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Abstract: Multivariate responses are commonly encountered in many applications

with high-dimensional input variables. Feature screening has been shown to be a

very useful data analysis tool for high-dimensional data. Since the introduction of

the sure independence screening approach, many variable screening methods have

been proposed and studied in the literature. However, the majority of these methods

focus on the classical univariate response data case, and do not apply naturally

to data sets with multiple responses. We systematically study variable screening

methods for multi-response data. First, we consider extensions of several popular

screening methods to deal with multiple responses. Each of these methods has its

own clear drawbacks. We then propose a new model-free screening method, which

we call multi-response rank canonical correlation screening (mRCC), which not

only takes into account the dependence structure among the multivariate responses,

but also preserves nice properties of the rank correlation, such as robustness and

invariance under monotonic transformation. The sure screening property of mRCC

is established under weak regularity conditions. Extensive numerical experiments

demonstrate the superior performance of mRCC over other available alternatives.

Key words and phrases: Canonical correlation, multi-response data, rank correla-

tion, sure screening property.

1. Introduction

Multivariate responses are commonly encountered in many statistical appli-

cations. For example, microarray expression experiments and array comparative

genomic hybridization (CGH) experiments have been conducted by biologists in

breast cancer cohort studies (Sørlie et al. (2001); Zhao et al. (2004); Chin et al.

(2006); Bergamaschi et al. (2008)). The resulting data from these experiments

are RNA transcript levels and DNA copy numbers. Although analyses of ex-

pression arrays alone or CGH arrays alone have provided useful information, an

integrative analysis of DNA copy numbers and gene expression files is necessary,

because these two types of data offer complementary information. Hence, in-

tegrating DNA and RNA data benefits the recognition of more subtle genetic
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regulatory relationships in cancer cells (Pollack et al. (2002)).

A straightforward way to model and analyze such data sets is to use a multi-

response regression, though our method is not limited to the regression model.

Let n denote the sample size, p the number of predictors, and q the number of

responses. A multi-response regression model is

Y = B0 + XB + E, (1.1)

where Y = (Y1, . . . , Yq) is an n× q response matrix, X = (X1, . . . , Xp) is an n×p
design matrix, B = (βkj) is a p× q matrix of parameters, B0 = (β011, . . . , β0q1)

is an n × q matrix of intercepts, with 1 an n-vector with all entries equal to

one, and E is an unobserved n × q matrix, with row vectors ε1, . . . , εn that are

independent copies with mean zero and covariance matrix ΣE. In general, we

should not treat a multi-response problem as multiple univariate response prob-

lems, although the solutions may sometimes be the same. For example, we can

obtain the ordinary least squares estimator of (1.1) by performing a separate lin-

ear regression on each response. If the errors are correlated, a weighted criterion

of the residual sum of squares arises naturally, and the solution still amounts to

the ordinary least squares estimates. However, this is not the case for a regres-

sion with a Lasso penalty on the entries of B. When a Lasso regression involves

a known ΣE, the optimal solution for B obtained from the weighted criterion

accounts for the inverse of ΣE (Rothman, Levina and Zhu (2010)), which is dif-

ferent from the separate Lasso regression estimates with each response. When p

is very large, there are challenges related to computational efficiency, statistical

consistency, and algorithmic stability (Fan, Samworth and Wu (2009)). To this

end, many shrinkage estimators of the parameters have been proposed for the

multi-response regression in (1.1) that penalize the optimization with the resid-

ual sum of squares. Some simultaneously estimate the parameters and discard

irrelevant predictors using proper regularization (Obozinski, Taskar and Jordan

(2010); Peng et al. (2010); Lee and Liu (2012)). Others encourage an estimator

of reduced rank (Anderson (1951); Yuan et al. (2007); Chen and Huang (2012)),

in which dimension reduction is achieved by constraining the coefficient matrix

to have low rank.

Fan and Lv (2008) argue that it is beneficial for both computations and

theoretical considerations to first reduce the ambient dimension to a moderately

high dimension, and then to fit a regularized model. The dimension-reduction

step should preserve all important features–a property known as the sure screen-

ing property. To demonstrate their philosophy, Fan and Lv (2008) introduced a
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sure independence screening (SIS) procedure, using a Pearson correlation to filter

out a large number of noise variables. SIS is shown to have the sure screening

property. Inspired by this influential paper, many researchers have studied the

variable screening problem and proposed more sophisticated screening methods to

deal with more complicated models. These include maximum marginal likelihood

screening for generalized linear models (Fan and Song (2010)), nonparametric

independence screening (NIS) for additive models (Fan, Feng and Song (2011)),

robust rank correlation screening (RRCS) for semiparametric single-index models

with a monotonic link function (Li et al. (2012)), quantile-adaptive screening for

a quantile regression (He, Wang and Hong (2013)), empirical likelihood screening

for parametric models that can be formulated using general estimating equations

(Chang, Tang and Wu (2013)), and so on. Fan, Ma and Dai (2014) extended

NIS for varying-coefficient models, and Liu, Li and Wu (2014) considered these

types of models based on a conditional correlation coefficient. Chang, Tang and

Wu (2016) proposed a unified approach for nonparametric and semiparametric

models based on the marginal empirical likelihood. When the response is binary,

Fan and Fan (2008) proposed a t-statistic to screen predictors, and Mai and Zou

(2013) developed the Kolmogorov filter using the Kolmogorov–Smirnov statistic.

Huang, Li and Wang (2014) proposed a Pearson chi-square-based feature screen-

ing method for categorical responses and predictors. Cui, Li and Zhong (2015)

considered a discriminant analysis with a multi-categorical response variable. An-

other popular screening genre is that of the model-free methods, which overcome

the model misspecification problem. For instance, these methods include the sure

independent ranking and screening (SIRS) (Zhu et al. (2011)), distance correla-

tion screening (DCS) (Li, Zhong and Zhu (2012)), and fused Kolmogorov filter

(Mai and Zou (2015)).

The focus of this study is multi-response data. The aforementioned screening

methods are primarily developed for the univariate data case. To the best of our

knowledge, the only method that can naturally handle multivariate and univariate

responses is the distance correlation screening (DCS) method because a distance

correlation can be defined between two random vectors. However, it has been

observed that in the presence of heavy-tailed data, the performance of DCS can

be very poor (Mai and Zou (2015)). This is because the sure screening property of

DCS relies on a moment condition that the response and the predictors should be

sub-Gaussian. When the assumption is violated, the sure screening property of

DCS becomes questionable, limiting its application to the multivariate responses.

Furthermore, the DCS is not invariant against monotonic transformation.

The main goal of this study is to develop new variable screening methods for
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multi-response data. First, we extend several existing screening methods (SIS,

NIS, RRCS) to the multi-response case by simply summing up the squares of

the marginal utility with every component of the multivariate response, which is

equivalent to treating the problem as multiple univariate response data problems.

We believe a better variable screening method is possible if we consider poten-

tial dependence between multiple responses. We propose a new approach called

multi-response rank canonical correlation screening (mRCC) without imposing a

model assumption. This new model-free method integrates two commonly used

rank correlations, Spearman’s correlation and/or Kendall’s τ correlation, with a

canonical correlation. This inherits the multivariate merits of the canonical cor-

relation that takes advantage of the dependence structure among the multivariate

responses. In addition, it preserves nice properties of the rank correlation that

can handle heavy-tailed predictors and responses, as well as invariance against

monotonic transformations. Moreover, mRCC is easy to implement and cheap

to compute. The sure screening property can be shown under very weak condi-

tions, without assuming any moment conditions on the predictors and responses.

Hence, we recommend using the mRCC method for variable screening with multi-

response data.

The rest of the paper is organized as follows. Extensions of several existing

screening methods are given in Section 2. In Section 3, we first introduce a

screening method based on a canonical correlation, and then propose mRCC.

The theoretical discussion in Section 4 shows that the sure screening property of

mRCC holds under weak regularity conditions. Section 5 presents our simulation

experiments and a genomic data example, which we use to compare the methods.

The technical proofs are presented in the Appendix.

Notation. Throughout this paper, we assume X is centered to have mean zero

columnwise. We denote Xk, Yj as the kth, jth column of X,Y, for k = 1, . . . , p

and j = 1, . . . , q. To avoid introducing additional notation, we sometimes refer

to Xk, Yj or X,Y as the vectors of the samples, and sometimes refer to them as

the random variables, when necessary. We also abuse Y to denote the random

vector of the response. Let ‖ · ‖ be the Euclidean norm for a vector, and let ‖ · ‖F
be the Frobenius norm for a matrix. Denote RSS as the residual sum of squares

from a regression.

