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Supplementary Material

This supplementary material consists of four parts. Section S.1 introduces five technical lemmas and their
proofs. It is worth noting that the detailed expression of 9¢(6)/00 used in the quasi-score test is given in
equation in the proof of Lemma 5. Section S.2 discusses the technical conditions in Appendix. Section
S.3 presents the proofs of theorems and corollaries. Section S.4 provides simulation studies to assess the

robustness of our proposed parameter estimate, and additional empirical results.

S1 Five Technical Lemmas

Before providing the technical lemmas, let || -||; denote the vector s-norm or the matrix
s-norm for 1 < s < oo. In other words, for any generic vector z = (z1,--- ,z,)" € R?,

lzlls = (OSL, |24]%)Y%, and, for any generic matrix G € R™*,

G
G, = sup{% cz € R and o # 0}.

Moreover, define the element-wise o, norm for any generic matrix G as |G|, =

|lvec(G)||0o, where vec(G) denotes the vectorization for any generic matrix G. In ad-
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dition, we denote the Frobenius norm of any generic matrix G as ||G||r = ||vec(G)||2-
Since Lemma 3 is directly modified from Theorem 1 of Kelejian and Prucha; (2001)), we

only present the proofs of the rest of four lemmas.

Lemma 1. For any generic vector x = (zy,--- ,z,)" € RY and for 1 < 51 < sy, we
have that
q 81 q
||Cl7||51 < ||$||52 q1/81—1/82 and ij < q51—1z |xj|81 )
j=1

j=1

Proof. By Holder’s inequality, we obtain
2| e g (] A g [2) P g

Hence,

lzll,, < lllly, ¢/ 7.

In addition, by Jensen’s inequality (Durrett, 2010, p. 23, Theorem 1.5.1), we have
1 | 5 o
—(lzal+ - lzgl) p o < = (2™ 4+ fag[™)
q q
The above results, together with triangular inequality, imply
w1+ g™ < (| o )T <@ T (T gl
which completes the proof.

Lemma 2. For any generic vector v = (z1,--+ ,7,) € R? and generic matrices G €

R™4 gnd U € R™™ and for any s > 1, we have that |[UGz|s < mY*|G|w||U]|o [|2]];-
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Proof. Let U = (u;j)mxm € R™™ and G = (¢i)mxq € R™*?. For any ¢-dimensional

real vector z = (x1,-+- ,z,)", we have
m q m q q m
SN uggire] <30 il gl lorl = el Y Juis| gl
j=1 k=1 j=1 k=1 k=1 j=1
m
< [Gl Y boel max 3 fs] = (Gl Ulelels
k=1 ===
Then
m m  q sy 1/s
|UGe]l, = {Z DD gt } < m*|Glocl|U 1 ]
i=1 | j=1 k=1
which completes the proof.
Lemma 3. Let £ = (e1,--+ ,&,)", where e1,-+- ,&, are independent and identically

distributed random variables with mean 0 and finite variance 0. Define
Qn=ETAE+b'E — o*tr(A),

where A = (aij)nxn € R™™ and b = (by,--+ ,b,)" € R™'. Suppose the following

assumptions are satisfied:
(1) fori,j=1,---,n, Qi5 = Qji,

(2) sup,,>; ||Al[1 < oo;

(3) for some m1 > 0, sup,,», n71||b||§i$ < 00/

(4) for some ny > 0, Elg;|*™ < 0.

Then, we have E(Q,) =0 and

n i—1

CTQ =var(Qn,) = 40422“” +o Zb + Z [{ @ _ 04}%21- +2,u,(3)biaii:| )

=1 j=1
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where u*) = B(eg) for s = 3,4. Furthermore, suppose

(5) n_la%n > ¢ for some ¢ > 0.
Then, we obtain

0oL Qn — N(0,1).

Lemma 4. Let £ = (g1, -+ ,€,) ", where €1,-+- ,&, are independent and identically

distributed with mean 0 and finite variance o*. Define

vec' (Ay)
9, = : vec (EET — azln) +B'E

vec' (Ap)

@
ij

where A; = (a; Juxn € RV™ for |l =1,--- | L with L < oo and B = (by)nxy € R™L.

Suppose that

(1) foralli,j=1,--- , nandl=1,--- L, a) = alV;

j ji o
(2) sup,>; [|Ailly < oo foranyl=1,---,L;

(3) for some 11 > 0, sup,»y n~*|vec(B)| 31 < oo;

(4) for some ny > 0, E|g;|*" < co.

Then, we have EQ,, = 0 and

Cov (Qn) = 20" (tr(Ay, As,))

LXL

+0’B B+ {,ﬁ“) - 304} VAR ) {\IFB n BT\I!} 7

where ¥ = (Y1, ) € R with 1 = (agll),'-- ,aﬁf,{)T ER™ forl=1,---,L, and u'® = E(&3)

for s = 3,4. Moreover, n=*/27<Q,, L2 for any € > 0. In addition, assume that
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(5) there exists a positive definite matriz 2 € RE*L such that n='Cov(Q,) — 2. Then we obtain

=129, -4 N(0, 2).

Proof. For any generic vector t = (t1,-+- ,tr)T #0 € RE let D, =t'Q, = ETA(t)E+
tTBTE — o*tr {A(t)}, where A(t) = Y& 64, = (Zlel tlagé))nxn' For the sake of
simplicity, we denote a;;(t) = Zle tlag-) so that A(t) = (aj (t))nxn' By Conditions (1)
and (2) in this lemma, we have that A(t) is a symmetric matrix and sup,,» [[A(f)[|: <

00, respectively. Note that, by Lemma 1, we have that, for n; > 0,

2+m

< 1+m 24+ 2+m )
D Ol

HBH@$%=§:

=1

Z buty

This, together with Condition (3) in this lemma, implies that

-1 2+4n 1+ 24+m -1 241
supn | B < M e (61 supn ™ vee( B35 <

As a consequence, D, satisfies Conditions (1)-(4) in Lemma 3, which leads to E(D,,) =
0 and E(Q,) = 0. Re-express B = (by, -+ ,b,), where b; is a L x 1 vector for

1=1,---,n. By Lemma 3 we then obtain that

n i—1
op, = var(D,) =40 > "> "al(t) + Z — o'} a2 (t) + 20Dt b (t)]
i=1 j=1
+0? ) (')
=1
= 2(;4{2%2](15)— az()}—FUQtT <beT>
i,j=1 i=1 =1
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where

n L n
20 > " ak(t) =20 > it Y alValP =207 (tr(AL AL)) ot

i,jzl ll7l2:1 i,jzl

{,u —304}2 az( p® — 30} Z it 22 (L) (l2) (4)—304}tT\I/T\I/t, and

l1,la=1

20T " bia(t) = Z tt, Z ba,al? =2, BTt
=1 l1,la=1

Accordingly, we have

0% =t {20" (tr(AL AL)) ., + 2B B+ {u® =36} 0TW + O BT 4+ 0T B}t
(S1.1)

This implies that

Cov(Q,) = 20" (tr(A, A)) ;. +0°B' B+ {u(4) — 30"} U+ pB BT 4+ PwT B,

Using the fact that A; is symmetric, we have || A;||o = ||A4;||1 for any I € {1,--- , L}.

