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Supplementary Material

In this supplementary note, we give some lemmas, which play a crucial role in the proof of
Theorems 1—3. The detailed proofs of the theoretical results corresponding to the main doc-
ument are presented. Meanwhile, we provide the cross-validation method and some additional

notation for simplicity of presentation.

S1 Notation

In this section, the notation is the same as the main document. For sim-
plicity of presentation, we introduce some additional notation, let o =
H(B - B*) = (ao,...,q,)", where oy = B*{Bi(t) — BW(t)/k!}, H =
diag(1,h, ..., hP) is pth-order diagonal matrix and 3* is the true vector.

Zi(u) H'z(u) = z(1,(u —t)/h,...,(u — t)?/hP)T. For a matrix

A = (a;5), ||A] = supi7j|aij|. For a vector a, ||al| = sup,|a;|, and

la| = (3" a?)'/?. Some further definitions are:
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For 5 =0,1,2, set

For j =0,1,2, set

S, 87 = ~ 3 1(C; > ) exp(BTzi(w))or (),

U

Sj(u, B*) = E(pi(u | 2)pa(u | 2) exp(B™ zi(u))2?).



S2. CROSS-VALIDATION METHOD

For 7 =0,1,2, put

n

s 5(u)) = S 1(C > w) exp(B(w)=0)ou(u)

i=1

S (u, B(u)) = E(pr(u | 2)pz(u | ) exp(B(u)z)2’).

S2 Cross-validation method

In this part, we give the derived process of the approximations for B(,Z-), as
well as an asymptotic expression for the contribution /;(3) of individual i to
the local partial likelihood. Then we can construct an alternative expression

of cross-validation likelihood CV L.

S2.1 The expression of ith subject log-likelihood

Here, to facilitate notation, we omit the n in log-likelihood formula, and

the local partial likelihood can be denote as:

£) =3 [ Hatu—01 (€2 w) [0 (w)
= (S2.1)
—log { Z I(C; > u)exp (8" z(u)) oj(u)}} dN; (u),

i=1

which equivalent to the local partial likelihood defined in the main docu-

ment. Analogous with (S2.1)), we have the local partial likelihood which the
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1th subject is left out:

Z/ Kn(u—0)I(C, > u) [BTzl( )

7 (82.2)

—log { Z I(C; > u)exp (Igsz(u)) oj(u)}l dﬁl(u).

J#

Then, from (S2.1)) and ((52.2)) yields,

= Jo Kn(u—t)I(C; > u) [ﬁTzi(u)
g { S TG 2 w)exp (875 ) oy } | i)

T 32 LH(Cj>u) exp(BTzj(u) )oj(u)
+ Zl#i fO Kh(u - t)j (Cl Z U) IOg { Z”;é I(Cj>u) cxp<(ﬁsz (u)goj (u) }le( )
(52.3)

For the second term of right-hand side, the term

o Zﬁel (Cj = u)exp (IBTZJ ) 0j(u)

1 g{zg 1 1(Cy = u)exp (BT z(u)) J(U)}

o B I(C; > u)exp (ﬁTzl(u)) o;(u
=18 S TG, 5 e (BT () o ol

approximately equal to zero, due to the latter term

{[ (Ci > u)exp (BT z(w)) 0i(u)/ Y7 T(Cy > u)exp (BT 2(u)) oj(u)}

is small.
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Thus, we derive an alternative expression for [;(3) by

n

W8 = [ Kalu =01 (€2 ) |Tw) < log { 301(C; 2 )
=1 (S2.4)

exp (@sz(u)) oj(u)}} dﬁi(u),

which equivalent to the following log-likelihood,

zMﬂzélﬁam—memzwDﬂamw%%{%E}u@zu>

J=1

exp (8" z;(u)) o (u)}} d]vz(u)
(52.5)

S2.2 Approximation of estimator

Here, we approximate B(_i) using Taylor expansion. For £_;)(8) = L(8) —

l;(B) defined in the main document. We have

Ly, . 0L,
W(ﬁ) = aﬁ(ﬁ) 93

(8). (52.6)

We approximate Ma;” (B) with first-order Taylor expansion at 3 = B, one

has
OL (i)
op

L(B)(B - B). (S2.7)
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0Ly 7 ~ A ~ :
Note that —3"(8) = g—g(ﬁ) — g—g(,@% and g—é(ﬁ) =0, we infer

558 = ~55B)+ =52 (BB - B). (5238)

Substitute B y for B in (52.8)), note that 8%([;“ (B\(ﬂ')) = 0, we obtain

L (5 ol ,~  PLy =~ (5 o
0= S0 (Bey) = =558 + 55 B) (Beo —B). (529

-~ -~ 82,6 -3, A -1 3ll =
Bro=B+{"5" B} 550 (52.10)
From , we have

Ly PL Pl o

032 (8) = 032 (B) — a_ﬁg<ﬁ)a (S2.11)
and from yields
9%l;
) =
LIS I(G 2 wep (BT (W) o)z (w)?
nllqw “”Qz“ﬁ z «7 w) exp (BT%(w)) 05 (u)
_{Z?JK%Zwaw%A ]
S 1(Cy > u)exp (B7z(u

(S2.12)
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Since the calculation of the above second derivation can increase compu-
tation burden. Omitting this term leads to, combined with (52.10) and

