that P1,2 = P2,1 = 0; thus Pk,k = 1 − Pk,3 for k = 1, 2, and P3,3 = 1. Here, we

restrict our attention to measures of the form

Σ̃(dP ) = ν1,1 · P ρ1,1−1
1,1 (1− P1,1)−1δ(P γ2,2 = P1,1)dP1,1dP2,2. (6.1)

Equation (6.1) corresponds to a proportional model on the logarithmic scale,

linking P1,1 and P2,2 via a baseline measure for a harmonic process. Details on

the connection to the proportional conditional hazards model are provided in the

Supplementary Material, Section S4.

6.1. Composable multi-state survival process

We now generalize the above by introducing B-composable processes.

Definition 3. A multi-state survival process isB-composable if there exists a par-

tition B = (B1, . . . , Bk) of the state-space [s], such that elements within block Bi
are partially exchangeable with respect to transition graph G.

Definition 3 is similar in spirit to that of Schweder (2007)—both aim to for-

malize the notion that state changes in the process Y are due to changes in dif-

ferent components. For the bi-directional illness-death process (example 1), B =

({1, 2}, {3}). For comorbidities (example S4), B partitions the risk processes.

For competing risks (example S4), B = ({1}, B2, . . . , Bk), where (B2, . . . , Bk)

partition the absorbing states, and the single state “Alive” is distinct, which im-

plies B1 = {1}. If Y is B′-composable and B′ is a refinement of the partition

B, then Y is also B-composable. To avoid confusion, from here on, when we say

Y is B-composable, we assume no refinement of B′ exists such that Y is also

B′-composable.

6.2. Choice of measure for a composable process

Here, we construct an appropriate measure Σ for a B-composable exchange-

able Markovian multi-state survival process. The measure will take positive mass

only on transitions from states within Bj to states within Bj′ , for a single choice

of j, j′ ∈ {1, . . . , k} := [k] indexing components of the partition B. For each

component Bj , let i(j) ∈ [s] denote a representative state. Then, for j, j′ ∈ [k],

define the restricted measure on transitions from states in Bj to states in Bj′ ,

Σ̃jj′(dP ), by
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νj,j′P
ρj,j′−1

i(j),i(j)

(
1− Pi(j),i(j)

)−1
dPi(j),i(j) (6.2)∏

l∈Bj\i(j)

δ
[
P
γl,j′
l,l = Pi(j),i(j′)

]
dPl,l (6.3)

∏
l∈Bj

∏
m∈Bj′ : (l,m)∈E

δ[yl,m = αl,m]dyl,m, (6.4)

where γl,j′ > 0, γi(j),j′ = 1, αl,m ∈ [0, 1], Pl,m ∈ [0, 1], and yl,m ∈ [0, 1], such

that
∑

m∈Bj′ : (l,m)∈E yl,m = 1. Here, the assumption is Pl,m = (1 − Pl,l) · yl,m,

for l 6= m, and Pl,l = P
γl,j′

i(j),i(j). Lines (6.2) and (6.3) build the general measure

from a baseline harmonic measure and the assumption of proportionality on the

logarithmic scale for Pl,l, where the proportionality constant depends on l ∈ Bj .
Note that γi(j),j′ is set to one by design. Therefore, the parameters measure the

risk relative to the chosen representative state. Line (6.4) addresses the fact that

a single state l ∈ Bj can transition to multiple states in Bj′ , leading to a simple

Gibbs update procedure.

7. Parameter Estimation

In practice, a patient’s health status is typically measured at recruitment

(t = 0), and then regularly or intermittently thereafter while the patient is un-

der observation. A complete observation on one patient (t, Y (t), V,∆) consists

of the appointment schedule t, multi-state process measurements Y (t), a fail-

ure/censoring time V , and a censoring indicator ∆. For censored records, ∆ = 1

and the censoring time V is usually, but not necessarily, equal to the date of the

most recent appointment or the end of study.

Here, we assume non-informative observation times. In particular, given

previous appointment times tk−1 = (t1, . . . , tk−1) and observation values Y (tk−1),

the next appointment time tk satisfies

tk ⊥⊥ Y | (tk−1, Y (tk−1)). (7.1)

That is, the conditional distribution of the random interval tk− tk−1 may depend

on the observed history, but not on the subsequent health trajectory.