2. Extensions of Existing Screening Methods

2.1. Sure independence screening
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Fan and Lv (2008) proposed the SIS method, using the marginal correlation

ranking XT
k Y /‖Xk‖‖Y ‖ to filter out features that are weakly correlated with the

response. SIS can be viewed from a marginal regression perspective:

min
β0,βk

∥∥Y − β01−Xkβk
∥∥2. (2.1)

Under the condition that the Xk are further standardized to have norm one, it

is easy to show that this is equivalent to ranking by the absolute value of the

regression coefficient, by the magnitude of the Pearson correlation coefficient, or

by the descending order of the RSS of the marginal regression. To carry out a

similar screening procedure when the response is multivariate, a straightforward

idea is to generalize (2.1) to

min
B0,βk

∥∥Y −B0 −Xkβk
∥∥2
F
, (2.2)

where βk = (βk1, . . . , βkq) is a row vector of parameters. The RSS has the

following form:

RSSk =

q∑
j=1

‖Yjc‖2 ·
(
1− ρ̂2kj

)
,

where Yjc = Yj − Ȳj1, and ρ̂kj = ρ̂(Xk, Yj) is the sample Pearson correlation

coefficient between Xk and Yj . We scale Y and X to have mean zero and norm

one columnwise in order to remove the scale influence. In this case, the rankings

according to the following three quantities are still equivalent: the `2-norm of the

coefficient vector, the sum of the squares of the Pearson correlation coefficients,

and the descending order of the RSS. Hence, by aggregating the squares of the

Pearson correlation coefficients of the predictor with each response, we obtain

ω̂mSIS
k = ‖ρ̂k‖2, (2.3)

where ρ̂k = (ρ̂k1, . . . , ρ̂kq)
T, and refer to (2.3) as the multi-response sure in-

dependence screening (mSIS) statistic. Note that this approach actually treats

the multi-response problem as multiple univariate response data problems. It has

been observed that SIS can fail when the linear regression model assumption does

not hold for the data. It is expected that mSIS inherits this serious drawback of

SIS.

2.2. Nonparametric independence screening

Fan, Feng and Song (2011) developed nonparametric independence screening
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(NIS) for additive models, which allows the true regression function to be nonlin-

ear in the predictors. They considered a marginal nonparametric regression using

a basis function expansion such as B-splines. Similarly to the generalization of

SIS, we aggregate RSS from the marginal nonparametric regressions with each

response

min
fk∈Sqn

∥∥Y − fk(Xk)
∥∥2
F

= min
bk∈Rdn×q

∥∥Y −Ψkbk
∥∥2
F
, (2.4)

where fk = (fk1, . . . , fkq), with fkj(Xk) =
∑dn

l=1 γkjlΨl(Xk) an n-vector sample

version intending to approximate E(Yj |Xk), Sn is the space of polynomial splines,

Ψk , (Ψ1(Xk), . . . ,Ψdn(Xk)) denotes an n × dn normalized B-spline basis ma-

trix, bk = (γk1, . . . ,γkq), and γkj = (γkj1, . . . , γkjdn)T, for j = 1, . . . , q. The

corresponding solution is

f̂k(Xk) = Ψk(Ψ
T
kΨk)

−1ΨT
kY.

We can treat

ω̂mNIS
k = ‖f̂k(Xk)‖2F (2.5)

as the marginal utility of the multi-response nonparametric independence screen-

ing (mNIS) for Xk. Equivalently, we can rank the predictors in descending order

of the RSS of the marginal nonparametric regressions (2.4). NIS can fail if the

underlying additive regression model assumption fails. It is expected that mNIS

inherits this drawback of NIS.

2.3. Robust rank correlation screening

Li et al. (2012) proposed using Kendall’s τ correlation coefficient as a ranking

statistic. Their method is named RRCS. The marginal utility they propose is

equal to a quarter of Kendall’s τ correlation coefficient; that is,

1

4
τ̂(Xk, Y ) =

1

n(n− 1)

n∑
i 6=l

I(Xik < Xlk)I(Yi < Yl)−
1

4
.

Similarly to (2.3), we try to extend this to the multiple-response case by sim-

ply summing up the squares of the Kendall’s τ correlations between the predictor

and each response,

ω̂mRRCS
k = ‖τ̂k‖2, (2.6)

where τ̂k =
(
τ̂(Xk, Y1), . . . , τ̂(Xk, Yq)

)T
. We refer to (2.6) as the multi-response

robust rank correlation screening (mRRCS) statistic. The population version

of Kendall’s τ correlation is zero if two random variables are independent; as a
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result, ωmRRCS
k is zero if Xk is independent of the multivariate responses.

2.4. Distance correlation screening

The distance correlation (DC) (Székely, Rizzo and Bakirov (2007)) measures

the dependence between two random vectors. Unlike the Pearson correlation and

Kendall’s τ correlation, the DC is equal to zero if and only if the two random

vectors are independent. This unique property motivated Li, Zhong and Zhu

(2012) to consider distance correlation screening (DCS), which has become one

of the most popular model-free variable screening methods. DC and DCS can be

applied naturally to multi-response data. For the sake of completeness, we briefly

review DCS here. The DC can be computed using the distance covariance. For

a given sample {Ui,Vi}ni=1 from two random vectors U,V, the squared distance

covariance can be estimated as

d̂cov
2
(U,V) = Ŝ1(U,V) + Ŝ2(U,V)− 2Ŝ3(U,V),

where

Ŝ1(U,V) =
1

n2

n∑
i=1

n∑
j=1

‖Ui −Uj‖ ‖Vi −Vj‖,

Ŝ2(U,V) =
1

n2

n∑
i=1

n∑
j=1

‖Ui −Uj‖
1

n2

n∑
i=1

n∑
j=1

‖Vi −Vj‖,

Ŝ3(U,V) =
1

n3

n∑
i=1

n∑
j=1

n∑
l=1

‖Ui −Ul‖ ‖Vj −Vl‖.

Therefore, the DCS can be implemented by computing

ω̂DCS
k = d̂cor(Xk,Y) =

d̂cov(Xk,Y)√
d̂cov(Xk, Xk)d̂cov(Y,Y)

for each predictor Xk.

Numerical studies (Li, Zhong and Zhu (2012)) have shown DCS exhibits good

performances for very complex models. In general, DCS outperforms SIS, unless

the true model is a linear regression model. Li, Zhong and Zhu (2012) proved

that the sure screening property of DCS holds if the responses and predictors

are sub-Gaussian. On the other hand, DCS performs poorly in the presence of

heavy-tailed data (Mai and Zou (2015)). Hence, sub-Gaussian tail assumptions

seem to be necessary and sufficient for the sure screening property of DCS. An-
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other important drawback of DCS is that it is not invariant against monotonic

transformation, unlike, for example, rank correlation screening (Li et al. (2012))

and the fused Kolmogorov filter (Mai and Zou (2015)).

3. A New Approach: Rank Canonical Correlation Screening

In this section, we first review a useful tool in multivariate analysis called the

canonical correlation analysis (CCA), and then introduce a novel way to combine

a rank correlation and a canonical correlation.

3.1. Canonical correlation

A canonical correlation analysis is a way of inferring information from cross-

covariance matrices by finding two projections for two random vectors, such that

the projected random vectors have maximum correlation with each other. For

the kth predictor Xk, the canonical correlation between Xk and (Y1, . . . , Yq) is

defined as

ρck = max
b

Σ∗XkYb√
Σ∗Xk

√
bTΣ∗Yb

,

where Σ∗Xk ,Σ
∗
XkY

, and Σ∗Y are submatrices of Σ∗ =

(
Σ∗Xk Σ∗XkY

Σ∗YXk Σ∗Y

)
, which is

the covariance matrix of
(
Xk, (Y1, . . . , Yq)

)
. By the Cauchy–Schwartz inequality,

it can be shown that

ρck =

(
Σ∗XkYΣ∗

−1

Y Σ∗YXk
)1/2√

Σ∗Xk
. (3.1)

The canonical correlation can also be related to Pearson correlations. Note

that the square of (3.1) is equivalent to

(ρck)
2 = ρT

k (ΣY)−1ρk, (3.2)

recalling that ρk = (ρk1, . . . , ρkq)
T are the Pearson correlations between Xk and

Yj , and ΣY = (ρjl)q×q is the correlation matrix of (Y1, . . . , Yq). We can use

ω̂mCC
k = (ρ̂ck)

2 = ρ̂T
k (Σ̂Y)−1ρ̂k (3.3)

as a variable screening statistic, which we refer to as the multi-response canonical

correlation screening (mCC) statistic.