(S2.11)),

~ {82£ ~ }1811-

550 (S2.13)

Then, we derive the approximation of the estimator [/3\(_i), which is the
function of ,é\

We are now prepared to approximate CV L, CVL(h) =" I; <B(_i)>,

defined in the main documents. A first-order Taylor approximation for

1;(B), coupled with (S2.5)) and ([S2.13]), yields

uB) = (B+ {22 B} h®)

—uB)+{55®) (5B} 5@ (s2.14

—L(B) +ur {{g;f@}_l{§Z<3>}{§Z<B)}T]'

Hence, which from (52.14)) gives

CVL(h Zz +tr[{i§<3>}‘l {§g<a>}{§g<a>ﬂ

Thus the derived process is complete.
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S3 Lemmas

Before the proof of the theoretical results, we show two main conclusions

which are conducive to the proofs of Theorems 1—3.

Lemma 1. Let

1 n
ea(u) = = > (i > woi(ug(u, ) and  c(u) = E (pi(u | 2)pa(u | 2)g(u, 2)).
i=1
if g(u, z;) is bounded variation, then

sup [|e, (u) — c(u)|| = Op(n~?). (S3.16)

ueT

Proof. Given g¢(u, z;) is bounded variation, under C2 and C4, we have
0;(u)g(u, z;) is bounded variation, then, we can write o;(u)g(u, z;) = ¢1(u, z;)—
g2(u, z;), where both g1 (u, ;) and go(u, 2;) are nonnegative and nondecreas-

ing. Thus

n

() = %Z (102 wn(u.2) ~ 1(Co 2 ol z) ). (83.17)

i=1

and I(C; > w), for each i, are non-increasing in u, then by lemma A.2
of Bilias et al.| (1997), {I(C; > u),u € T},{gj(u,z),u € T};—12 have

pseudodimension at most 1. By lemma 5.1 of Pollard| (1990) combined
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with (S3.17), {(C; > w)o;(u)g(u, z;),u € T} has pseduodimension at most
10. Therefore, it must be Euclidean and certainly manageable according to
theorem 4.8 of [Pollard! (1990). In view of C'2, we choose envelops as By /+/n,
for some constant B;. Then by theorem 8.3 (the uniform laws of large

numbers) of Pollard| (1990), we have sup,er||c,(u) —c(u)|| = O,(n~Y2). O

Lemma 2. Let T = [a,b] C R, suppose that

lim sup {|hn(s) — (S| + | Tu(s) — J(s)|} —0, (93.18)

n—oo seT
where hy(-), h(-) are continuous on T, and J,(-), J(-) are right continuous
with bounded variations on T'. Then

lim sup {| / (1) () — / S () (du)|} =0, (83.19)

n—oo seT

lim sup {| / (1) o () — / S o) (d)] } = 0. (83.20)

n—oo seT

Proof. First, since h,, uniform converges to h, and .J, ,J are bounded vari-

ation functions with total variations bounded Bs, for some constant Bs.
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Then
i sup | / o (1) o () — /ash(u)Jn(du)|} o,
Jim sup {| / ho (1) J (du) — /:h(u)J(du)|} —0.
Since

[ ) = [ b))

(S3.21)

(S3.22)

<| / (1) () — / ) J(du)| + | / ) J (du) — / () ().

(S3.23)

Thus, from (S3.22) and (S3.23)), we know that (S3.19)) implies (S3.20)). And

[ o) [ b

< |/ashn(u)Jn(du)—/ash(u)Jn(du)|+|/ash(u)Jn(du)—/ash(u)J(du)].

(S3.24)

For the second term of the right-hand side in (53.24)), since A(-) is contin-

uous, we can partition 7" by a = so < ... < s,, = b, and take constant
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h;(= h(s;)) such that the simple function:

no—1
he(s) =Y il (s € [s;,5541)) (S3.25)
=0
satisfies
sup |he(s) — h(s)| < e. (S3.26)
seT
Thus

]/S h(u)J,(du) — /S h(u)J(du)|
< |/8 {h(u) = he(u)} Jn(du)| + | /s he(u){J,(du) — J(du) }| + | /8 {h(u)

— hg(u)}J(du)|

< 2eBy + | Z hil (u € [s; — 5j51)){ Jn(du) — J(du)}|

a

no—1
< 2By + > |hllTu(si41) = J(s541) — Juls) + J(s;)]
7=0
no—1
< 2By +2 > |hy|sup|Ju(s) — J(s)]
=0 seT

— 2eBy, as n — 0.

This in conjunction with (S3.21)) and (S3.24]), we obtain (S3.19). And from
(1S3.19) and ([S3.22)), then (S3.20]) holds. O
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S4 Detailed techniques for the main results proofs

S4.1 The detailed proof of Theorem 1

The proof of Theorem 1 is basically same as the proof of Lemma 2.2 of
Hardle et al.| (1988]) and Theorem 2.1 of |Zhao (1994). The major difference
is that we have to treat a vector parameter B3* = (B8(t), 8'(t),..., 5P /phHT
due to the local polynomial estimation. Next, we will show detailed proof

procedure by the below two lemmas. Introduce some notation as follows:

Gopmi(t, t+s) = Z/ (C; > u)l (t<u<t+s){(u—t/h} % dN;(u),

(S4.1)
and
Gt (t,t+ 8) = E(Gap (. + ).
Gogna(t, t+ s Z/ (Ci >w)I(t<u<t+s) }:t)’“g”JEZ’ Z;dﬁi(u)’
n,0\ W,
(S4.2)
and

Gaa(tit + 8) = E(Gapna(t,t + 5)).