By 4.67 (e) in |Seber| (2008, p. 69), we obtain
[Aly < A/ 1Al Ao

This, together with Condition (2) in this lemma, implies that sup,, [|4i|l2 < co. In

addition, applying Lemmas 1 and 2 of Zou et al.| (2017)), we have

n'tr(A, A,) = O(1) for any I, 1y € {1,---, L}. (51.2)
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Moreover, by Lemma 1 and Condition (3) in this lemma, we have

2/(24+m)
sgll) nt ||vec(B)H§ < [12/4m) (sgli nt |\Vec(B)H§iZi) < o0.

This result, together with 4.67 (a) in [Seber (2008, p. 68), implies

_ - 2 - 2
igll)n ! HBTBH2 < itill)n "Bl < igll)n vec(B)||; < oo. (51.3)

By 4.67 (a) in |Seber| (2008, p. 68), we also have

L L 2
supn”" T3 < supnt |vec(T)[; <supn 'Y AR <) (Sup IIAz||2> < 00,
>1 n>1 = = \n>1

n>1 n

which leads to

supn " |[UT¥||, < sup n~ || < oo and (S1.4)
n>1 2 n>1 2

supn™ || BTW||, < supn /2B, supm ! |, < oo, (51.5)

n>1

By (S1.2)-(S1.5), we obtain Cov(n~'/27¢Q,,) — 0. This implies
n~Y*Q, =N 0,

which completes the proof of the first part of Lemma 4.

We next show the second part of this lemma. By Condition (5) in this lemma and
equation (S1.1f), we obtain

1
—o}, —t' 2t > 0.
n
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Furthermore, employing the results in Lemma 3, we have

-1/2 tTQn _ Dn %OQDn

VT2t Vb t7 2t

45 N(0, 1),

n

which leads to

n 27 Q, —4 N(0,tT 2¢).

This, together with the Cramér-Wold device, implies that
n~Y2Q, % N(0,2),

which completes the entire proof of this lemma.

Lemma 5. Under Conditions (C1)-(C5) in Appendiz, we have that, as n — oo,

(i) n—l/Qa‘é—(;) AN (o,z(e) n j(@,u(3),u(4))) and (i) —n

— (9 6(0) P
1 T 9

Proof. We firstly prove the part (i) of Lemma 5. After tedious calculation, we have

vec' (A)

o) _ : vec {&(a, B)E(a, B)T — %I} + BTE(a, B), (S1.6)

vec' (Ap)

where L = p+d+ 1, Aj = Opxyp forl = 1,---p, Apry = 270 H{WAL (B)S7HB) +

STHB) T Mg (B)W T} with A, (B) := OA(B) /0B = diag{zuF'(Z) B), -+, 2 F"(Z,; B)}
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fOl" k = 1, e 7d, Ap+d+l = 2_10—_4171,

= XT
S XTSTH(B) T A, (B)WT
B' = : and

o XTSTH(B) T Ag, (B)WT

01><n

E(a, B) = S(B)Y — Xa. It is obvious that Condition (1) in Lemma 4 is satisfied.

Note that, for [ = 1,--- ,p, we have ||4;||; = 0. In addition, for k =1,--- ,d,
145 (8)]1, = max |z F'(Z] B,

1
1Apilly < 5 {IWIL 1A B [[ST B, + 157 B 148, (B WL} and

g |~

1
| Aprasill = oy [1nll, = By

By Conditions (C2)-(C4), we obtain

sup ||Aill; < oo, forl=1,---  (p+d+1). (S1.7)
n>1

Hence, Condition (2) in Lemma 4 is satisfied.

By Lemma 1 and Lemma 2, we have that, for any n; > 0,

1 2
n”t [vee(B)|lsim =n lm{ﬂvec [Fs +Z||WAﬁk ST BXal;
1 2 2 2 2+ 2
. 02<2+m>{p'x'5"1+” (> e W ’“ZHA I

}
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By Conditions (C2)-(C4) and employing similar techniques to those used for verifying
1' we obtain sup,,>; n_lﬂvec(B)HgiZi < 00. Thus, Condition (3) in Lemma 4 is

satisfied. By Condition (C1), Condition (4) in Lemma 4 is also satisfied.

Lastly, by the first part of Lemma 4 and Condition (C5), we obtain E{0¢(0)/00} =

0 and

%COV {ag—(j)} =T7.(0) + T, (0, 1@, ;i) = Z(6) + T (0, u>, u).

which implies that Condition (5) in Lemma 4 is satisfied. In sum, we have verified
that 0¢(0)/00 satisfies Conditions (1)-(5) in Lemma 4, which lead to the first part of

Lemma 5.

We next demonstrate the second part of Lemma 5. After tedious calculations, we

have that
826(9) _ 1 826(9) . 1 _ 626(9) B
E@a@oﬁ B _;XTX’ E@aaﬁk N _EXTWA&(B)S HB)Xa, EW = Opx1,

020(0) » B
—tr { WA, (8)S7(B)S(B) Mg, (AW |
—%QTXTSWTA% (B)WTW Ag,, (8)S™(8)Xa,

82€ 0 1 _ an 6
B rraes = =t (WA (9570} and B —
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for k, ki, ke € {1,--- ,d}. Accordingly, we have

020(6)
— -1 =
n E@G@QT Z.(0).
We next prove
9%0(0)
J— -1 —
" Gaagr — Tn(0) +or(l)

via the following six steps, which correspond to their components of # and " in the

Fisher information matrix.

STEP I. It can be seen straightforwardly that

_, 0%4(0) 1 0%(0)
o _ 1
" dada’ " E@a@oﬁ '

In the next five steps, we will apply Lemma 4 to show the desired results. Note
that Condition (C1) in this lemma indicates that Condition (4) in Lemma 4 holds.

Hence, we only check Conditions (1)-(3) of Lemma 4.