7.1. The MCMC algorithm

In this section, we derive an MCMC algorithm for posterior computations,

given irregularly sampled multi-state survival data under assumption (7.1).
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7.1.1. Prior specification and MCMC updates

We start with the prior specification. Let Φ denote the complete set of

parameters. We use bar notation (e.g., ᾱ, γ̄) to denote each subset of parameters.

Recall that for identifiability reasons, γi(j),j′ = 1, for j, j′ ∈ [k]. For all other

pairs (l, j′), the prior is set to log(γl,j′) ∼ N(0, 1). Weakly informative default

priors are an alternative (Gelman et al. (2008)). The complete-data likelihood is

non-conjugate, so Metropolis–Hastings updates are performed.

We follow Dempsey and McCullagh (2017) and set ρj,j′ := ρ as a fixed

tuning parameter. We define λj,j′ = νj,j′ · ρ. Scaling by ρ allows for a direct

comparison of λj,j′ across various choices of ρ. We set a conjugate Gamma prior

λj,j′ ∼ Gamma(α, β). The posterior distribution, given Y[n], γ̄, ᾱ, ρ, is

Gamma

(
α+ kj,j′ , β + ρ ·

∫ ∞
0

ζn(Y[n](s); γ̄, ᾱ, ρ)ds

)
, (7.2)

where kj,j′ is the number of transitions between blocks j and j′.

Finally, for l ∈ [s], consider transitions to partition Bj′ . We index the states

in Bj′ such that a transition from l is possible by 1, . . . ,ml,j′ . Then, the prior

for ᾱl,j′ = (αl,1,j′ , . . . , αl,ml,j′ ,j′) is a Dirichlet distribution with parameters p̄l,j′ =

(pl,1,j′ , . . . , pl,ml,j′ ,j′). Furthermore the posterior is conjugate and

ᾱl,j′ |Y[n], γ̄, λ̄, ρ ∼ Dir (pl,1,j′ + kl,1,j′ , . . . , pl,ml,j′ + kl,ml,j′) , (7.3)

where kl,m′,j′ counts the number of transitions from state l to m′ in Y[n].

7.1.2. Conditional sampling patient trajectories

Uniformization (Jensen (1953); Hobolth and Stone (2009)) is a well-known

technique for generating sample paths for a Markov state-space process, and is

highly adaptable to MCMC. See Rao and Teh (2013) for an excellent discus-

sion of a uniformization-based MCMC. A direct application of existing Gibbs

samplers based on uniformization to the current setting is problematic, owing to

the combinatorial growth in the state-space and the time-inhomogeneity of the

conditional Markov process. Luckily, this approach can be adjusted using the

sequential description from Section 5.3.

Here, we show how to adapt the uniformization-based Gibbs sampler to sam-

ple a patient trajectory Yi, given all other trajectories Y−i = y−i, parame-

ters Φ, and the prior iteration’s patient trajectory ỹi. For patient i, we ob-

serve (ti,Yi(ti), Vi,∆i). The appointment schedule ti is an ordered sequence 0 ≤
ti,0 < · · · < ti,ki ≤ Vi. By the Markov property, we can focus on sampling
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in each interval [ti,j , ti,j+1] separately. Define the set of transition times t̃j ,

for ti,j ≤ t̃1,j < · · · < t̃Lj ,j ≤ ti,j+1, as the unique transition times in y−i within

the interval [ti,j , ti,j+1]. At each time t ∈ [ti,j , ti,j+1], define the piecewise con-

stant function Ωt = C · max(i,i′)∈E |Λ
(c)
i,i′(t)|, with C > 1. Sample a Poisson

process wj ⊂ [ti,j , ti,j+1] with piecewise constant rate Rt = Ωt − Λ
(c)
ỹi(t),ỹi(t)

(t),

where Λ
(c)
ỹi(t),ỹi(t)

(t) is the continuous component of the conditional distribution.

Let ui,j denote the transition times of ỹi in the interval [ti,j , ti,j+1]. We then

apply the forward-filtering, backward sampling algorithm with transition matrix

Bt = (I+Λ(c)/Ωt) at times t ∈ wj∪(ui,j \ t̃j), and with the transition matrix Λ(a)

at times t̃j .