S4. DETAILED TECHNIQUES FOR THE MAIN RESULTS PROOFS

For ¢ > 0,
Vo (t,¢) = sup [Gagm (t, 1+ 8) = G (b, + 5], (54.3)
|s|<c
Vakn2(t7 C) = sup ’Gaan(t, t+ S) - G&k2(t7t + S>|7 (844>
Is|<ec
where a4, is the kth component of «, and denote sup{ay} = a4, and

inf{ay} = a;.

Lemma 3. Let 0 < ¢, — 0, asn — oo, and 1 < ¢;' < (n/logn)' =%/,

then almost surely (a.s.),

Vo1 =sup sup Vi,m(t,c,) =0 (n_l/Q(cn log n)1/2) ., as n — oo,

teT aieNy
(54.5)
Voo =sup sup Vi, no(t,c,) = O (n 2(¢, log n)1/2) , as mn — oo,
teT areNy
(54.6)
where Ny == {ay : |ag, — 0] < €}.
Proof. Since Vi, 1 is a special case of Vy, 2, when substituted 3 St Zzg by

z;. We only need to prove (S4.6). Put

an = n"Y?(c, logn)"?.
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Since we can treat the positive and negative part of z;, separately, we assume
that z; is nonnegative. First, we reduce sup,, cy; in to a maximum
on a finite set. We use finite points by < by < ... < by, to partition N,
such that by — oy, < ap, @ — by, < ap, and b; — b1 < a,, for 2 < 7 < N,.

Further, we assume that

N, < 2k — ) fan, (S4.7)

and for any t € T, and |s| < ¢,, by Cauchy—Schwarz inequality, the func-
tions G, n2(t, t+5s) and G, 2(t, t+s) are monotone in ay. Letting J,, denote
the set {gk, bi,...,bn,, dk}, and J* denote the set {(gk, b1), (by,b2), ...,

(bw,, @) }. Hence, we have, for any ay, € Ny,

Gyuna(t,t 4 5) — Gra(t, t 4+ 5) + Gra(t, t +5) — G, 2t t + 5)
S Gakng(t,t -+ S) — Gakg(t,t -+ S)

< Gyyn2(t, t+8) = Goy 2t t 4 5) + Gy, o(t t+5) — Gyat, t+ 5).
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Thus

|Gana(t, t +8) — Ga,a(t, t + )|

< max [Gona(t,t+5) = Gapa(t,t+ )|+ max [Gaa(t, t+ s)

ag€Jn (af, o} )edy

— Ga;Cg(t,t—F 8)‘
For o, < o,

Gagg(t,t + 8) - Ga;cg(t,t + S>|

SQ(U, a) _ 2
So(u, a) (So(u, a)) }

.y /OTI(t <u <t 8)((u— 1)/h)S3 (u B(u)){
(o — o )dul
<| /OT It <u<t+s)((u—1t)/h)*My(af — o )dul

S M()a’m

there exists some positive constant M satisfied the upper inequality. Hence

Vi < st,lelg (glea}{ Viapn2(t, ¢n) + Moay,. (54.8)

Next, we reduce sup,cr to a maximum on a finite set. Now, we partition
T by an equally-spaced grid I,, := {tx : ¢ = ke, k = 0,...,[7/c,]}, with

tr/en]+1 = T, Where [-] denote the greatest integer part. For any ¢ € T" and
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|s| < ¢p, there exists a grid point ¢, such that both ¢ and ¢ + s are between

tk and tk+1. And

|Gakn2(t7 t + S) — Gakg(t, t + S>|

S ‘Gaan(tkat + 5) - GakZ(tkat + S)’ + ’Gaan(tkat) — Gak2<tk7t)"

Then, we obtain
|Gapn2(t, t +8) — Gaa(t, t + s)| < 2maxier, Vanalt, cn).
Thus

Ve < 2max max Vo, na2(t, ¢,) + 2Moay,. (54.9)
tely, ap€Jy

In order to apply Bernstein’s inequality, we truncate {z;} by some value,

and define V*

apn2

(t, ) similar to Vy, ua(t, c,). Put

Qn = Cn/an)

and

n

Gona(t it +5) = %i/T[(Ci >u)((u—1t)/h)FI(t <u< t—l—s){z

J=1

I(C; > u) exp(aTéj(u) + B*sz(u))zjf(zj < Qn)oj(u)/Sno(u, a)}d]%(u),

and

G ot t+5s) = E (Gl ot t+5)).
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Likewise, we have

*
Vaan

<t7 Cn) = Sup ‘szn2<t7 t+ 3) - GZkQ(t7 t+ 5)‘7

[s|<en

V% =max max V' (t,c,).
n2 tel, apcd, aan( ) n)

Thus

Vnz S V,:} + 2M0an + 2An1 + 2An2, (8410)

where

Apy=sup sup sup |Gopna(t,t+ ) — Gh ot t+5)|,

teln aR€Jn |s|<cn

Apa =sup sup sup |Go,a(t,t+s) — G ,(t,t+s)|.

tel, ap€Jdn |S‘§Cn
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For

Gaan(t, 1+ 8) - szn2(t7 t+ S)

_ %Z/OTI(Q > u){(u—)/h}" 1 < u < t+5){ DI 2w exp(

A% (w) + 8% ()51 (5 > Qu)oj(w)/Sho(u, @) {dNi(u)

< QL‘A% Z / 1G> u){ Z I(Cj > u) exp(a’ Z(u) + B z(u) 2}
i=1 70 j=1

0;(10)/Sno(u, @) }dﬁi(u).