STEP II. For any k = 1,---d, we have

020(6)

_-19%(0)
8@8& '

3&86k = n—lg—2XTWA5k (5)5_1(6)5((17 B) R

(S1.8)

We employ Lemma 4 by defining A; = 0%, for [ = 1,--- . p, and B = 072571(3)"

xAg, (B)WTX. Accordingly, Conditions (1)-(2) in Lemma 4 are satisfied. Furthermore,
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by Lemma 2, we have, for any 7, > 0,

p
n=t [vee {S7H(B) T A, (B)W X} HZIZi =0 ) [S7HB) T A, (5)WTX]-||§121
j=1

< ST IAs (B W X

Subsequently, using Conditions (C2)-(C4) and employing similar techniques to those

used for verifying (S1.7)), we obtain

2+m

supn " ||vec {STH(B) T Ag, (B)WTX}|]2+m <

n>1

(S1.9)

Hence, Condition (3) in Lemma 4 holds. This, together with the validity of Conditions
(1)-(2), allows us to apply Lemma 4 and obtain the order of the first term on the

right-hand side of (S1.8) as op(1), which leads to

0%0(0)
dado?’

=n o X"E(a, B) —n'E

We employ Lemma 4 by defining A; = 0,,»,, for [ =1,--- ,p, and B = ¢~ *X. Accord-
ingly, Conditions (1)-(2) in Lemma 4 are naturally satisfied. In addition, by Lemma

2, for any nm; > 0,

p
_ 2 _ 2 2

nt vee(X) [T = nt Y K50 < p X

j=1
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Then using Condition (C2), we obtain

2+m

supn* [[vec(X) H2+m

n>1

< 00,

which verifies Condition (3) in Lemma 4. This, in conjunction with the validity of Con-
ditions (1)-(2), allows us to employ Lemma 4 and demonstrate that n='c X" &(a, B) =
op(1). Consequently,

L) .
" dado? " Oado?

STEP IV. After tedious calculation, for any ki, ks € {1,--- ,d}, we have

_, 0%(0) et o T 71 o .
—-n —8ﬂklaﬂk2 = —n "2 0 “vec {WAgk15k2(ﬁ)S (5)—1—5’ (ﬁ) AﬁklﬂkQ(ﬁ>W

5B Ay, (AW WA, (5)S7(9)
=57 O A, (WA, (9)57(9) prec (€l HE ) = 0°1,)
Fto 2 aTHTS B g, (W WAL, ()55

+a XTSTHB) T Ag,, (B)W WA, (8)SH(B)

92¢(0)

—aﬁklaﬁkQ , (S1.10)

—&TXTSfl(ﬁ)TA/gklﬁkz (B)WT}S(Q, B)—n'E

2 .
where Ag, 5, (8) := % = diag {21, 216, F"'(Z) B), -+, 2uky 20, (2, B) }.

For given ki, ke € {1,--- ,d}, we employ Lemma 4 by defining A; = —2_10_2{W
XNgy i, (B)STHB) + STHB)  Agy, i, (B)WT = S7H(B) T Ag, (B)W T WA, (B)S™H(B) —
S’l(ﬁ)TAng (6)WTWA3k1 (8)S7Y(B)}, L=1,and BT = U’QQTXTS’l(ﬁ)TAﬁkl (BYywr

xWAg, (8)S™! (5)+a’2aTXTS*1(6)TA5k2 (B)WTWAﬁk1 (B)S7HB)—o2aXTSTH(B)T
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A/Bkl Brs (5)WT

It is clear that A; is symmetric. Analogously to the proof of (S1.7)), by Conditions

(C2)-(C4), we can show that

sup
n>1

)WAIBkIBkQ (B)SHB) + kS'*l(B)TAgklﬁk2 (ﬁ)T/VTH1 < 0o and

sup
n>1

< Q.
1

STHB) Ay, (BIW WAs, (8)S71(8) + 571 (8) Ag,, (BW WA, (8)S~(8)

Accordingly, A; satisfies Conditions (1)-(2) in Lemma 4.

Employing similar techniques to those used in verifying (S1.9)), under Conditions

(C2)-(C4), we can demonstrate that for any n; > 0,

T 24m
sglzl)n_l {QTXTS_l(B)TABkl (B)I/VTVVAﬁk2 (B)S7H(pB) < 00,
n> 2+m
T 2+Zl
sglzfn_l {QTXTS_I(B)TA5k2 (ﬂ)I/VTVVABk1 (B)S~(B) < 00, and
n> 2+m
TI12+m !
supn~! {QTXTS_I(B)TA5k1@k2 ByWwT < 00.
n>1 24+m

Hence, B satisfies Condition (3) in Lemma 4. Finally, applying Lemma 4, we obtain

that the orders of the first seven terms on the right-hand side of (S1.10) are op(1).

Consequently,
| 0%(0)

Pt S S 1)
ST

9%0(0)

—aﬁklaﬁkz + Op(l).
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STEP V. After algebraic simplification, we have, for k =1,--- ,d,

1 O%() —1o-1_—4 -1 1\ T T
-n 95007 n~ 27 o vee {WAg, (B)S™H(B) + STH(B) " Ap (B)W '}
xvec {E(a, B)E(a, B)T — oL, } +n o™ a XS (B) T Ag (B)WT
2
xE&(a, B) — "_lEgﬁféea)?' (S1.11)

We employ Lemma 4 by defining A; = 2716~ *{WAg, (8)S~H(B)+S71(8) "Ap, (B)W T},

L=1,and BT =07 4a"XTS7YB)TAg, (B)W .
It is clear that A; is symmetric. Based on the proof of (S1.7), by Conditions
(C2)-(C4), we can obtain

sup || WA, (3)S7(8) + S71(8) T Ag (BIW]], < o0.

n>1

Accordingly, A, satisfies Conditions (1)-(2) in Lemma 4.

By using the same techniques as those used in the proof of (S1.9)), we can show

that, for any 7, > 0,

supn H{aTXTS_l(ﬁ)TAﬁk(B)WT}THQW < 0.

n>1

Thus, Condition (3) in Lemma 4 holds. Finally, applying Lemma 4, we obtain that the

orders of the first two terms on the right-hand side of (S1.11]) are op(1). Consequently,

L) )

95002 = " Bggagz Tor(l):
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STEP VI. After algebraic calculation, we obtain

_, 0%(0) o 1. 0%(0)
-1 _ -1 —6 T T_ 2py_ -1
502902 — 1 O vec (1) vec {E(a, B)E(a, B)" — 0°L,} —n E(‘?az@a?'
(S1.12)

We employ Lemma 4 by defining A, = 07%1I,,, L = 1, and B = 0,,,;. It is clear that A,
is symmetric and sup,,»; |[1,[1 = 1. Hence, A, satisfies Conditions (1)-(2) in Lemma 4.
In addition, B naturally satisfies Condition (3) in Lemma 4. Applying Lemma 4, we
then obtain that the order of the first term on the right-hand side of equation (S1.12))
is op(1). Consequently,

020(0) 020(0)
1 — _1E
" 002002 " 0o2002

+ Op(l).