To compare mCC and mSIS, we see that ωmSIS
k simply sums up ρ2kj , whereas

(3.2) is a weighted summation of ρ2kj and ρkjρkl, (j 6= l), recruiting the informa-

tion on the cross-correlation among Yj . In other words, mCC is able to use the
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joint information of the multiple responses and the covariate.

The mCC statistic is still a linear correlation measure. We would like to

consider a generalization that can capture the nonlinear correlation between the

response vector and the predictor. We introduce such a method in the next

subsection.

3.2. Rank canonical correlation screening

Inspired by the robust advantage of rank correlation, we consider a better

version of mCC that integrates rank correlation with canonical correlation. Two

commonly used rank correlations, Kendall’s τ correlation and Spearman’s rank

correlation, are employed.

We first replace the Pearson correlations between Xk and Yj in (3.3) with

the corresponding Spearman rank correlations,

(r̂ck)
2 , r̂Tk Σ̂−1R(Y)r̂k, (3.4)

where r̂k = (r̂s(Xk, Y1), . . . , r̂s(Xk, Yq))
T are the Spearman correlation coefficients

between Xk and Yj , and Σ̂R(Y) = (r̂s(Yj , Yl))q×q is a matrix of Spearman corre-

lations between all pairs of Yj and Yl. The Spearman rank correlation (Spearman

(1904); Durbin and Stuart (1951)) that measures an ordinal association is analo-

gous to the Pearson correlation between the rank values of two variables. Thus,

Σ̂R(Y) is exactly the sample correlation matrix of
(
R(Y1), . . . , R(Yq)

)
, where R(·)

stands for the rank of a random variable among n observations.

Next, we adopt Kendall’s τ correlation in (3.4), and define

(τ̂ ck)2 , τ̂T
k Σ̂−1

R̃(Y)
τ̂k, (3.5)

recalling that τ̂k = (τ̂(Xk, Y1), . . . , τ̂(Xk, Yq))
T are the Kendall τ correlations be-

tween Xk and Yj , and Σ̂R̃(Y) = (τ̂(Yj , Yl))q×q is a matrix of Kendall τ correlations

between all pairs of Yj and Yl.

Therefore, we propose a screening approach based on (3.4) or (3.5) as the

multi-response rank canonical correlation screening (mRCC) statistic, and denote

the ranking measures as ω̂mRCC1
k or ω̂mRCC2

k , respectively. With a prespecified

threshold tn or t′n, we select the set

Âtn = {1 ≤ k ≤ p : ω̂mRCC1
k ≥ tn} or Â′t′n = {1 ≤ k ≤ p : ω̂mRCC2

k ≥ t′n}

as the important variables, respectively. In Section 4, we establish the sure

screening properties of mRCC1 and mRCC2. In practice, we can also pick the top
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dn variables with the top dn mRCC1 or mRCC2 values, where dn = c[n/ log n],

for c = 1 or 2.

Remark 1. The proposed mRCC not only inherits the multivariate merits of the

canonical correlation, taking advantage of the joint information of the multiple

responses and the covariate, but also preserves nice properties of the rank correla-

tion that can handle heavy-tailed predictors and responses, as well as invariance

against monotonic transformations of them. Because of these nice properties and

its excellent numerical performance in Section 5, mRCC is the main method we

advocate using in practice.

4. The Sure Screening Property

We establish the sure screening property of mRCC1 and mRCC2 in this

section. Following (Li, Zhong and Zhu (2012)), we define the true predictor

subset as

A = {k : F (Y | Xk) functionally depends on Xk for some Y},

with size s = |A|. For variable Xk, the population versions of mRCC1 and

mRCC2 are

ωmRCC1
k = (rck)

2 = rTkΣ−1R(Y)rk (4.1)

and

ωmRCC2
k = (τ ck)2 = τT

k Σ−1
R̃(Y)

τk, (4.2)

respectively, where rk = (rs(Xk, Y1), . . . , rs(Xk, Yq))
T, ΣR(Y) = (rs(Yj , Yl))q×q,

and τk = (τ(Xk, Y1), . . . , τ(Xk, Yq))
T, ΣR̃(Y) = (τ(Yj , Yl))q×q. For two random

variables U and V from a joint distribution, let (U1, V1), (U2, V2), and (U3, V3) be

three independent realizations. Then, rs(U, V ) = cov
(

sgn(U1−U2), sgn(V1−V3)
)

and τ(U, V ) = cov
(

sgn(U1 − U2), sgn(V1 − V2)
)
.

We consider the following conditions:

(C1) There exists a positive c0 such that λmin

(
ΣR(Y)

)
≥ c0q−1;

(C2) There exists Ã, a subset of {1, . . . , p}, and a constant 0 < κ < 1/2, such that

|Ã| ≤ |Âtn |, A ⊂ Ã, and δÃ = q−4nκ{mink∈Ã ωmRCC1
k −maxk∈Ãc ω

mRCC1
k }

> 0;

(C1′) There exists a positive c′0 such that λmin

(
ΣR̃(Y)

)
≥ c′0q−1;

(C2′) There exists Ã′, a subset of {1, . . . , p}, and a constant 0 < κ < 1/2,
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such that |Ã′| ≤ |Â′t′n |, A ⊂ Ã′ and δÃ′ = q−4nκ{min
k∈Ã′ ω

mRCC2
k −

max
k∈Ã′c ω

mRCC2
k } > 0.

Conditions (C1) and (C1′) rule out the cases in which one component of the

multivariate responses is a perfect monotonic function of another with a perfect

Spearman correlation of +1 or −1, and that, the agreement or the disagreement

between the rankings of two components of the response is perfect with a perfect

Kendall’s τ correlation of +1 or −1, respectively. Conditions (C2) and (C2′)

are very common in the screening literature (Mai and Zou (2013, 2015)), and

are the theoretical basis of the sure screening property. They assume there is a

gap between the marginal signals inside and outside a subset containing the true

predictor subset.

The following theorem gives the sure screening property of mRCC.

Theorem 1.

1. Under Condition (C1), for any c2 > 0 and 0 < κ < 1/2, there exist some

positive constants c3, c4, c5, c6, and C, such that when n>max{Cq2, 61/(1−κ)},

Pr
(

max
1≤k≤p

|ω̂mRCC1
k − ωmRCC1

k | ≥ c2q4n−κ
)

≤ p ·
{

6q2
(

exp(−c3nq−4) + exp(−c4n3q−4)
)

+ (2q2 + 4q)
(

exp(−c5n1−2κ) + exp(−c6n3−2κ)
)}
.

Under Condition (C1′), for any c′2 > 0 and 0 < κ < 1/2, there exist some

positive constants c′3, c
′
4, such that

Pr
(

max
1≤k≤p

|ω̂mRCC2
k − ωmRCC2

k | ≥ c′2q4n−κ
)

≤ p ·
{

6q2 exp(−c′3nq−4) + (2q2 + 4q) exp(−c′4n1−2κ)
}
.

2. If Conditions (C1) and (C2) hold and we set tn = c1q
4n−κ, with c1 ≤ δÃ/2,

we have

Pr
(
A ⊂ Âtn

)
≥ 1− p ·

{
6q2
(

exp(−c3nq−4) + exp(−c4n3q−4)
)

+(2q2 + 4q)
(

exp(−c5n1−2κ) + exp(−c6n3−2κ)
)}
.

If Conditions (C1′) and (C2′) hold and we set t′n = c′1q
4n−κ with c′1 ≤ δÃ′/2,
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we have

Pr
(
A ⊂ Â′t′n

)
≥1− p ·

{
6q2 exp(−c′3nq−4) + (2q2 + 4q) exp(−c′4n1−2κ)

}
.

Theorem 1 gives an upper bound on the dimension of the response, q =

o(n1/4), to have the sure screening property. It also follows from Theorem 1

that the limit of the data dimensionality we can handle should satisfy log(pq2) =

o(nq−4 +n1−2κ) using both methods, with 0 < κ < 1/2. Under these settings we

have the sure screening properties Pr
(
A ⊂ Âtn

)
→ 1 and Pr

(
A ⊂ Â′t′n

)
→ 1,

respectively.