(S4.11)

We have, by the classical strong low of large numbers and Lemma [}

LS [0z 0{ 10, 2 v eslasw) + 575 w) 0 0)

Smo(u,a)}dﬁi(u) — /OT SS(u,ﬁ(u))E(pl(u | 2)p2(u | 2) exp(a® Z(u)+

B*TZ(U))Z)‘)/SO(U, a)du < 00, a.s.
(84.12)

Noting that

a,'Qi* = {c;, " (log n/n)l_Q/’\}A/2 =o(1). (54.13)
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From (S4.11)), (S4.12)) and (S4.13)), we have, as n — oo,

a;'An — 0, a.s. (S4.14)

From (S4.11)), (S4.12)), (S4.13]) and A2 < E(An1), then, as n — oo,

a,'Ap — 0, a.s. (54.15)

Then, combining (S4.10)), (S4.14) and (S4.15)), it suffices for (S4.6]) to show

VY, = 0O(a,), a.s. (54.16)

Next, we will find a suitable upper bound for pr (V, > Bya,) by appro-
priate choice of By. Now, we perform a further partition for V; (¢, c,)
at a fixed t € I,. Set w, = [(Quncn/a,) + 1], and s, = rc,/w,, for

= =Wy, —w, + 1, wy,. Since G} o

(t,t + s) and G}, ,(t,t + s) are

monotone in |s|, suppose that 0 < s, < s < §,41, then

<Gttt 8) = Gyt t+5)

apn?2

< sznQ(ta L+ Sr+1) - GZkQ(t> L+ ST+1) + GZ@@? t+ ST+1) - szQ(t> t+ Sr)a
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from which we obtain
|Grna(t, t+8) = Gt t+ 8)| < max{&,r, §nrir} + G ot + 80, t+ 541),
where
$np = |Gl (bt +5,) — G o(t, T+ 5,)].
The same holds for s, < s < s,.1 < 0. Therefore

v

agn?2

(t,en) < max &+ max G} o(t+ st sep). (S4.17)

—wn<r<wn —wn <r<wn—1

For all r, under C5,

t+sr41

szQ(t + Sy t+ 87’+1) S / QO(U)QndU S MBQn(ST—H - 87") S M3an>
t+s,

so that

pr (Vi no(t.ca) = Boay) < pr < max &,, > (By — Mg)an) . (S4.18)

—wn <r<wn

Now, let

n

X; = /OTI(C} > u){(u—t)/h}k](t <u< t—i—s){ZI(Cj > u) exp(a’ Zj(u)

=1

+ B8 z(w) 21 (25 > Qn)o;(u)/Sno(u, a)}dﬁi(u),

then
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Eor = |3y 2oimy { X — E(X0) }.
For
1 Xi—E(X)| < | [T I(C; > u)((u—t)/R)FI(t < u < t+5)QndN;(u)] < NQ,,
where N = 7sup,cp N;i(u).

And, for some constant M,, we have

Zvar(Xi) < ZE(XE)
< Z/OT It <u<t+s){(u— t)/h}kE(pl(u | 2)palu | 2)E(N2(u) | 2))

{ | 2)pa(u | 2) expla®2(w) + B 2(w)21(2 < Qu))/Solu, a)}Qdu

n t+sr41
< Z/ Mydu < nMyc,.

i=1 Y tFsr

Then, by Bernstein’s inequality,

pr (€ > (By — M3)ay,)

< exp{ ((By — M3)na,)?/2( Zvar ) +371 (B — MO)Nanan)}

=1

< GXP{ — ((Bo = Ma)nan)?/2(Manc, + 37 (By — MO)Nanan)} <n~ %,

where

By = (By — M3)?/2{ M+ 37" (By — M3)N }. (S4.19)
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By (S4.18]) and Boole’s inequality,

pr (sup sup V7 o(t, cn) > Boan> < (Np+2)([7/cn] +1)2[(Qnen /an)+1]n 0,
tel, ap€Jdn

(S4.20)

where [-] denote the greatest integer part.

From ([S4.7]), we obtain
N, +2 < 2(a), — ap)a,* +2.

And, obviously,

[7/cp] +1 < (7+ 1)t

Also,

2[(Qnen/an) + 1] < (2Qncn/an) + 2 < 2{(cpa, ") + 1},

since

(cna; )2 = con/logn > ;7D > 1,

then, we have,

2[(Qnen/an) + 1] < 3c2a; .
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Hence

pr (VY > Boa,) < 2(@k—gk—|—1)(T+1)3cna;3n’BS < My(n/log n)(”’l/’\)n’Bg,
(94.21)

for some constant M.