Finally, the results obtained from the above six steps, in conjunction with Condition

(C5), imply
)

P
" a0 =7,(0) + op(1) — Z(0),

which completes the entire proof of Lemma 5.

S2 Discussions of Conditions in Appendix

It is worth noting that all of the conditions in Appendix are mild and sensible. Condi-
tion (C1) is a moment condition, which is weaker than commonly used distribution as-
sumptions; see, for example, the normal distribution assumption in Zhou et al. (2017).
Conditions (C2) and (C3) have been carefully studied in Lee (2004). Condition (C4)

is critical for showing the asymptotic normality of the QMLE, and the four types of
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the link functions discussed in Section 2.1 satisfy this condition. Condition (C5) is a
standard condition for establishing the convergence of the Fisher information matrix
and the variance of the score function. For example, let Z,, be a matrix consisting of
the first p rows and p columns of Z(#). Then, by Condition (C5) and equation (?7?),

1

we obtain n 1o 2X"X — Z,,, which is a standard assumption in linear regression

analysis.
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S3 Proofs of Theorems and Corollaries

Proof of Theorem 1. To prove this theorem, we consider two steps, namely showing

1/2_consistent, as n — 0o, and verifying 0 is asymptotically normal, respectively.

6 is n

STEP I. To complete this step, it suffices to follow the techniques of [Fan and Li
(2001)) to show that, for an arbitrarily small positive constant £ > 0, there exists a
constant Mg > 0 such that

P { sup C(6+ n’1/2u) < 6(9)} >1-¢ (S3.13)

WERPHAHL || =M

as n is sufficiently large enough. To this end, we employ the Taylor series expansion

and obtain that

sup {e(0+ n_l/Zu) — ()}

UERPHAH [yl =M

_1,00(0) 1 9%0(0)
_ 129%\Y) - -1, T ) _ Y YY) R
ueRP+d§Hﬁu||2=Mg ! 007 ! 2n ! { 00067 ut Bnlu)
1
< M:Op(1) - §Amm {Z(6)} MZ + op(1), (S3.14)

where Apin{-} is the smallest eigenvalue of the matrix inside the braces and

R, (u) = =n~32u" (Lprar1 ®u') 507 Ve 5000

5, {826(9 + n~12¢u) } .
6

with 0 < ¢ < 1. Applying similar techniques to those used in the proof of Lemma
5, we obtain R,(u) = Op(n~Y?) for |lu|l, = M. This, together with Lemma 5,

leads to the inequality in (S3.14). Note that M¢Op(1) — Amin {Z(0)} MZ/2 in (S3.14)

is a quadratic function of M, and Condition (C5) implies its quadratic coefficient
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—Amin {Z(0)} /2 < 0. Hence, as long as M, is sufficient large, we have

sup {e(6+ n’lﬁu) —(0)} <0, (S3.15)

UERPHAHL || =M

with probability tending to 1, which demonstrates (S3.13). Based on the result of
(S3.15)), there exists a local maximizer 6 such that ||§ — 6], < n~'/2M as n is large
enough. This, in conjunction with (S3.13)), implies

P(|\é79||2 gn*WMg) ZP{ sup e(eﬂfl%) <z(9)} >1-¢

uERTH’dJrl:HuHQ:]V[g
As a result, n'/2||f — 6]|; = Op(1), which completes the proof of Step 1.

STEP II. By the result of Step I and the Taylor series expansion, we have that 0 = 9¢(6)/06 =

0U(0)/00 + {0%0(0) /9000 }(0 — 0) + R,,, where

g . \T)] @ 920(0)\
Rn_2{—[p+d+l®(9_9) }WVec{aeaeT}(e_e)

and 0 lies between 6 and 6. Then employing similar techniques to those used in the proof of Lemma

5, we obtain n =10 vec{9%4(0)/0000T} /00T = Op(1). This, together with Lemma 5, implies

n'/2(0-0) = n_l/QI_l(G)%(;) +op(1)

N (0,1—1(9) +IY0)T (0, 1P, u<4>)z—1(9)) : (93.16)

which completes the entire proof.

Proof of Theorem 2. To facilitate this proof, we slightly abuse the notation 6§ = (a",87,0%)" by
arranging it to be = (62,a",7)T = (0] ,04 )7, where 0; = (62, a",3,)" and 05 = (B2, ,Ba) .
Accordingly, the associated quantities are also changed, such as the score function 0¢(6)/96 and

information matrix Z(6).
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Under the null hypothesis, Hg : 62 = 04_1)x1 € R(@"Y*1 we denote the resulting constrained

QMLE of 6 as (). Consider

2(6) = T11(0) T:12(0) |

To1(0) Zx(0)
where Z;;(0) is the convergence of its corresponding information matrix with respect to ¢; and 6; for

1,7 € {1,2}. Then employing similar techniques to those used for proving (S3.16)), we obtain that

n/2(0") — g) = m”%(e)%(:) + op(1), (S3.17)

i (0)  Ops2)x(a-1) . . -
where Z;(0) = . This, together with the result of Theorem 1, implies

O@-1)x(p+2)  O@-1)x(d-1)
that both § and §(") are n'/2-consistent. By (S3.16) and (S3.17)), we obtain

6(0)

V(0™ —0) =n"2{1(0) - 171(9)} 55 Hor(1)=0p(1). (S3.18)

Applying the Taylor series expansion, we have

. . @) | s

where 6 lies between 6 and (") and it is also n'/2-consistent. In addition, by Conditions (C1)-(C5)

and applying the similar techniques to those used in the proof of Lemma 5, we have

Accordingly,

Tjr = Va(6") — 6)TZ(9)y/n(6" — 6) + op(1). (83.19)

For the sake of simplicity, denote K (6, u®), ) = Z(8) + 7 (6, u®, u¥) = K. By Lemma 5, we
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have that

0¢(0
n71/2K71/2% 4, N(O, Iyas).

This, in conjunction with (S3.18]), leads to

T
T, = {nl/zﬁl/zag(:)} K2 {Z,(0) ~ T1(6)} Z(6)

x {T1(0) —Z71(0)} K/ {n1/2K1/282(;)} + op(1).

Using the fact that Z; (6)Z(0)Z1(0) = Z1(0) and {Z;(0)—Z 1 (0)}Z(0){Z,(0)—Z~1(0)} = Z~1(0)-Z:1(9),
we further obtain

-
T, = {n71/2K71/2%(;)} Kcl/2 {171(9) _ I1(0)} KL/2 {nil/QIC*l/Q%(;)} + op(1).

Let A1(0), -, Apyat1(0) be the eigenvalues of K/2{Z~1(9) —Z;(0)} K'/2. The above results, to-
gether with the continuous mapping theorem and Slutsky’s theorem, imply that T}, follows a weighted
ptd+1

chi-square distribution 1 N (6, u®), u))x?(1) asymptotically. This completes the first part of

the proof.