In contrast to the sub-Gaussian distribution assumption required for the

sure screening property of DCS (Li, Zhong and Zhu (2012)), we do not require

any assumption on the moments of the predictors or the responses for the sure

screening property of mRCC.

Theorem 2. Under Condition (C1), for any tn = c1q
4n−κ, there exist some

positive constants c3, c4, c5, c6, and C, such that when n > max{Cq2, 61/(1−κ)},

Pr
(
|Âtn | ≤ O(sq−2nκ)

)
≥ 1− p ·

{
6q2
(

exp(−c3nq−4) + exp(−c4n3q−4)
)

+(2q2 + 4q)
(

exp(−c5n1−2κ) + exp(−c6n3−2κ)
)}
.

Under Condition (C1′), for any t′n = c′1q
4n−κ, there exist some positive con-

stants c′3, c
′
4, such that

Pr
(
|Â′t′n | ≤ O(sq−2nκ)

)
≥ 1−p·

{
6q2 exp(−c′3nq−4)+(2q2+4q) exp(−c′4n1−2κ)

}
.

This result controls the model size of the selected model, which is of order

O(sq−2nκ). The false selection rate converges to zero exponentially fast.

5. Numerical Studies

In this section, we evaluate the performance of all screening procedures dis-

cussed in this paper using simulation experiments and a real-data analysis. As

suggested by a referee, we include a newly published variable screening method

called composite coefficient of determination (CCD), proposed by Kong, Xia and

Zhong (2019), and extend it to the multiple responses case in a similar way to

mSIS by aggregating the ranking statistics of the predictor with each response.

We denote this method as mCCD. For the derivation and explanations of CCD,

refer to Kong, Xia and Zhong (2019).
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5.1. Simulations

We repeat each simulation 200 times, and use the following three criteria,

adopted by Li, Zhong and Zhu (2012):

1. S: the minimum model size that includes all true predictors. We report the

5%, 25%, 50%, 75%, and 95% quantiles of S out of 200 replications.

2. Ps: the proportion that an individual true predictor is selected for a given

model size d in the 200 replications.

3. Pa: the proportion that all true predictors are selected for a given model

size d in the 200 replications.

Here, S measures the accuracy of a screening procedure. The smaller S is,

the less complex the resulting model is, and the better the screening procedure

is. Then, Ps and Pa allow us to examine the chance that a screening procedure

misses an individual predictor and all true predictors, respectively, for a given

model size d. We present the simulation results of Ps,Pa with d = 2[n/ log n]

for all the examples and the real data. We also tried d = [n/ log n], with similar

outcomes; hence, we omit such results here for brevity.

Example 1. We adopt the simple linear model from Fan and Lv (2008):

Yj = 5X1 + 5X2 + 5X3 + εj , j = 1, 2, . . . , 10. (5.1)

The predictor vector (X1, . . . , Xp) is drawn from a multivariate normal distribu-

tion N(0,Σ), where Σ = CS(ρ) is a compound symmetric matrix, with all entries

being ρ, except for the diagonal elements being one, and the noise εj follows a

standard normal distribution. The sample size is n = 50, the numbers of the

predictors and responses are p = 1,000, and q = 10, respectively, and we consider

ρ = 0, 0.1, 0.5, 0.9.

Table 1 summarizes the simulation results for S, Ps, and Pa. We can see

that the mSIS works best in this example because this model is actually a uni-

variate response data linear model with a strong signal-to-noise ratio in every

component.For the mCC and mRCC1, the performance is acceptable, albeit a

little worse than that of the other methods. One reason is that each response

has the same strong signal, which dominates the error term. Hence, the Pearson

correlations between the pairs of responses are almost one(about 0.98 and 0.99).

In such a case, the Condition (C1) for mRCC1 may be violated. This may also be

true for the mCC because there is an inverse correlation matrix of the responses
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Table 1. The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model size S and
the proportions of Ps and Pa out of 200 replications in Example 1.

S Ps Pa

ρ Method 5% 25% 50% 75% 95% X1 X2 X3 All
0 mSIS 3.0 3.0 3.0 5.0 16.1 0.98 0.98 0.94 0.90

mNIS 3.0 4.0 8.0 30.3 144.8 0.92 0.98 0.93 0.89
mRRCS 3.0 3.0 4.0 7.0 33.2 0.97 0.96 0.90 0.74
DCS 3.0 3.0 4.0 7.0 27.1 0.98 0.97 0.90 0.85
mCCD 3.0 3.0 4.0 7.0 24.2 0.98 0.97 0.87 0.57
mCC 4.0 11.0 25.0 100.8 283.2 0.83 0.85 0.88 0.84
mRCC1 4.0 15.8 39.5 130.5 427.0 0.75 0.81 0.77 0.60
mRCC2 3.0 3.0 4.0 9.0 40.1 0.97 0.96 0.91 0.72

0.1 mSIS 3.0 3.0 3.0 5.0 23.1 1.00 1.00 0.92 0.90
mNIS 3.0 3.0 6.0 12.0 41.4 0.86 0.96 0.87 0.87
mRRCS 3.0 3.0 4.0 8.0 41.2 0.97 0.98 0.84 0.71
DCS 3.0 3.0 4.0 7.0 35.1 0.98 0.99 0.89 0.81
mCCD 3.0 3.0 4.0 7.0 34.0 0.99 0.99 0.85 0.57
mCC 3.0 6.0 16.0 51.3 144.6 0.76 0.83 0.80 0.82
mRCC1 4.0 9.0 24.5 67.0 226.9 0.74 0.80 0.68 0.60
mRCC2 3.0 3.0 4.0 9.0 44.1 0.96 0.99 0.83 0.71

0.5 mSIS 3.0 4.0 6.5 18.3 100.4 0.99 0.98 0.93 0.89
mNIS 3.0 5.0 9.0 27.0 124.2 0.92 0.97 0.91 0.89
mRRCS 3.0 6.0 13.0 35.3 175.4 0.98 0.97 0.88 0.77
DCS 3.0 5.0 11.0 29.0 141.2 0.98 0.97 0.90 0.88
mCCD 3.0 7.0 14.5 40.5 192.7 0.99 0.97 0.87 0.60
mCC 3.0 6.0 14.0 41.0 208.5 0.78 0.86 0.88 0.88
mRCC1 4.0 11.8 38.0 83.0 371.1 0.68 0.83 0.74 0.65
mRCC2 3.0 6.0 14.0 35.3 186.6 0.98 0.97 0.87 0.76

0.9 mSIS 3.0 4.0 8.0 19.8 91.1 0.96 0.95 0.80 0.76
mNIS 3.0 5.0 11.0 28.0 105.1 0.71 0.91 0.74 0.72
mRRCS 4.0 13.0 36.0 77.5 231.0 0.91 0.91 0.67 0.40
DCS 3.0 6.0 16.0 39.3 142.5 0.94 0.93 0.71 0.62
mCCD 5.0 34.8 75.0 173.5 424.4 0.95 0.93 0.65 0.20
mCC 3.0 7.0 14.5 38.3 166.3 0.50 0.61 0.61 0.64
mRCC1 8.0 25.0 65.0 144.5 437.5 0.36 0.50 0.39 0.25
mRCC2 4.0 13.0 36.0 77.0 258.7 0.91 0.92 0.67 0.40

in (3.2). Another reason is that the sample size is not big enough; therefore, the

rank-based mRCC1 may lose some efficiency.

Example 2. Consider the following generalized Box–Cox transformation model

adapted from Li et al. (2012):

H(Yj) = X10j−9 +X10j−8 + εj , j = 1, 2, . . . , 10, (5.2)
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where the transformation functions are unknown. In the simulation, we consider

the Box–Cox transformation:

H(Y ) =
|Y |λsgn(Y )− 1

λ
,when λ = 0.25, 0.5, 0.75, 1; H(Y ) = log Y,when λ = 0.

The variables (X1, . . . , Xp) and the noise εj are generated in the same way as in

Example 1. The number of true variables is 20, and (n, p, q) = (200, 2000, 10)

and ρ = 0.1, 0.5.

The simulation results for S and Pa are reported in Tables 2 and 3, re-

spectively. We can see clearly that mRCC1 significantly outperforms the other

methods, especially when ρ = 0.5, and the results are almost invariant under

transformations (there are small differences owing to the different random errors

generated for models with different λ). Although mRRCS is also rank-based and

invariant under transformation, it performs poorly when ρ = 0.5. The reason may

be that it ignores the dependence structure of the multivariate responses. When

the model deviates from a linear model (λ decrease from one), the performance

of mSIS, mNIS, DCS, and mCC quickly deteriorates, owing to the existence of

the nonlinearity and the heavy-tailed responses.