Given A and real K > 0, we choose a suitable By denoted as B,  to

make the constant Bj in (54.19)) satisfies

Bl >k + (2A = 1)/A.

And using 2\ —1)/A =2 —1/A > 1, for A > 2, then (54.21)) yields

pr (Vi > Beaan) < My(logn)™'n™". (54.22)

When x > 2 in (54.22), pr (V)%, > B, xay) is summable in n. So, applying

the Borel—Cantelli lemma,

Vi =0(an), a.s. (54.23)

Thus, form (54.10)), (S4.14), (S4.15) and (S4.23)), we have

Ve = O(ay), a.s.
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Similarly, we can also prove V,,; = O(a,), a.s. ]

Lemma 4. Let h be a bandwidth and c, = 2h. Assume that h — 0 and
h='(logn/n)'=%* = o(1), let
Une(a) = = i /TI(C» > u)Kh(u—t)((u—o/h)k{z-—M}dﬁ(u)
n n — J, i = i Sn70(u7a) i )
(54.24)
Then, we have

sup sup (nh/logn)?|Unk(a) — E (Unp(a@)) | = O(1), a.s.  (S4.25)

teT aENy

Proof. Since K (-) is bounded variation function, so we can write K(-) =
K;(-)—Ks(-), where K;(-) and K»(+) are both increasing functions. Without
loss of generality, suppose that K;(—1) = Ky(—1) = 0. Next up, we apply
Lemma |3| by letting ¢, = 2h. It is clear that the assumption of Lemma

hold here. Write

Uni(cx) = /h FZ/OTI(OZ» > u)l(v<u—t< h)(u_t)k{zi _ Snalu, )

n

dﬁi(u)] dK,(v)

h
= / {Gaknl(t +u,t+h) — Gana(t +v,t + h)}th(v),
—h

where G, 1 and G, ne defined as (S4.1)) and (S4.2), respectively. So, we
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have

sup sup |Unk(a) — E(Uni())]

teT apENy
h
< sup sup {Vaknl(t, 2h) + Vo, na(t, Qh)} / dKy(v)
teT apeNy —h

< (K1(1) 4+ Ky(1))h ' sup sup {Vakm(t, 2h) 4+ Vi,na(t, 2h)}.

teT Ny

Hence, by the consequence of Lemma [3, we can derive

sup sup |Uni(a) — E(Upie(a))| = O((logn/(nh))Y?), a.s.  (S4.26)

teT areNy

Thus establishing ((S4.25]). m

Prove Theoreml

Proof. Since o = H(B — 38*) and ay(t) = aj, = h¥{B(t) — BW(¢)/k!}

defined in Section S1, we have

Lo(a) =

: Z / 1(C 2 ) K (u = D@z (w) + B zi(w) — log Syo(u, @) FaN;(w),

(S4.27)
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and

Unk(ar) = 0L, () /Oy,

- lz/rf(ci > u) Ky (u — t){ (u — t)/h}k{zl- - M}dﬁi(u).

n i—1 Y0 n,O(ua

By the assumption of C'3, we have w(h) = supj;_y|<j, [ax(t) —ax(t')| = O(h).
In this, we consider oy, in the neighborhood of zero, that is oy, € Ny. And we
take € = ¢, = max {Qw(h), Gln/(,ungl)}. Now, we consider oy € (—¢g, €),

without loss of generality, we assume ¢, < 1. Define
Snl Elm ) ~
Uk (€x) Z 1(C; > 0)Kp(u—t){(u—t)/h} { }dNi(u),
with, for j = 0,1, 2,
Suslersu) = S I1(Ci = 0) exp (ekzi{(u —t)/h 5*Tzi(u)> 0i(w) 2.

=1

So by Lemma [3|and Lemma 4] we have (as n — 00) a.s., for any ¢ € T,

|Unkz(i€k) — E (Unk(iek)) | S ln, (8429)

where [,, = O((logn/(nh))"/?).
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Under C'1 to C5, and by Lemma (1} we have,

E (Upnk(ex)) / Kp(u— t (u— t/h} {q1 (u)S (g, u)/So(€g, u }du
(S4.30)

where, for j =1,2,3,

qj(u) = E (p1(u | 2)pa(u | 2)po(u) exp(B(u)2)2’) ,

S;i(enu) = E (pi(u | 2)pa(u | ) explexz((u — ) /h)* + B 2(w))27) .

Let (u—t)/h = v, and h sufficiently small, by Taylor expansion, we have,

Upk(€g, 1 /K —q(t)E (pl(t | 2)pa(t | 2)z exp(epzv®+

B(1)2)) /B (pr(t | 2)pat | 2) explegze” + (8)2)) bdo+O(h).

For

exp(erzvf 4+ B(t)z) = exp(B(t)z) exp(epvFz) = exp(B(t)z) {1+exv™z+o(ex) }.

Then

@ (t) + ga(t)ep”
Uni(€r)) /K ) — qo( )qo(t)+q1(t)ekvk}dv+0(ek)

/K(v)v%al Jer/ {1+ o(er) + exv™qi(t)/qo(t) }dv.

Similarly,
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E(Un(—ex) = [ K(v)v%al(t)ek/{l + o(ex) — ekvkql(t)/qo(t)}dv.