Under the normal assumption of £, the matrix jn(ﬁ,u(3),u(4)) defined above Theorem 1 is
0. By Condition (C5), we have J(6,u®, u™®) = 0, which leads to K = Z(#). Using the fact
that {Z,(0) — Z-Y(0)}Z(0){Z,(0) — Z1(0)} = Z=(0) — Z,(6), the symmetric matrix K/2{Z~1() —

T, (0)}CY? = TV2(0){T~1(0) — T, (0)}T'/?(6) is idempotent. In addition,

tr {11/2(9) (T71(0) - 11(9)}11/2(9)} = tr [{Z71(0) — T.(0)} T(0)]

Opr2)x(pr2)  —Zi1 Di2
— e {lyran — T (O)Z(O)} = tr —d-1.

O(d—1)x (p+2) Iy

The above results, together with the normality assumption, imply that T}, BN x2(d — 1), which

completes the entire proof.
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Proof of Corollary 1. By Conditions (C1)-(C5) and applying the similar techniques to those used
in the proof of Lemma 5, we obtain Z, ' (6)K,, (6, 4®, ;™) Z1(0) N Z-Y0)KZ~1(0). In addition, by
Theorem 1 and the continuous mapping theorem, we have, under the null hypothesis, n'/? (Aé) 4,

N(0,AZ7*(9)KZ~(A)AT). The above results, together with Slutsky’s theorem and the continuous

mapping theorem, imply

>
=

n 9

T, = (AG)T [A {n—lz—l(é)/cn( <3>,,1<4>)I;1(é)} AT] TUAG - 2 - 1),

This completes the proof.

Proof of Corollary 2. Let 0 be defined as in the beginning of the proof of Theorem 2. Employing

the Taylor series expansion, we have that

n_1/2 (‘%(é“)) . ]_ 862@) 1/2(0"(7«) o 0),

90 nogoeT "

where 6 lies between 0(") and 6. Since both (") and 6 are nl/2-consistent under the null hypothesis,
6 is also n'/2-consistent. By Conditions (C1)-(C5) and applying similar techniques to those used in

the proof of Lemma 5, we obtain, under the null hypothesis,

These results, together with (S3.19)), imply that

(0 ! ()
_ 1 —1/p(r)
T, =n { 50 } 0\ 50

= V@™ —0)TZ(0)r(0") — 6) + op(1) = Ti, + op(1),

which completes the proof.
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S4 Simulation and Empirical Results

To further examine the robustness of parameter estimates with respect to random error distributions,
we simulated the independent and identically distributed random errors from o(, where ( follows a
standard normal distribution, a mixture normal distribution, a standardized t3 distribution and a
standardized exponential distribution, respectively. The rest of the model simulation setting is the
same as that in Section 3 of the paper. Tables S.1-S.4 report results for these four distributions,

respectively.

As suggested by an anonymous referee, we further adopt the network settings from [Ma et al.
(2019) and conduct simulation experiments under the power-law network structure and the network
structure generated from the stochastic block model (SBM). The rest of the model simulation setting
is the same as that in Table S.2. Tables S.5-S.6 present the results for these two network settings,

respectively.

The results in Tables S.2-S.6 yield qualitatively similar findings to those obtained from the Gaus-
sian error and original network setting in Table S.1. Hence, our proposed estimates still exhibit nice
properties under these three non-normal errors and two different network structures. Note that the
average execution times (in seconds) are not reported in Tables S.3-S.4 since they are quite similar to

those in Tables S.1-S.2.

To measure the computation efficiency of the proposed QMLE under large-scale networks, we
follow another referee’s suggestion to conduct the simulation experiment with n =10,000. The rest of
the model simulation setting is the same as that in Table S.2. The results are reported in Table S.7.
Apparently, the computation efficiency under n =10,000 is limited since QMLE involves huge matrix
operations under the large-scale network. Hence, we only conduct 100 realizations in this study. The

discussion of possible approaches to deal with large-scale network computations is in Section 5 of the

paper.

According to an anonymous referee’s suggestion, we report the empirical coverages of a 95%
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confidence interval constructed by QMLEs and their asymptotic normal distributions; see Table [S.8]

The model simulation setting is the same as that in Table Table indicates that empirical

coverages are close to 95% when n is large.

Table S.9 provides additional empirical results mentioned in Section 4 of the paper.

Table S.1: Comparison of the QMLEs of the parameters (a; =2, as =1, 81 = —1, B2 =5, B3 = —2
and 02 = 1) for the exponential, logistic, inverse of the probit, and inverse of the log-log link functions,
respectively. The independent and identically distributed random errors are simulated from the normal
distribution N(0,0?). Three measures are considered: the averaged bias of the estimate (BIAS), the
standard deviation of the estimate (SD), and the root mean squared error of the estimate (RMSE).
The average execution times (in seconds) for computing the parameter estimates are in parentheses.