Example 3. In this example, we consider the following model:

Yj = 2 sin (αj1X1 + αj2X2 + αj3X3 + αj4X4 + αj5X5) + εj , j = 1, 2, . . . , 20,

(5.3)

where αj1, . . . , αj5 ∼ Unif(0,1) independently, for j = 1, . . . , 20. Once the param-

eter is drawn, the model is fixed. We generate (X1, . . . , Xp) and the noise εj as

in Example 1, and (n, p, q) = (200, 2000, 20) and ρ = 0.5, 0.8.

Table 4 gives the results for S. Table 5 shows the results for Ps and Pa. For

this nonlinear model, mRCC1 and mRCC2 are still robust and encouraging, and

perform best.

Example 4. We adopt the additive model from Mai and Zou (2015):

Yj = 4Xjk1 + 2 tan

(
πXjk2

2

)
+ 5X2

jk3 + εj , j = 1, 2, . . . , 20. (5.4)

The predictors follow Unif(0,1) independently, and εj follow N(0, 1), and are

independent of the predictors. For each j, the indices {k1, k2, k3} are drawn

randomly from {1, 2, . . . , 10}. Once the indices are drawn, the model is fixed.

In our simulation, we check that X1, X2, . . . , X10 are all included in the model;
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Table 2. The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model size S out
of 200 replications in Example 2.

CS(0.1) CS(0.5)

λ Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

0 mSIS 202.7 421.0 653.0 940.3 1,413.7 1,237.9 1,553.8 1,723.5 1,829.0 1,945.3

mNIS 600.6 880.5 1,118.5 1,310.5 1,655.4 1,296.9 1,563.3 1,729.0 1,876.3 1,955.2

mRRCS 20.0 23.0 28.5 43.0 76.3 745.4 1,054.5 1,336.5 1,547.5 1,816.5

DCS 423.4 712.8 924.5 1,194.0 1,665.2 1,143.0 1,485.3 1,685.0 1,825.0 1,957.3

mCCD 25.0 39.0 63.0 102.0 263.9 905.0 1,251.5 1,440.5 1,653.5 1,861.4

mCC 137.0 294.3 549.0 869.3 1,440.7 1,057.0 1,346.5 1,563.0 1,748.8 1,924.2

mRCC1 20.0 20.0 20.0 20.0 21.1 40.0 96.0 155.5 313.0 731.2

mRCC2 20.0 20.0 20.0 20.0 24.0 95.9 179.0 288.5 513.8 1,012.1

0.25 mSIS 30.0 46.0 71.5 138.3 397.1 1,128.0 1,363.0 1,598.0 1,767.3 1,923.7

mNIS 141.0 254.0 346.0 485.0 827.5 1,078.9 1,432.3 1,606.0 1,774.3 1,919.3

mRRCS 20.0 23.0 28.0 43.3 101.2 733.9 1,027.0 1,277.0 1,542.8 1,786.0

DCS 56.0 103.8 168.0 268.8 601.3 981.8 1,305.5 1,490.5 1,696.3 1,925.5

mCCD 21.0 27.0 36.0 59.3 158.0 966.5 1,183.5 1,400.0 1,631.8 1,890.0

mCC 20.0 21.0 24.0 34.3 84.1 360.9 591.8 827.0 1,108.3 1,621.0

mRCC1 20.0 20.0 20.0 20.0 22.0 45.8 90.5 151.0 292.0 693.3

mRCC2 20.0 20.0 20.0 20.0 24.0 92.0 192.5 304.5 485.0 1,034.1

0.5 mSIS 22.0 27.8 41.0 65.8 173.0 942.0 1,214.5 1,453.5 1,654.0 1,888.2

mNIS 59.0 96.5 151.0 237.0 503.3 1,056.0 1,310.0 1,498.0 1,686.8 1,885.1

mRRCS 20.0 22.0 29.0 43.0 105.1 720.6 1,044.8 1,332.5 1,509.5 1,826.1

DCS 25.0 36.8 54.0 99.0 235.2 884.2 1,191.3 1,409.0 1,606.3 1,886.6

mCCD 22.0 25.0 36.0 58.0 129.4 901.6 1,172.3 1,415.0 1,622.5 1,889.5

mCC 20.0 20.0 20.0 21.0 28.0 90.6 170.5 317.0 504.0 995.3

mRCC1 20.0 20.0 20.0 20.0 22.0 45.0 87.8 175.0 310.5 832.1

mRCC2 20.0 20.0 20.0 20.0 23.1 84.8 197.3 330.0 502.5 1,097.3

0.75 mSIS 21.0 25.0 33.0 51.0 106.6 795.0 1,122.0 1,390.0 1,625.5 1,879.0

mNIS 27.0 43.0 66.5 118.3 301.5 845.6 1,132.0 1,420.0 1,613.5 1,859.7

mRRCS 21.0 23.8 29.0 43.0 100.5 740.8 996.5 1,273.0 1,547.3 1,822.3

DCS 21.0 25.0 32.5 50.3 117.1 766.7 1,079.5 1,325.0 1,593.8 1,821.3

mCCD 21.0 27.0 36.0 57.0 130.1 900.2 1,162.0 1,380.5 1,649.3 1,872.4

mCC 20.0 20.0 20.0 20.0 21.0 32.0 55.8 109.5 216.0 495.2

mRCC1 20.0 20.0 20.0 20.0 23.0 41.0 98.5 163.0 303.5 613.6

mRCC2 20.0 20.0 20.0 20.3 27.0 87.0 200.8 317.0 529.3 1,008.1

1 mSIS 21.0 24.0 29.5 43.0 89.7 661.9 1,126.0 1,358.0 1,616.8 1,841.0

mNIS 24.0 38.0 59.0 109.3 228.2 686.7 1,170.0 1,391.0 1,596.5 1,862.1

mRRCS 20.0 22.8 28.0 42.0 99.1 649.1 1,064.5 1,322.0 1,542.8 1,812.1

DCS 21.0 24.0 30.5 44.0 95.1 702.6 1,099.5 1,351.5 1,576.0 1,809.6

mCCD 22.0 26.0 34.0 56.5 120.4 776.7 1,174.0 1,427.5 1,651.8 1,845.1

mCC 20.0 20.0 20.0 20.0 21.0 27.0 50.5 84.5 152.8 473.8

mRCC1 20.0 20.0 20.0 20.0 22.1 47.9 86.5 157.5 308.5 754.3

mRCC2 20.0 20.0 20.0 20.0 25.0 92.4 189.0 319.0 533.3 1,144.2



ON SURE SCREENING WITH MULTIPLE RESPONSES 1765

Table 3. The proportions of Pa in Example 2.

CS(0.1) CS(0.5)

Method λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1 λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1

mSIS 0.00 0.52 0.80 0.90 0.92 0.00 0.00 0.00 0.00 0.00

mNIS 0.00 0.00 0.14 0.57 0.59 0.00 0.00 0.00 0.00 0.00

mRRCS 0.95 0.94 0.90 0.91 0.89 0.00 0.00 0.00 0.00 0.00

DCS 0.00 0.14 0.63 0.87 0.91 0.00 0.00 0.00 0.00 0.00

mCCD 0.58 0.83 0.84 0.84 0.85 0.00 0.00 0.00 0.00 0.00

mCC 0.02 0.94 1.00 1.00 1.00 0.00 0.00 0.03 0.36 0.41

mRCC1 1.00 1.00 1.00 1.00 1.00 0.18 0.17 0.18 0.15 0.18

mRCC2 1.00 1.00 1.00 1.00 1.00 0.03 0.03 0.03 0.02 0.04

Table 4. The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model size S out
of 200 replications in Example 3.

CS(0.5) CS(0.8)

Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

mSIS 5.0 5.0 9.5 33.2 211.0 22.9 104.8 303.5 573.0 1,392.2

mNIS 5.0 5.0 6.0 10.0 83.4 5.0 11.0 32.0 123.2 497.7

mRRCS 5.0 5.0 6.0 10.2 71.1 7.0 18.0 59.5 179.5 592.2

DCS 5.0 5.0 6.0 9.0 71.0 6.0 15.8 62.5 172.2 677.9

mCCD 5.0 5.0 7.0 17.0 96.7 11.0 41.0 125.5 301.2 928.8

mCC 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 16.1

mRCC1 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

mRCC2 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 6.0

Table 5. The proportions of Ps and Pa in Example 3.