7.1.3. MCMC procedure

In each MCMC iteration, we proceed sequentially through the patients,

sampling a latent multi-state path for patient Yi, given all other latent pro-

cesses Y−i := Y[n]\i, as described in Section 7.1.2. Conditional on Y[n], we

perform Metropolis Hastings updates for γ̄. We end each iteration by sampling λ̄

and ᾱ using equations (7.2) and (7.3), respectively. One issue with this procedure

is that the path sampling is computationally expensive. To address this issue,

we propose an approximate MCMC algorithm in which the latent processes are

only updated every few iterations. In simulations, the posteriors do not change

significantly, but the run time drops significantly. For the sake of conciseness,

we provide a simulation study of the MCMC procedure in the Supplementary

Material (see Section 1). In the remainder of this paper, we apply the proposed

methodology to an irregularly sampled multi-state survival data set.

8. Cardiac Allograft Vasculopathy Case Study

To illustrate our methodology, we use data from angiographic examinations

of 622 heart transplant recipients at Patworth Hospital in the United Kingdom.

These data were downloaded from the R library http://cran.r-project.org/

web/packages/msm, maintained by Christopher Jackson. Cardiac allograft vas-

culopathy (CAV) is a deterioration of the arterial walls. Four states were defined

for heart transplant recipients: no CAV (s = 1), mild/moderate CAV (s = 2),

severe CAV (s = 3), and dead (s = 4). The transition graph is given by Fig-

ure 2. Yearly examinations occurred for up to 18 years following a transplant.

The mean follow-up time is 5.9 years. For censored records, the censoring time

is set equal to the final appointment time. Of the 622 patients, only 192 were

observed in state 2 (Mild CAV) at any point during their follow-up. Of these

http://cran.r-project.org/web/packages/msm
http://cran.r-project.org/web/packages/msm
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1

No CAV

History

2

History of 

Mild/Moderate CAV

3

History of severe CAV

4

Dead

Figure 2. Cardiac allograft vasculopathy (CAV) transition diagram.

192, 43 were subsequently observed in state 1. Only 92 patients were observed in

state 3 (Severe CAV) at any point during their follow-up. Of these 92, 12 were

subsequently observed in state 2.

We set B = (B1 = {1, 2, 3}, B2 = {4}) and ρ = 10. The parameters

are {λ(j,j′)}j,j′=1,2, {γl,1, γl,2}l∈B1\1, and α2,1 ∈ [0, 1]. For identifiability, we

set γ1,1 and γ1,2 equal to one. Because transitions from state 2 to 1 occur,

but should not occur too often, we set the prior on α = α2,1 ∼ Beta(2, 8). We set

λ11 and λ12 ∼ Gamma(1, 1). The parameters (γ21, γ22, γ31, γ32) have independent

standard log-normal priors. The approximate MCMC sampler is used.

The traceplots in Figure 3a suggest convergence after the first 100 iterations.

The posterior mean of λ11 is 0.80 (i.e., the marginal time until a transition from

state 1 to state 2 is 1.25 years). The parameters (γ21, γ31) have posterior means

(2.27, 0.52), translating into marginal holding times of 0.58 and 2.35 years, re-

spectively. The posterior mean for α is 0.38, suggesting that a patient is a bit

more likely to experience a progression of his/her CAV status than a regression.

The posterior mean for λ12 is 0.60 (i.e., marginally, the holding time in state 1

until a transition to state 4 is 1.68 years). This suggests that in state 1, disease

progression is slightly more likely than failure. The parameters (γ22, γ32) have

posterior means (1.03, 1.76), respectively. This translates marginally into holding

times of 1.63 and 0.99 years, respectively. Figure 3b suggests that the failure rate

from state 3 is high relative to that from state 1, while the rates from states 1

and 2 are similar.

We next consider the posterior distributions for the survival functions. Fig-

ure 4 plots the median survival at each time t over all iterations of the MCMC

sampler, Kaplan–Meier survival function estimator, and point-wise 5% and 95%

quantiles for the posterior survival function, given the baseline state “Severe

CAV” (s = 3). We see that the posterior survival curve is significantly lower

than the Kaplan-Meier survival function estimator. This reflects the expected

disease progression since baseline. The expected restricted-mean survival time
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Figure 3. MCMC traceplots and densities for CAV study.
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(b) Survival functions at t = 5

Figure 4. Survival functions for “No CAV” (black), “Mild/Moderate CAV” (light gray),
and “Severe CAV” (dark gray); Kaplan-Meier estimator (dotted black).

is estimated under the restriction t ≤ 20; because the study follow-up ends at

that time. For states 1, 2, and 3, the expectations are 8.84, 8.40, and 7.41,

respectively. Recall that all patients are in state 1 at baseline; therefore, the

Kaplan-Meier curve should be compared with the median survival curve given

the new patient is in state 1. Under the Kaplan–Meier estimator, the expected

restricted-mean survival time is 9.66. The 5% and 95% quantiles for the survival

function at each time t when the patient is in state 3 at baseline are included.