Link n Measure (e %1 Qo Bl 5’2 Bg 52
n = 200 BIAS 0.0339 -0.0051 -0.0523 0.1760 -0.0517 -0.0156
SD 0.2925 0.0746 0.2264 0.8390 0.3425 0.1032
(0.61) RMSE 0.2945 0.0748 0.2323 0.8573 0.3464 0.1044
n = 500 BIAS 0.0129 0.0002 -0.0141 0.0389 -0.0086  -0.0048
Exponential SD 0.1570 0.0490 0.1093 0.4021 0.1574 0.0669
(2.88) RMSE 0.1575 0.0490 0.1102 0.4040 0.1576 0.0671
n =1,000 BIAS 0.0009 0.0013  -0.0025 -0.0017 -0.0028 -0.0027
SD 0.1109 0.0310 0.0788 0.3056 0.1340 0.0463
(14.20) RMSE 0.1109 0.0310 0.0788 0.3056 0.1340 0.0463
n = 200 BIAS 0.0168 -0.0045 -0.3548 1.4773  -0.5960 -0.0164
SD 0.2800 0.0746 1.7801 5.6597 4.8306 0.1032
(0.59) RMSE 0.2806 0.0747 1.8151 5.8493 4.8672 0.1045
n = 500 BIAS 0.0088 0.0003  -0.0659 0.2344 -0.1000 -0.0051
Logistic SD 0.1644 0.0489 0.3870 1.4612 0.9375 0.0669
(2.36) RMSE 0.1647 0.0489 0.3926 1.4799 0.9428 0.0670
n =1,000 BIAS 0.0052 0.0012 -0.0261 0.0736  -0.0477  -0.0027
SD 0.1105 0.0310 0.2215 0.8997 0.6125 0.0464
(11.54) RMSE 0.1106 0.0310 0.2230 0.9027 0.6144 0.0464
n = 200 BIAS -0.0150 -0.0038 -0.3570 1.7669 -0.6655 -0.0165
SD 0.2118 0.0744 1.8620 8.4554 3.9599 0.1035
(0.84) RMSE 0.2123 0.0745 1.8960 8.6381 4.0155 0.1048
n = 500 BIAS -0.0021 0.0005 -0.0593 0.2846 -0.1078  -0.0050
Inverse Probit SD 0.1268 0.0488 0.3154 1.4857 0.8097 0.0670
(3.27) RMSE 0.1268 0.0488 0.3209 1.5127 0.8169 0.0671
n =1,000 BIAS -0.0007 0.0012  -0.0230 0.1013  -0.0522  -0.0028
SD 0.0878 0.0310 0.1880 0.9448 0.5241 0.0464
(14.64) RMSE 0.0878 0.0310 0.1894 0.9503 0.5267 0.0464
n = 200 BIAS 0.0225 -0.0047 -0.1829 0.8806 -0.2919 -0.0163
SD 0.2898 0.0746 0.8125 3.7780 1.3693 0.1033
0.61) RMSE 0.2907 0.0747 0.8328 3.8793 1.4001 0.1046
n = 500 BIAS 0.0114 0.0003  -0.0455 0.1679 -0.0743  -0.0051
Inverse Log-Log SD 0.1658 0.0489 0.2668 1.0556 0.6540 0.0669
(2.54) RMSE 0.1662 0.0489 0.2707 1.0689 0.6582 0.0671
n =1,000 BIAS 0.0048 0.0012  -0.0171 0.0518 -0.0355  -0.0027
SD 0.1123 0.0310 0.1621 0.6705 0.4323 0.0463
(12.22) RMSE 0.1124 0.0310 0.1630 0.6725 0.4337 0.0464
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Table S.2: Comparison of the QMLEs of the parameters (a; = 2, ag =1, 1 = —1, B3 =5, 83 = —2
and 02 = 1) for the exponential, logistic, inverse of the probit, and inverse of the log-log link functions,
respectively. The independent and identically distributed random errors are simulated from o(, where
¢ follows a mixture normal distribution 0.9N(0,5/9) 4+ 0.1N(0,5). Three measures are considered:
the averaged bias of the estimate (BIAS), the standard deviation of the estimate (SD), and the root
mean squared error of the estimate (RMSE). The average execution times (in seconds) for computing
the parameter estimates are in parentheses.

Link n Measure a1 (62 [:11 B2 B3 &2
n = 200 BIAS 0.0380 -0.0014 -0.0579 0.1971 -0.0509 -0.0099
SD 0.3027 0.0747 0.2360  0.8825 0.3495 0.1902
(0.83) RMSE 0.3050 0.0747 0.2430  0.9042 0.3532 0.1905
n = 500 BIAS 0.0126 0.0000 -0.0152 0.0473 -0.0090 -0.0007
Exponential SD 0.1609 0.0491 0.1111  0.4097  0.1577 0.1275
(3.25) RMSE 0.1614 0.0491 0.1122 0.4124 0.1580 0.1275
n =1,000 BIAS 0.0038 0.0001 -0.0044 0.0075 -0.0042 0.0003
SD 0.1083 0.0312 0.0767  0.3054 0.1358 0.0856
(14.65) RMSE 0.1084 0.0312 0.0768  0.3055 0.1358 0.0856
n = 200 BIAS 0.0239  -0.0009 -0.4441 1.6682 -0.7582 -0.0103
SD 0.2839 0.0747 2.6011  7.6328 6.4832 0.1903
(0.75) RMSE 0.2849 0.0747 2.6387  7.8130 6.5274 0.1906
n = 500 BIAS 0.0090 0.0002 -0.0739 0.3190 -0.0826  -0.0009
Logistic SD 0.1673 0.0489 0.4228 1.7378 0.9219 0.1273
(2.77) RMSE 0.1676 0.0489 0.4292 1.7668 0.9256 0.1273
n =1,000 BIAS 0.0059 0.0001 -0.0258 0.0780 -0.0363 0.0003
SD 0.1101 0.0312 0.2189  0.9108 0.5976 0.0856
(11.74) RMSE 0.1102 0.0312 0.2204 0.9142 0.5987 0.0856
n = 200 BIAS -0.0108 -0.0005 -0.4591 1.9509 -0.9679 -0.0110
SD 0.2189 0.0748 2.6830 8.0535 7.7695 0.1899
(1.04) RMSE 0.2192 0.0748 2.7220  8.2864 7.8296 0.1902
n = 500 BIAS -0.0017  0.0003 -0.0714 0.3794 -0.0956 -0.0009
Inverse Probit SD 0.1306 0.0489 0.3463  1.7206 0.7980 0.1274
(3.78) RMSE 0.1306 0.0489 0.3536  1.7619 0.8037 0.1274
n =1,000 BIAS 0.0008 0.0001 -0.0247 0.1121  -0.0440 0.0003
SD 0.0879 0.0312 0.1877  0.9442 0.5198 0.0856
(15.03) RMSE 0.0879 0.0312 0.1894  0.9508 0.5217  0.0856
n = 200 BIAS 0.0286 -0.0011 -0.1906 0.8914 -0.2981 -0.0102
SD 0.2927 0.0747 0.6886  3.0889 1.4761 0.1905
(0.81) RMSE 0.2941 0.0747 0.7145  3.2150 1.5059 0.1908
n = 500 BIAS 0.0120 0.0002 -0.0498 0.2131 -0.0623 -0.0008
Inverse Log-Log SD 0.1688 0.0489 0.2785  1.1581 0.6418 0.1274
(2.95) RMSE 0.1692 0.0489 0.2829 1.1776 0.6448 0.1274
n =1,000 BIAS 0.0062 0.0001 -0.0179 0.0566 -0.0283 0.0003
SD 0.1114 0.0312 0.1601  0.6765 0.4233 0.0856
(12.53) RMSE 0.1115 0.0312 0.1611  0.6789 0.4243 0.0856
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Table S.3: Comparison of the QMLEs of the parameters (ay = 2, ag = 1, 1 = —1, 82 = 5,
B3 = —2 and 02 = 1) for the exponential, logistic, inverse of the probit, and inverse of the log-log
link functions, respectively. The independent and identically distributed random errors are simulated
from o, where ( follows a standardized t3 distribution. Three measures are considered: the averaged
bias of the estimate (BIAS), the standard deviation of the estimate (SD), and the root mean squared
error of the estimate (RMSE).