CS(0.5) CS(0.8)

Ps Pa Ps Pa

Method X1 X2 X3 X4 X5 All X1 X2 X3 X4 X5 All

mSIS 0.86 1.00 1.00 1.00 1.00 0.86 0.27 0.95 0.83 0.94 0.82 0.17

mNIS 0.93 1.00 1.00 1.00 1.00 0.93 0.69 0.99 0.99 1.00 1.00 0.66

mRRCS 0.96 1.00 1.00 1.00 1.00 0.96 0.57 0.99 0.98 0.99 1.00 0.54

DCS 0.96 1.00 1.00 1.00 1.00 0.96 0.59 0.98 0.97 1.00 1.00 0.54

mCCD 0.92 1.00 1.00 1.00 1.00 0.92 0.46 0.97 0.96 1.00 0.99 0.42

mCC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mRCC1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mRCC2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

hence, the number of true predictors is 10. The sample size is n = 200, and the

numbers of predictors and responses are p = 2,000 and q = 20, respectively.

From Table 6 and Table 7, we see that the mRCC1 and mRCC2 achieve
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Table 6. The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model size S out
of 200 replications in Example 4.

Method 5% 25% 50% 75% 95%
mSIS 908.2 1,335.0 1,573.0 1,794.3 1,960.1
mNIS 1,085.4 1,479.8 1,665.5 1,835.5 1,965.2
mRRCS 10.0 11.0 13.0 25.0 76.0
DCS 275.6 600.0 942.0 1,375.5 1,806.4
mCCD 15.0 56.8 179.5 368.5 807.4
mCC 10.0 10.0 17.0 141.3 912.1
mRCC1 10.0 10.0 10.0 10.0 10.0
mRCC2 10.0 10.0 10.0 10.0 10.0

Table 7. The proportions of Ps and Pa in Example 4.

Ps Pa

Method X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 All
mSIS 0.10 0.03 0.90 0.09 0.07 0.92 0.07 0.78 0.97 0.88 0.00
mNIS 0.04 0.02 0.99 0.05 0.04 1.00 0.02 0.92 1.00 1.00 0.00
mRRCS 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95
DCS 0.49 0.16 0.91 0.42 0.37 0.94 0.24 0.93 0.96 0.90 0.00
mCCD 1.00 0.38 1.00 0.95 0.98 1.00 0.78 1.00 1.00 1.00 0.30
mCC 1.00 1.00 0.82 1.00 1.00 1.00 1.00 1.00 1.00 0.81 0.65
mRCC1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
mRCC2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

perfect selection with the oracle variables, even though this is a nonlinear model

and heavy-tailed data exists. The performance of DCS seems to fall behind.

Example 5. The following Poisson regression model is from Mai and Zou (2015),

and we simply extend it to the multi-response case:

Yj ∼ Poisson(µj), µj = exp(0.8X1 − 0.8X2), j = 1, . . . , 10,

where the predictors Xk ∼ t4 independently, for k = 1, 2, . . . , 2000. The sample

size is 200 and q = 10.

The results are shown in Table 8. Surprisingly, the mRCC1 is still among the

best, though the responses are discrete values with many ties and some extreme

values. This implies that the mRCC1 may be suitable for regression problems

with categorical data, while mRCC2 may not (the implementation of Kendall’s τ

correlation in mRRCS and mRCC2 uses formula (2.4) in Li et al. (2012), which

may be inadequate for tied variables).
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Table 8. The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model size S and
the proportions of Ps and Pa out of 200 replications in Example 5.

S Ps Pa

Method 5% 25% 50% 75% 95% X1 X2 All
mSIS 2.0 3.0 15.5 136.0 1,346.5 0.85 0.86 0.70
mNIS 3.0 27.0 58.5 223.0 1,405.2 0.79 0.80 0.59
mRRCS 1,079.8 1,848.3 1,971.0 1,999.0 2,000.0 0.01 1.00 0.01
DCS 2.0 2.0 2.0 5.3 481.1 0.92 0.95 0.87
mCCD 2.0 2.0 2.0 2.0 2.0 1.00 1.00 1.00
mCC 2.0 6.0 16.0 47.5 664.9 0.88 0.92 0.80
mRCC1 2.0 2.0 2.0 2.0 2.0 1.00 1.00 1.00
mRCC2 1,208.4 1,882.5 1,980.0 1,999.3 2,000.0 0.01 1.00 0.01

5.2. Genomic data example

The breast cancer data set is described by Chin et al. (2006) and analyzed by

Witten, Tibshirani and Hastie (2009), Chen, Dong and Chan (2013) and Molstad

and Rothman (2016). The data set is publicly available in the R package PMA

(Witten, Tibshirani and Hastie (2009)). It consists of gene expression measure-

ments and comparative genomic hybridization measurements for n = 89 subjects.

The goal is to explore the relationship between DNA copy-number variations and

gene expression profiles, because certain types of cancer are characterized by un-

usual DNA copy-number changes, as shown in previous studies. Hence, we treat

the DNA copy-number as the q-variate response, and the gene expression profile

as the p-variate predictor. We conduct a multi-response regression analysis for

chromosome 16, and its dimension is (p, q) = (815, 61). Both the responses and

predictors are standardized.

We include all of the aforementioned screening methods to carry out the

multivariate response regression for the comparison. First, we randomly split

89 samples into training and test sets. Two proportions of training samples

γ = 0.5, 0.8 are considered. Then, we apply each screening method to the training

samples to select the top d = 2[ntrain/ log ntrain] genes, where ntrain is the training

sample size. Moreover, we fit a multi-response Gaussian model using a “group-

Lasso” penalty on the coefficients for each selected predictor after screening, and

make predictions based on the test samples. The model fitting process and tuning

parameter selection are implemented using the R package glmnet. Following

Chen, Dong and Chan (2013), we calculate the mean squared prediction error

‖Ytest −XtestB̂‖2F/(qntest), where (Ytest,Xtest) denotes the test set, B̂ denotes

the estimated coefficient matrix, and ntest is the sample size of the test set. The

above procedure is repeated 200 times.
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Table 9. The means of the prediction errors in 200 times randomly split genomic data.
The standard deviations of the prediction errors are shown in parentheses, where γ is the
proportion of the training samples. NM is the null model using componentwise means of
training responses to predict the test sample.

γ mSIS mNIS mRRCS DCS mCCD mCC mRCC1 mRCC2 NM

0.5 0.769 0.758 0.791 0.765 0.781 0.786 0.774 0.738 1.021

(0.066) (0.068) (0.065) (0.068) (0.067) (0.08) (0.079) (0.067) (0.089)

0.8 0.737 0.737 0.784 0.735 0.753 0.756 0.756 0.685 1.047

(0.135) (0.129) (0.141) (0.129) (0.136) (0.132) (0.146) (0.117) (0.184)

Table 10. The p-values of two-sided paired samples t-test for the proposed methods
against other methods.

γ mSIS mNIS mRRCS DCS mCCD mCC mRCC1 mRCC2 NM

0.5 mCC 0.001 0 0.307 0 0.336 - 0.01 0 0

mRCC1 0.286 0 0.001 0.072 0.201 0.01 - 0 0

mRCC2 0 0 0 0 0 0 0 - 0

0.8 mCC 0.081 0.079 0.016 0.058 0.743 - 0.917 0 0

mRCC1 0.094 0.092 0.015 0.072 0.785 0.917 - 0 0

mRCC2 0 0 0 0 0 0 0 - 0

Table 11. Genes with top seven highest selection frequency by mRCC2.