Hence, under C'5, we have,

E(Uni(er)) < =37 pgr Myey, (S4.31)

E(Unk(—ﬁk)) Z 3_1[L2kM1€k. (8432)

Therefore, combing ((S4.27)), (S4.29) and (S4.30]), we obtain that (as n — o)

a.s., forany t € T,

Uni(€r) <1y — 3 g Myeg < 0,

Uni(—€r) = —ln + 37" por Myeg, > 0.

Then the two above inequalities imply that a.s., for any t € T, there exists
ak(t) = ay € (—€x, €x), such that Un(ag(t)) = 0, and ag(t) = hk(gk(t) —
B%)(t)/k!). Thus, we have,

supser |0k(t)] < e, a.s.
and the above proof follows from ¢, = O((logn/(nh))/? + h). Hence,

sup |Bu(t) — BP () /k! = O(h " {logn/(nh))? + h}), a.s.

teT

then Theorem 1 holds. O
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S4.2 The detailed proof of Theorem 2

The proof of the asymptotic normality for the coefficient estimator is basi-
cally based on the functional central limit theorem of [Pollard| (1990)). Simi-
lar to the proof of the Theorem 2.1 of Bilias et al.| (1997), we will first show
the asymptotic distribution of stochastic functions by the following lemma,

which play a crucial role in the proof of Theorem 2.

Lemma 5. For any nonzero vector a = (ay,...,a,)", let

uy(s) = (h/n)"/? Z /08 Kin(u—t)a™ (u — t)dM;(u), (54.33)

us(s) = (h/n)Y? Z /05 Ki(u—t)a™ (u — t)zdM;(u), (54.34)
where
dM;(u) = 1(C; > u){dﬁz(u) — po(u) exp(B(u)z;)dO;(u) }.

Under C1 to C5, we have {ui(s),s € T} and {uz(s),s € T} converge in

distribution to Gaussian processes & and &, respectively, with continuous



YANG WANG AND ZHANGSHNEG YU Ph.D

sample paths, mean 0 and covariance functions identified by

E(Eu(s1)E(s2)) = / U R — 1) (@™ (w— 1) E(p (| 2)palu | 2)
o(ul z))du, (S4.35)
E(Eals1)6y(52) = / U KR — 1) (@ (u — ) E(p (| 2)pau | )27

o(u| z))du. (54.36)

Proof. Since wu; is a special case of us, when we use 1 substitute for z; in
(S4.31]), we only need to prove the convergence for uy. In order to get the
desired convergence, Theorem 10.7 (the functional central limit theorem)
of |Pollard, (1990) was invoked. Therefore, conditions (i)-(v) need to be ver-
ified.

To verify (i), using the lemma A.1 of Bilias et al.| (1997)), it suffices to show
both { [ Kp(u — t)a™(u — t)I1(C; > u)zdNi(u),s € T} and { [ Kp(u —
tiaT(u — t)I(C; > w)po(u) exp(B(u)z)dO;(u),s € T} are manageable.
Without loss of generality, we assume a®(u —¢) > 0 and z; > 0. Thus,
for each i, [’ Kp(u —t)a™(u — t)I(C; > u)zdN;(u) is nondecreasing in
s. Then it has pseudodimension at most 1. By Theorem 4.8 of Pol-
lard| (1990), therefore it must be Euclidean and manageable. Similarly,

{ J5 Kn(u—t)a™ (uw — ) 1(C; > u)po(u) exp(B(u)z;)dO;(u), s € T} are also
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Euclidean and manageable. Thus (i) holds.
To verify (ii), under C'1 to C5 and lemmall]
lim,, o0 E (ug(s1)uz(s2))
—hmn_mzz:z 1E({ "Kp(u—t)at(u — t)z;d My( u}{ *Kp(u—t)at
(w — t)zdM;(u)})
= [ 2w — ) {aT(u— )} E (p(u | 2)pa(u | 2)220(u | 2)) du
Thus (ii) holds. By the classical multivariate central limit theorem, we ob-
tain that the convergence of finite-dimensional distributions of us to those
of & is straightforward. The latter issue is tightness.
For (iii), (iv), under C2 and C3, envelops can be chosen as B*/\/n, for
some constant B*. Thus (iii) and (iv) holds.
To test (v), for any s, sy € T, define
pa(51,82) = E (ua(s1) —us(52))”,  pls1,82) = E (§a(s2) — &a(s1))”
Here,
pal(s1,82) = E (ua(s) — us(s1))’
= 130, B (W2 K(n — H)a (u — t)zdM;(w)})
= L5 B2 KR — ) {aT(u — )} 221(C > w)ud () exp(26(u) =)
o;i(u)dul).
Clearly, p, is equicontinuous on 7', and lim, . pn(s1,52) = p(s1,$2), p is

pseudometric on 7. Thus p,, converges to p, uniformly on 7". Furthermore,
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we set {s7'}, {sh} be any two sequences in T', it follows that if p(s7, s§) — 0,
then p, (s}, sy) — 0. Thus (v) holds.

Therefore, using Theorem 10.7 (the functional central limit theorem) of
Pollard| (1990), we can state us converges in distribution to Gaussian process
on T having continuous sample path. Hence, {u(s),s € T} and {us(s), s €

T} converges in distribution to Gaussian processes £; and s, respectively.