Link n Measure aq Qo Bl BZ ﬁg &2
n = 200 BIAS 0.0388 -0.0067 -0.0572 0.1911  -0.0568 -0.0016
SD 0.2885 0.0770 0.2347 0.8643 0.3522 0.7034
RMSE 0.2911 0.0773 0.2416 0.8851 0.3568 0.7034
n = 500 BIAS 0.0133 -0.0001 -0.0137 0.0387  -0.0077 -0.0104
Exponential SD 0.1486 0.0477 0.1043 0.3981 0.1521 0.4769
RMSE 0.1492 0.0477 0.1052 0.4000 0.1523 0.4770
n =1,000 BIAS -0.0001 0.0007  -0.0032 0.0087  -0.0045 0.0091
SD 0.1112 0.0315 0.0782 0.2991 0.1320 0.4618
RMSE 0.1112 0.0315 0.0783 0.2992 0.1321 0.4619
n = 200 BIAS 0.0218 -0.0063 -0.4725 1.6868 -0.7899  -0.0032
SD 0.2758 0.0771 2.6725 12.1332 4.9082 0.7035
RMSE 0.2767 0.0774 2.7139  12.2498 4.9713 0.7035
n = 500 BIAS 0.0102 0.0000 -0.0760 0.1716  -0.1157 -0.0110
Logistic SD 0.1551 0.0476 0.5967 1.9302 1.7875 0.4689
RMSE 0.1554 0.0476 0.6016 1.9378 1.7913 0.4690
n =1,000 BIAS 0.0050 0.0006  -0.0288 0.1252  -0.0631 0.0090
SD 0.1095 0.0315 0.2197 0.9156 0.6046 0.4615
RMSE 0.1096 0.0315 0.2216 0.9242 0.6079 0.4616
n = 200 BIAS -0.0087 -0.0057 -0.4423 2.2639 -0.8289 -0.0035
SD 0.2082 0.0772 2.3112  11.4641 5.1989 0.7033
RMSE 0.2084 0.0774 2.3531 11.6854 5.2646 0.7033
n = 500 BIAS 0.0018 0.0002  -0.0837 0.2823  -0.1465 -0.0110
Inverse Probit SD 0.1225 0.0477 0.6208 2.0223 1.8435 0.4695
RMSE 0.1225 0.0477 0.6264 2.0419 1.8493 0.4697
n =1,000 BIAS -0.0020 0.0006  -0.0245 0.1413  -0.0609 0.0090
SD 0.0887 0.0315 0.1875 0.9448 0.5151 0.4616
RMSE 0.0887 0.0315 0.1891 0.9554 0.5187 0.4617
n = 200 BIAS 0.0291 -0.0063 -0.2160 0.9841 -0.3872 -0.0024
SD 0.2820 0.0771 1.1084 5.5325 2.7047 0.7037
RMSE 0.2835 0.0774 1.1293 5.6193 2.7323 0.7037
n = 500 BIAS 0.0135 -0.0000 -0.0557 0.1282  -0.0940 -0.0110
Inverse Log-Log SD 0.1582 0.0476 0.4459 1.4110 1.3360 0.4682
RMSE 0.1587 0.0476 0.4494 1.4169 1.3393 0.4684
n =1,000 BIAS 0.0047 0.0006 -0.0193 0.0883  -0.0468 0.0090
SD 0.1115 0.0315 0.1605 0.6734 0.4276 0.4615
RMSE 0.1116 0.0315 0.1617 0.6792 0.4301 0.4616
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Table S.4: Comparison of the QMLEs of the parameters (o =2, as =1, 1 = —1, B2 =5, 83 = —2
and 02 = 1) for the exponential, logistic, inverse of the probit, and inverse of the log-log link functions,
respectively. The independent and identically distributed random errors are simulated from o(, where
(¢ follows a standardized exponential distribution. Three measures are considered: the averaged bias

of the estimate (BIAS), the standard deviation of the estimate (SD), and the root mean squared error
of the estimate (RMSE).

Link n Measure a Ao 31 /5’2 33 62
n = 200 BIAS 0.0286 0.0016  -0.0440 0.1522 -0.0311  -0.0242
SD 0.2908 0.0715 0.2197 0.8350 0.3331 0.1907
RMSE 0.2922  0.0715 0.2241 0.8487 0.3345 0.1922
n = 500 BIAS 0.0050 0.0004 -0.0084 0.0161 -0.0083 -0.0105
Exponential SD 0.1566  0.0470 0.1085 0.4052 0.1562 0.1275
RMSE 0.1567  0.0470 0.1089 0.4056 0.1564 0.1279
n =1,000 BIAS 0.0012 0.0013 -0.0037 -0.0010 -0.0082 -0.0067
SD 0.1118  0.0317 0.0823 0.3196 0.1388 0.0885
RMSE 0.1118  0.0317 0.0824 0.3196 0.1390 0.0887
n = 200 BIAS 0.0281 0.0018 -0.4055 1.7055 -0.4230 -0.0243
SD 0.2815  0.0717 2.7929 11.0253 3.1882 0.1902
RMSE 0.2829  0.0717 2.8222  11.1565 3.2162 0.1917
n = 500 BIAS 0.0018  0.0003 -0.0468 0.1821 -0.1116  -0.0105
Logistic SD 0.1568  0.0469 0.3589 1.4959 0.9479 0.1275
RMSE 0.1568  0.0469 0.3619 1.5069 0.9545 0.1279
n =1,000 BIAS 0.0023 0.0012 -0.0240 0.0643  -0.0607  -0.0067
SD 0.1138  0.0317 0.2369 0.9121 0.6103 0.0885
RMSE 0.1139  0.0317 0.2381 0.9144 0.6133 0.0887
n = 200 BIAS -0.0058 0.0025 -0.3522 1.6998 -0.5352 -0.0251
SD 0.2145 0.0715 2.1311 8.6770 4.6687 0.1900
RMSE 0.2146  0.0715 2.1600 8.8420 4.6993 0.1917
n = 500 BIAS -0.0069 0.0004 -0.0555 0.2970 -0.1036  -0.0106
Inverse Probit SD 0.1257  0.0470 0.3579 1.7949 0.8147 0.1274
RMSE 0.1259  0.0470 0.3622 1.8194 0.8212 0.1279
n =1,000 BIAS -0.0029 0.0012 -0.0216 0.0903 -0.0539  -0.0067
SD 0.0899 0.0317 0.1971 0.9366 0.5264 0.0885
RMSE 0.0900 0.0318 0.1982 0.9409 0.5292 0.0887
n = 200 BIAS 0.0307 0.0018 -0.1819 0.7451 -0.3023  -0.0247
SD 0.2876  0.0713 1.0704 2.8038 3.2294 0.1902
RMSE 0.2892 0.0713 1.0858 2.9011 3.2435 0.1918
n = 500 BIAS 0.0034 0.0003 -0.0316 0.1286  -0.0804 -0.0104
Inverse Log-Log SD 0.1593  0.0469 0.2553 1.0835 0.6632 0.1275
RMSE 0.1594  0.0469 0.2572 1.0911 0.6680 0.1279
n =1,000 BIAS 0.0027 0.0012 -0.0162 0.0435 -0.0423 -0.0067
SD 0.1154  0.0317 0.1709 0.6779 0.4242 0.0885
RMSE 0.1154  0.0317 0.1717 0.6793 0.4263 0.0887
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Table S.5: Comparison of the QMLEs of the parameters (ay =2, as =1, 1 = —1, B =5, 3 = —2
and 02 = 1) for the exponential link function. The independent and identically distributed random
errors are simulated from o(, where ¢ follows a mixture normal distribution 0.9N(0,5/9)+0.1N (0, 5).
The weighting matrix W is generated from the power-law network structure. Three measures are
considered: the averaged bias of the estimate (BIAS), the standard deviation of the estimate (SD),
and the root mean squared error of the estimate (RMSE). The average execution times (in seconds)
for computing the parameter estimates are in parentheses.