γ = 0.5 genenames COX4I1 KIAA0174 FLJ13868 KIAA1007 USP10 PARN KATNB1

frequency 0.82 0.76 0.72 0.58 0.57 0.56 0.55

γ = 0.8 genenames COX4I1 FLJ13868 KIAA0174 SF3B3 KATNB1 KIAA1007 USP10

frequency 1.00 1.00 0.99 0.97 0.97 0.96 0.95

The means of the prediction errors with their standard deviations are pre-

sented in Table 9. For each splitting ratio, mRCC2 enjoys outstanding predictive

performance. To check whether the MSEs for the proposed approaches are signif-

icantly different from those for the other methods, we perform two-sided paired-

sample t-tests for the mCC, mRCC1, and mRCC2 against other methods; the

corresponding p-values are presented in Table 10. We also conduct a one-sided

paired-sample t-test for mRCC2 only, and its p-values are still zero, which con-

firms that mRCC2 has significantly lower prediction errors than those of other

methods. Furthermore, we list the genes with the top seven highest selection

frequencies by mRCC2 in Table 11. We can see the top three among these are

COX4I1, FLJ13868, and KIAA0174 for both splitting ratios. Therefore, in this

example, mRCC2 may provide biological researchers with a more targeted list of

gene expression profiles, which could be useful in subsequent studies.
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Appendix

A. Appendix

Lemma 1 (Theorem A, Serfling (1980), p. 201). Let X1, X2, . . . , Xn be inde-

pendent observations on a distribution function F . Let h = h(x1, . . . , xm) be a

kernel for a “parametric function” θ = θ(F ), with a ≤ h(x1, . . . , xm) ≤ b. Put

θ = E{h(X1, . . . , Xm)}, then, for t > 0 and n ≥ m,

Pr(Un − θ ≥ t) ≤ exp

(
−2[n/m]t2

(b− a)2

)
,

where Un is the U-statistic corresponding to the kernel h for the estimation of θ,

that is,

Un =
1(
n
m

)∑
c

h(Xi1 , . . . , Xim) (A.1)

with
∑

c denotes summation over the
(
n
m

)
combinations of m distinct elements

{i1, . . . , im} from {1, . . . , n}.

Lemma 2. Given a sample (Xi, Yi)
n
i=1, for any δ > 0, the Spearman correlation

r̂s(X,Y ) has the following tail bound

Pr

(
|r̂s − rs| ≥

6

n
+ δ

)
≤ 2 exp

(
− (n− 3)(n+ 1)2δ2

24(n− 2)2

)
+2 exp

(
− (n− 2)(n+ 1)2δ2

16

)
,

for n > 3, where rs is the population Spearman correlation.

Proof of Lemma 2. If we take h in (A.1) to be the kernel of degree m = 2 given

by

hτ̂

((
x1
y1

)
,

(
x2
y2

))
= sgn(x1 − x2) sgn(y1 − y2),

then τ̂ , Uhτ̂ is the sample Kendall’s tau correlation. If we take h in (A.1) to be
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the kernel of degree m = 3 given by

hr̃s

((
x1
y1

)
,

(
x2
y2

)
,

(
x3
y3

))
=

1

2

3∑
i,j,l=1

i6=j,j 6=l,i6=l

sgn(xi − xj) sgn(yi − yl),

and define r̃s , Uhr̃s ,Hoeffding (1948) showed that

r̂s =
n− 2

n+ 1
r̃s +

3

n+ 1
τ̂ . (A.2)

Hence, the dominating term r̃s of Spearman correlation is a U-statistic. Since

r̃s, τ̂ are unbiased estimators of their population version rs, τ respectively, and

|hr̃s | ≤ 1, |hτ̂ | ≤ 1, by Lemma 1

Pr

(
r̃s − rs ≥

δ

2

)
≤ exp

(
−(n− 3)δ2

24

)
, (A.3)

Pr

(
τ̂ − τ ≥ δ

2

)
≤ exp

(
−(n− 2)δ2

16

)
, (A.4)

for any δ > 0 and n > 3. Note that −6 ≤ 3(τ − rs) ≤ 6, we have

Pr

(
|r̂s − rs| ≥

6

n
+ δ

)
≤ Pr

(
r̂s − rs ≥

6

n+ 1
+ δ

)
+ Pr

(
r̂s − rs ≤ −

6

n+ 1
− δ
)

≤ Pr

(
r̂s − rs −

3(τ − rs)
n+ 1

≥ δ
)

+ Pr

(
r̂s − rs −

3(τ − rs)
n+ 1

≤ −δ
)

≤ Pr

(
n− 2

n+ 1
(r̃s − rs) +

3

n+ 1
(τ̂ − τ) ≥ δ

)
+ Pr

(
n− 2

n+ 1
(r̃s − rs) +

3

n+ 1
(τ̂ − τ) ≤ −δ

)
≤ Pr

(
n− 2

n+ 1
(r̃s − rs) ≥

δ

2

)
+ Pr

(
3

n+ 1
(τ̂ − τ) ≥ δ

2

)
+ Pr

(
n− 2

n+ 1
(r̃s − rs) ≤ −

δ

2

)
+ Pr

(
3

n+ 1
(τ̂ − τ) ≤ −δ

2

)
≤ 2 exp

(
− (n− 3)(n+ 1)2δ2

24(n− 2)2

)
+ 2 exp

(
− (n− 2)(n+ 1)2δ2

16

)
.

Throughout the rest of the paper, for any matrix A, denote ‖A‖ =√
λmax(ATA) be the spectral norm and ‖A‖max = maxi,j |Ai,j | be the max
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norm.

Lemma 3. Under Condition (C1), for any c8 > 0, there exist some positive

constants c3, c4 and C, such that for n > Cq2

Pr
(∣∣‖Σ̂−1R(Y)‖ − ‖Σ

−1
R(Y)‖

∣∣ ≥ c8‖Σ−1R(Y)‖
)

≤ 2q2 exp(−c3nq−4) + 2q2 exp(−c4n3q−4).

Proof of Lemma 3. For any symmetric matrices A, B and D, by the similar

argument in the proof of Lemma 5 of Fan, Feng and Song (2011), we have

|λmin(A)− λmin(B)| ≤ max{|λmin(A−B)|, |λmin(B−A)|},
|λmin(D)| ≤ d‖D‖max, |λmin(−D)| ≤ d‖D‖max,

where d is the dimension of D. Hence,

|λmin(Σ̂R(Y))− λmin(ΣR(Y))| ≤ q‖Σ̂R(Y) −ΣR(Y)‖max.

For any δ1 > 0, it follows from Lemma 2 that the union bound of probability

Pr

(
|λmin(Σ̂R(Y))− λmin(ΣR(Y))| ≥ q

(
6

n
+ δ1

))
≤ q2 Pr

(
|r̂s(Yj , Yl)− rs(Yj , Yl)| ≥

6

n
+ δ1

)
≤ 2q2 exp(−c̃3nδ21) + 2q2 exp(−c̃4n3δ21),

for some positive constant c̃3 and c̃4. Take δ1 = c9c0q
−2−6/n in the above, where

c9 ∈ (0, 1), denote C = 6/(c9c0), by the Condition (C1), when n > Cq2 it follows

that

Pr
(
|λmin(Σ̂R(Y))− λmin(ΣR(Y))| ≥ c9λmin(ΣR(Y))

)
≤ 2q2 exp(−c3nq−4) + 2q2 exp(−c4n3q−4),

for some positive constant c3 and c4. If A and B are two positive constants, it is

shown in the proof of Lemma 5 of Fan, Feng and Song (2011) that for a ∈ (0, 1),

|A−1 −B−1| ≥ cB−1 implies |A−B| ≥ aB,

where c = 1/(1 − a) − 1. Therefore, by the fact that λ−1min(D) = λmax(D−1), we

have
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Pr
(∣∣‖Σ̂−1R(Y)‖ − ‖Σ

−1
R(Y)‖

∣∣ ≥ c8‖Σ−1R(Y)‖
)

= Pr
(
|λ−1min(Σ̂R(Y))− λ−1min(ΣR(Y))| ≥ c8λ−1min(ΣR(Y))

)
≤ Pr

(
|λmin(Σ̂R(Y))− λmin(ΣR(Y))| ≥ c9λmin(ΣR(Y))

)
≤ 2q2 exp(−c3nq−4) + 2q2 exp(−c4n3q−4),

where c8 = 1/(1− c9)− 1 > 0.

Proof of Theorem 1. We only focus on the proof for mRCC1, since the proof for

mRCC2 is similar by modifying tail probability using (A.4) in Lemma 3 and the

following. For the first part of the theorem, recall that

ω̂mRCC1
k = r̂Tk Σ̂−1R(Y)r̂k,

ωmRCC1
k = rTkΣ−1R(Y)rk,

we have

ω̂mRCC1
k − ωmRCC1

k = (r̂k − rk)
TΣ̂−1R(Y)(r̂k − rk)

+2(r̂k − rk)
TΣ̂−1R(Y)rk

+rTk (Σ̂−1R(Y) −Σ−1R(Y))rk

, I1 + I2 + I3.

Note that

I1 ≤ ‖Σ̂−1R(Y)‖ · ‖r̂k − rk‖2.