]

Prove Theorem 2

Proof. Let v, = (nh)™'/2, a = v, H(B — B*), then

Xn('Yna% 7) =

n

% i /OT I(C; > u)Kp(u—t) [’YnaTgi(u) — log { Z I(C; > u) exp(yna’

i=1

2w+ BTz w0y Y 1G> wexp(B T w)os(w) | i)

Let
1(C; > w)dN;(u) = dM;(u) + 1(C; > ) po(u) exp(B(u)z)dO; (u),
then

Xn(ymo, 7) = Ap(yne, 7) + Up(yner, 7), (54.37)

where
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Ao ) = EEI I} ol = 1) atw) — tog (S} 16, >
u) o (u) exp(B(u)z;)os(u)du,
Un(nee,7) = 10 7 K (u ){%QT%( ) — log{%}}dMi(u).

For
An(mee,7) = 7 Kn(u—t) [gn (u) %a—log{%}séo( )]uo(U)du,

by Taylor expansion of Sy, o(u, v,a) at a = 0, it follows,

log {Smo(u, fyna)/gn,o(u)}

= (§oa (1) /) e + 271207 28 - @ et a0))

= (/S e+ 275 {2~ (2 e 0,0
Hence
An (e, 7) = P Ana (1) e = 27192 B 1 (T) e+ 0,(77),
where

Ana(7) = /0 " K(u— t){Sf(u) — 5 ()8 (u) /go(u)}uo(u)du,
Foa(r) = / K~ ) Solu)/Bolw) — (u(u)/Sofw)* } 5 (w)o(w)du.
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For | u —t |< ch, let u =t + hv, under C'1 to C5, we have

/K 52 t+hv) (§1(t + h”))®2}§g(t + ho)po(t + hv)dv
Solt +hv)  So(t + hv)

=01 (t)1 + 0,(1),

where O = [ K(v)v®*dv, and v = (1,v,...,0P)".

Thus
Ay (e, T) = %An,l(T)Ta —2- lvflaTal( o+ op(%zl). (54.38)

Similarly, we have

Un(ma, 7) = 'YnaTUn,l( ) — 27 1'72 TF, 2( )a + Op(%%)a

where

n

= /0 K= 1) S ) — B ) o) M),

i=1

Foa(r) = 2 3 [ K= 0{Buafw)/Su(w) = (5ua(10/5,00) pabtw).

For F,5(7), similar to Lemma [5, we have { [’ K (u — t)dM;(u),s € T} is

manageable. Let constant B//n as envelope. Thus, using Theorem 8.3
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(the uniform law of large numbers) of [Pollard| (1990), we can derive

lim supH— / Kp(u—t)dM;(u) — 0| = 0.

n—o0 scT n

Also, by Lemmal [I, as n — o0,
suPer {15 2(1)/ S0 () = (S (1) /S0 ()} = {Sa(w)/So(w) = (S1(u)/
Sow))=2 | — 0.
Then, by lemma [2] we have
Fa(7) = Op(7n),
Therefore,

Un (1m0, 7) = 1 Uy, 1 (1) + O, (72). (54.39)

From (S4.37)), (S4.38) and ([S4.39)), we obtain

T
Xa(ne ) = {Aua(7) + Una(1)} e = 2792a%01 (D)0 + 0,(12).

Using Quadratic Approximation Lemma of [Fan and Gijbels (1996), we de-
rive

& =" (o (t)Ql)—l{Am(T) + Unvl(f)} +0,(1). (S4.40)

For

Ana(7) = Ji Knlw = ){ St (w) = S1(w) S (w)/So(w) prro )

We apply Taylor expansion to the term:

St (u) =Sy (u)Sg (w)/So(w) = St (u)—S1(u)—S1 (u){Sg(u)—So(u)} /So(w)
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Note that

Blu)z = Bt)z + B'(t)2(u — 1) + - + BP(t)2(u — )7 /p! + P (t)2(u —
P/ (p+ 1) = BT z(u) + BPFV(t)z(u — )P /(p + 1)L,

Then

exp(B(u)z) — exp(B2(u))

~ exp(B(u)2){1 — exp(=BPHD (t)z(u — )P /(p + 1)) }

~ exp(B(u)2) BV () z(u — )"/ (p + 1)L,

Thus

St(u)=Si(u) = E (pr(u | 2)ps(u | 2) exp(B(u)z)z2(w)) B (1) (u—t) !/ (p+
D!+ o((u — t)rt),

S5(u) = So(u) = B (pa(u | 2)pa(u | 2) exp(B(u)2)2) BT (t) (u — £/ (p +
D!+ o((u — t)Pth),

So(u) = E (pi(u | 2)pa(u | 2) exp(B(u)2)) + O((u — t)+h),

Si(u) = E (pi(u | 2)ps(u | z) exp(B(u)2)Z(w)) + O((u — t)+h).
Therefore, we have

Ana(r) = J§ Kn(u—1) {{E(m(t | 2)pa(t | 2) exp(B(u)z)2Z(w)) — 57 (u)
St (u, B(u))/ S5 (u, B(u))}ﬁ(p“)(t)(u — P/ (p+ D+ o((u — )P+  du.

Let u =t + hv, we derive

A7) = / K (oo dvo ()P 80 () (p + 1)1+ o). (S4.41)
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From ([S4.40) and (S4.41)), we obtain (let b = [ K(v)vPHvdv)

& =7, QbR BV (1) /(p + 1)+ o (0)Q Una (1) + 0p(1).