Link n Measure o3} &o Bl BAQ /3’3 52

n = 200 BIAS 0.0042 -0.0009 -0.0195 0.0608 -0.0220 -0.0095

SD 0.1277 0.0745 0.1416 0.6552 0.2953 0.1895

(0.14) RMSE 0.1278 0.0745 0.1429 0.6580 0.2961 0.1897

n = 500 BIAS 0.0023 0.0003 -0.0013 -0.0001 -0.0021 -0.0005

Exponential SD 0.0988 0.0489 0.0436 0.1305 0.0964 0.1273
(1.02) RMSE 0.0989 0.0489 0.0436 0.1305 0.0965 0.1273

n =1,000 BIAS -0.0018 -0.0010 0.0004 0.0035 0.0039 0.0007

SD 0.0626 0.0319 0.0368 0.1245 0.0922 0.0855

(4.60) RMSE 0.0627 0.0319 0.0368 0.1246 0.0923 0.0855

Table S.6: Comparison of the QMLEs of the parameters (ay =2, as =1, 1 = —1, B =5, 3 = —2
and 02 = 1) for the exponential link function. The independent and identically distributed random
errors are simulated from o(, where ¢ follows a mixture normal distribution 0.9N(0,5/9)+0.1N (0, 5).
The weighting matrix W is based on the network structure generated from the stochastic block
model (SBM). Three measures are considered: the averaged bias of the estimate (BIAS), the standard
deviation of the estimate (SD), and the root mean squared error of the estimate (RMSE). The average

execution times (in seconds) for computing the parameter estimates are in parentheses.

B

Ba

B3

~2

Link n Measure & Qo o

n = 200 BIAS 0.0537 -0.0019 -0.0966 0.3359 -0.0496 -0.0096

SD 0.3323 0.0748 0.3111  1.3322 0.4980 0.1903

(0.47) RMSE 0.3366 0.0748 0.3258 1.3739 0.5005 0.1905

n = 500 BIAS 0.0267 0.0009 -0.0438 0.1396 -0.0248 -0.0006

Exponential SD 0.2722 0.0493 0.2233  0.8579 0.3122 0.1275
(4.35) RMSE 0.2735 0.0494 0.2276  0.8692 0.3131 0.1275

n =1,000 BIAS 0.0281 -0.0000 -0.0358 0.1131 -0.0318 0.0004

SD 0.2578 0.0312 0.1827 0.6330 0.2900 0.0856

(47.60) RMSE 0.2593 0.0312 0.1862  0.6430 0.2917 0.0856

Table S.7: Comparison of the QMLEs of the parameters (ay =2, as =1, 1 = —1, Bo =5, f3 = =2
and 02 = 1) for the exponential link function. The independent and identically distributed random
errors are simulated from o, where ¢ follows a mixture normal distribution 0.9N(0,5/9)+0.1N (0, 5).
Three measures are considered: the averaged bias of the estimate (BIAS), the standard deviation of
the estimate (SD), and the root mean squared error of the estimate (RMSE). The average execution
times (in seconds) for computing the parameter estimates are in parentheses.

Link n Measure Q1 G2 ,31 /32 BS 52
n =10,000 BIAS -0.0024 0.0014 0.0008 0.0024 0.0009 0.0014
Exponential SD 0.0356  0.0089 0.0263 0.1038 0.0437  0.0290
(17,468.83) RMSE 0.0357 0.0090 0.0264 0.1038 0.0437 0.0290
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Table S.8: Comparison of the QMLEs of the parameters (o = 2, ag = 1, 1 = —1, B2 = 5,
B3 = —2 and 02 = 1) for the exponential, logistic, inverse of the probit, and inverse of the log-log
link functions, respectively. The independent and identically distributed random errors are simulated
from the normal distribution N(0,02). One measure is considered: the empirical coverages of a 95%
confidence interval constructed by QMLEs and their asymptotic normal distributions.

Link n Measure ai az b1 B2 B3 o

n = 200 Coverage 0.9420 0.9450 0.9450 0.9450 0.9360 0.9200
Exponential n = 500 Coverage 0.9480 0.9360 0.9510 0.9490 0.9530 0.9270
n =1,000 Coverage 0.9630 0.9530 0.9550 0.9590 0.9520 0.9340

n = 200 Coverage 0.8960 0.9480 0.9660 0.9600 0.9740 0.9190
Logistic n = 500 Coverage 0.9360 0.9380 0.9520 0.9490 0.9470 0.9290
n =1,000 Coverage 0.9470 0.9530 0.9590 0.9650 0.9440 0.9310

n = 200 Coverage 0.9120 0.9440 0.9460 0.9380 0.9690 0.9160
Inverse Probit n = 500 Coverage 0.9360 0.9380 0.9470 0.9400 0.9450 0.9270
n =1,000 Coverage 0.9430 0.9540 0.9520 0.9480 0.9480 0.9310

n = 200 Coverage 0.8990 0.9460 0.9490 0.9530 0.9650 0.9190
Inverse Log-Log | n = 500 Coverage 0.9360 0.9380 0.9550 0.9440 0.9500 0.9280
n =1,000 Coverage 0.9450 0.9530 0.9560 0.9620 0.9420 0.9310

Table S.9: The impact of covariates (Degree and Volatility) on the top eight influence indices.

Covariates Influence Index
No. | Degree Volatility

1 1.0225 -2.5817 21.4577
2 1.2326 -2.0639 9.1265
3 1.2326 -1.9946 8.2601
4 2.1569 -1.1035 4.4743
5 | -0.2169 -3.2567 4.2804
6 | -0.3219 -3.1483 2.4625
7 1.6107 -1.4622 1.9353
8 0.7705 -2.2907 1.9017
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