By Lemma 2, for any δ > 0, the union bound of probability is

Pr

(
‖r̂k − rk‖2 ≥ q

(
6

n
+ δ

)2)
≤ qPr

(
|r̂s(Xk, Yj)− rs(Xk, Yj)|2 >

(
6

n
+ δ

)2)
≤ 2q exp(−c̃5nδ2) + 2q exp(−c̃6n3δ2),

for some positive constant c̃5 and c̃6. Under Condition (C1),

‖Σ−1R(Y)‖ ≤ c
−1
0 q.

By Lemma 3,

Pr
(
‖Σ̂−1R(Y)‖ ≥ (c8 + 1)c−10 q

)
≤ 2q2 exp(−c3nq−4) + 2q2 exp(−c4n3q−4),

for any c8 > 0, n > Cq2 and some positive constants c3, c4 and C. Hence, the

union bound of probability for I1 is
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Pr

(
|I1| ≥ (c8 + 1)c−10 q2

(
6

n
+ δ

)2)
≤ 2q2 exp(−c3nq−4) + 2q2 exp(−c4n3q−4)

+2q exp(−c̃5nδ2) + 2q exp(−c̃6n3δ2).

We next deal with the probability bound for I2. Note that

|I2| ≤ 2‖(r̂k − rk)
T‖ · ‖Σ̂−1R(Y)‖ · ‖rk‖.

It is obvious that

‖rk‖2 ≤ q.

Hence, the union bound of probability for I2 is

Pr

(
|I2| ≥ 2(c8 + 1)c−10 q2

(
6

n
+ δ

))
≤ 2q2 exp(−c3nq−4) + 2q2 exp(−c4n3q−4)

+2q exp(−c̃5nδ2) + 2q exp(−c̃6n3δ2).

To bound I3, note that

I3 = rTk Σ̂−1R(Y)(ΣR(Y) − Σ̂R(Y))Σ
−1
R(Y)rk.

By the fact that ‖AB‖ ≤ ‖A‖ · ‖B‖, we have

|I3| ≤ ‖Σ̂−1R(Y)‖ · ‖ΣR(Y) − Σ̂R(Y)‖ · ‖Σ−1R(Y)‖ · ‖rk‖
2.

For a d-dimensional square matrix D, it is shown in the proof of Lemma 5 of Fan,

Feng and Song (2011) that ‖D‖ ≤ d‖D‖max. Therefore,

Pr

(
‖ΣR(Y) − Σ̂R(Y)‖ ≥ q

(
6

n
+ δ

))
≤ q2 Pr

(
|rs(Yj , Yl)− r̂s(Yj , Yl)| ≥

6

n
+ δ

)
≤ 2q2 exp(−c̃5nδ2) + 2q2 exp(−c̃6n3δ2).

Hence, the union bound of probability for I3 is

Pr

(
|I3| ≥ (c8 + 1)c−20 q4

(
6

n
+ δ

))
≤2q2 exp(−c3nq−4) + 2q2 exp(−c4n3q−4)

+ 2q2 exp(−c̃5nδ2) + 2q2 exp(−c̃6n3δ2).

The final probability bound

Pr

(
|ω̂mRCC1
k − ωmRCC1

k | ≥ c10q2
(

6

n
+ δ

)2

+ 2c10q
2

(
6

n
+ δ

)
+ c11q

4

(
6

n
+ δ

))
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≤ 6q2
(

exp(−c3nq−4) + exp(−c4n3q−4)
)

+ (2q2 + 4q)
(

exp(−c̃5nδ2) + exp(−c̃6n3δ2)
)
,

for some positive constants c10 and c11. Take δ = n−κ − 6/n, when n >

max{Cq2, 61/(1−κ)}, there exists c2 > 0, such that c10q
2n−2κ + 2c10q

2n−κ +

c11q
4n−κ = c2q

4n−κ and

Pr
(
|ω̂mRCC1
k − ωmRCC1

k | ≥ c2q4n−κ
)

≤ 6q2
(

exp(−c3nq−4) + exp(−c4n3q−4)
)

+ (2q2 + 4q)
(

exp(−c5n1−2κ) + exp(−c6n3−2κ)
)
,

for some positive constants c5 and c6. Thus the first part immediately follows

the union bound of probability.

Next, we show the second part of the theorem. By Condition (C2), under

the event

Γn =

{
max

k∈j=1,...,p
|ω̂mRCC1
k − ωmRCC1

k | ≤
δÃq

4n−κ

2

}
,

we have

min
k∈Ã

ω̂mRCC1
k ≥ min

k∈Ã
{ωmRCC1

k − |ω̂mRCC1
k − ωmRCC1

k |}

≥ max
k∈Ãc

ωmRCC1
k +

δÃq
4n−κ

2
≥ max

k∈Ãc
ω̂mRCC1
k

Hence, there must exists νn ≥ tn, such that Ã = Âνn . Moreover, for any tn ≤ νn,

Âνn ⊂ Âtn , which implies A ⊂ Ã ⊂ Âtn . Therefore, let c2 = δA/2, by the choice

of tn = c1q
4n−κ, c1 ≤ δA/2, we have

P (A ⊂ Âtn) ≥ P (Γn) ≥ 1− p ·
{

6q2
(

exp(−c3nq−4) + exp(−c4n3q−4)
)

+(2q2 + 4q)
(

exp(−c5n1−2κ) + exp(−c6n3−2κ)
)}
.

Proof of Theorem 2. We only focus on the proof for mRCC1, since the proof for

mRCC2 is similar. Under Condition (C1),

p∑
k=1

ωmRCC1
k ≤

p∑
k=1

‖Σ−1R(Y)‖ · ‖rk‖
2 ≤ c−10 sq2 = O(sq2).

This indicates that the number of {k : ωmRCC1
k > εq4n−κ} cannot exceedO(sq−2nκ)
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for any ε > 0. Therefore, on the set

∆n =
{

max
1≤k≤p

|ω̂mRCC1
k − ωmRCC1

k | ≤ εq4n−κ
}
,

the number of {k : ω̂mRCC1
k > 2εq4n−κ} cannot exceed the number of {k :

ωmRCC1
k > εq4n−κ}, which is bounded by O(sq−2nκ). Take ε = c1/2, we have

Pr
(
|Âtn | ≤ O(sq−2nκ)

)
≥ Pr(∆n).

The conclusion follows from the first part of Theorem 1.
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Székely, G. J., Rizzo, M. L. and Bakirov, N. K. (2007). Measuring and testing dependence by

correlation of distances. The Annals of Statistics 35, 2769–2794.

Witten, D. M., Tibshirani, R. and Hastie, T. (2009). A penalized matrix decomposition, with

applications to sparse principal components and canonical correlation analysis. Biostatis-

tics 10, 515–534.

Yuan, M., Ekici, A., Lu, Z. and Monteiro, R. D. C. (2007). Dimension reduction and coefficient

estimation in multivariate linear regression. Journal of The Royal Statistical Society. Series

B (Statistical Methodology) 69, 329–346.

Zhao, H., Langerod, A., Ji, Y., Nowels, K. W., Nesland, J. M., Tibshirani, R. et al. (2004).

Different gene expression patterns in invasive lobular and ductal carcinomas of the breast.

Molecular Biology of the Cell 15, 2523–2536.

Zhu, L., Li, L., Li, R. and Zhu, L. (2011). Model-free feature screening for ultrahigh-dimensional

data. Journal of the American Statistical Association 106, 1464–1475.

Di He

School of Economics, Nanjing University, Nanjing, 210046, China.

E-mail: hedi@nju.edu.cn

Yong Zhou

Key Laboratory of Advanced Theory and Application in Statistics and Data Science, MOE, and

Academy of Statistics and Interdisciplinary Sciences, East China Normal University, Shanghai

200062, China.

E-mail: yzhou@amss.ac.cn

Hui Zou

School of Statistics, University of Minnesota, Minneapolis, MN 55455, USA.

E-mail: zouxx019@umn.edu

(Received November 2018; accepted December 2019)

mailto:hedi@nju.edu.cn
mailto:yzhou@amss.ac.cn
mailto:zouxx019@umn.edu

	Introduction
	Extensions of Existing Screening Methods
	Sure independence screening
	Nonparametric independence screening
	Robust rank correlation screening
	Distance correlation screening

	A New Approach: Rank Canonical Correlation Screening
	Canonical correlation
	Rank canonical correlation screening

	The Sure Screening Property
	Numerical Studies
	Simulations
	Genomic data example

	Appendix