Figure 4b plots the median survival, given that the user is alive at time t = 5.

The expected restricted-mean remaining survival time from time 5 given that a

new patient is in state 1, 2, or 3, is 6.12, 5.67, and 5.11 respectively.
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Figure 5. Survival functions from baseline for the parametric (light gray), nonparametric
(black), and current (dark gray) methodologies.

8.1. Comparison with alternative life history analyses

We compare our results with those obtained from (a) a time-homogeneous

parametric Markov model (Saeedi and Bouchard-Côté (2011); Hajiaghayi et al.

(2014); Rao and Teh (2013)), and (b) a nonparametric Aalen–Johansen estimator

under the assumption that the jump times coincide with the observation times

(Aalen et al. (2015)). Figure 5a visualizes the estimated survival curves for each

approach. The survival estimator under (a) clearly suffers from model misspeci-

fication, likely over-estimating survival in state 1 and under-estimating survival

in states 2 and 3. The nonparametric estimator suffers from the last observa-

tion carried forward (LOCF) assumption. In particular, disease progression is

restricted to occur at observation times. Moreover, it requires that state transi-

tions be observed. This leads to state 2 having a higher survival probability than

that of state 1 later in the study, which is scientifically implausible. The non-

parametric survival function more closely matches our current results for t > 5,

given s = 0 at baseline. This is because state 3 has a holding time that is much

longer than the observation, leading to lower bias under the LOCF assumption.

Figure 5a suggests the proposed framework can be viewed as regularizing the non-

parametric estimator toward the parametric model; indeed, our model assumes

that the marginal process Yu, for any u ∈ N, is a time-homogeneous Markov

model. Because we have a sufficient sample size, the conditional distributions

account for the model misspecification, while allowing us to deal naturally with

intermittent observation times. For the nonparametric (parametric) estimator,

the expected restricted-mean survival times in states 1, 2, and 3 are 10.85 (24.56),

14.76 (11.62), and 8.36 (5.84), respectively.
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Figure 5b compares the estimated conditional survival curves at t = 5 from

our proposed methodology with that from the nonparametric estimator. Here,

the gaps between the nonparametric survival curves, given a state at time t = 5,

are more spaced as there are few observed transitions among states. The proposed

methodology accounts for possible transitions that agree with the data, suggesting

that the conditional survival curves are closer than the nonparametric analysis

suggests. For the nonparametric estimator, the expected restricted-mean survival

times in states 1, 2, and 3 is 8.52, 5.71, and 4.71, respectively.

9. Discussion

This study lays a theoretical and methodological foundation for the devel-

opment of models based on exchangeable Markov multi-state survival processes.

The model class encompasses many examples from health and epidemiology. Sec-

tion 5.3 demonstrates how the process accommodates dependence, providing a

data-generating description of an unobserved trajectory Yn+1, given the observed

trajectory Y[n]. The model class, however, is limited in several respects. First,

the models are not yet suited to handle dynamicity, an important issue when

dealing with recurrent event processes (Peña (2016)). Second, we consider only

the time-homogeneous Markov setting, which implies that the measure Σ is fixed

across t and the holding times are exponential. Third, in many settings, the ob-

servations are noisy and the state-space should be considered latent. We believe

these issues can be handled by suitable extensions of the proposed methodology.

For recurrent events, a more flexible dependence on the event-history can be in-

troduced (Peña and Hollander (2004)). A semi-Markovian structure could allow

for more complex holding-time distributions. A hidden Markov structure could

account for measurement errors and allow for state misclassification. These issues

are left to future work.

Supplementary Material

In the supplementary materials, we present the proofs for both the discrete-

time and continuous-time characterizations of the exchangeable, Markov multi-

state survival processes. We then present several important examples that moti-

vate the current study of multi-state survival processes, including survival, illness-

death, comorbidities, and competing risk processes. We then discuss the choice of

measure and connect our proposal to the proportional conditional hazards model.

We end with a simulation example to demonstrate the proposed methods and a

link to all code related to the CAV analysis and simulation study.
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