Hence,

(nh)2{ H(B ~ 3") — 01 bh" 18 D(1) (p + 1)1 | s

=%, o1 (1) Unat(T) + 0p(1).
Therefore, ((S4.40)) can be reduced to prove the multivariate normality of
(nh)'Y2U,, 1 (7). That is equivalent to prove the normality of @™ (nh)Y/2U, 1 (1),
for any nonzero vector a = (ay, ..., a,)". Write Uy (s) = aT(nh)/2U,(s)
is empirical process, we will show that it converges to Gaussian process é .

In fact,

where

For Ups(s), by Lemmaand the Strong Representation Theorem of Pollard
(1990), we can construct a new probability space, and have

supser |lui(s) —&i(s)[| =0, as n— oo,
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and by Lemma [T, we have

supger ||S1(w, B%)/So(u, B*) — Sp1(u, B%)/Sno(u, )| = 0, as n— oo.

Then, by Lemma [2, we can show that, almost surely, as n — oo,

\/gzn: /0 Kn(u — t)aT(u — t){ g;gzg; - g:;gzg; }dMi(u) 0.

Y 9

which holds in original probability space since the statement is now in
probability. Thus the convergence of [7”(5) reduces to that of [7”1(5), Here,

lim E ((7”1(51)[7711(52))

n—o0

= lim — ZE /Khu—t _t){Zi Eu7g: }dM ]

n—oo N

|:/0‘82Kh(u_t) —t{zl S1(u, B%)/So(u, B* }dM D

_ /051 52 hK}QL(u . t){aT(U — t)}ZE(pl(u | Z)pQ(U ‘ Z){Z B %}2
o (u) exp(26(u)2))du
= B(E(s1)€(s2)).

Then, the convergence of finite-dimensional distributions of ﬁm(s) to those

of € is clearly true by the classical multivariate central limit theorem, since

U, is a sum of independent random variables. It remains to show tightness
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for ﬁnl, or equivalently, tightness for

Ton(s) = \/%Z;: /0 Ky(u— t)a"(u— )]z - %}dMi(u).

By Lemma 3 {(h/n)"2% " |5 Kp(u — t)a™(u — t)z;dM;(u),s € T} is
tightness. And analogous to the proof of Lemma [B, we can check that
{(h/m)V230 1 JS Kp(u— t)a™ (uw — ) S (u, 8%)/So(u, B*)dM;(u), s € T} is
tightness, too. Therefore, Uy (s) converges to £. Hence, a™(nh)2U, (1)
is normal. Then, (nh)'/2U,, () is multivariate normal, and asymptotically
covariance is as follows:

So(t) = [ K)o @dvE(p(t | 2)pat | 280 exp(28(8)2) (-— 0 (8) a0()?)
= 09(1)s,

where Qy = [ K?(v)v®2dv.

Therefore,

Vah{ H(B-B")-;"bhr BP0 (1) /(p+1)! = N (0,07 2(0)o2(1)2 1 00,)

asn — 0o, h — 0, nh — oc. O

S4.3 Proof the consistency of covariance

Proof. As defined in main document, S(¢) = S7H(8) S5 () ST L(1).
Here, we will show that £, (t) and $,(t) are consistent, respectively.

First of all, we give a conclusion by the following demonstration. Under C?2
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to C'4, there exists a neighborhood B of 8*, such that functions S;(u, 8),j =
0,1,2, are continuous in B € B, uniformly in v € T. And Sy(u,3) is
bounded away of from zero on (u,3) € T x B. Furthermore, by Lemma ,

we can derive, for each 7 =0,1,2,

sup ||Sn.i(u, B) — S;(u,B)|| =0, as n— oo. (54.43)

Further, account for $,(t). We will prove $,(t) converges to ¥,(f) =

01 (t)Ql Let

vi(u, Bu)) = S5 (u, Bw))/ S5 (u, B(u)) — S7*(u, Bu)) /85" (u, B(u)), (S4.44)

and from the defined g;(t), we have S3(t, 8(t)) = ¢;(t)/po(t), 7 = 0,1,2.

Then, we obtain

t) = {Q2<t> (t)/qo(t }Q1
= po(H){S5(t, B(t)) — ST(t, B(1))/S5 (¢, B(t)) }u

- /Kh(u — t)(u — )% po(u) Sg (u, B(u))vi (u, B(w))du + o(1).
(S4.45)

Using triangle inequality, we have
1Z1(2) = X1 (@)

<20 JT (G = u) Ky (u—t)(u— t®2{V1u,3)—v1(uﬁ }dN
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1% iy Jo 1(Ci = w) K (u—t) (=) %20y (u, 5(u)) { dN;(w) = o (w) exp(B(u)
u)du |

i 2o Jo 1(Cs > w) Ky (u—t) (u—t)*2v1 (u, B(w))uo(u) exp(B(u)z;)oi(u)du

= Jo Kn(u—t)(w — )2 0(u) Sg (u, B(u))v(u, Bu))du]

|y En(u—1)(w =)o (w) S5 (u, B(w))vi (u, B(w))du—po(t){ S5(t, B(t)

SP(t, B(t))/S5 (8 B(6) }ull.

For the first term of the right-hand side, under C1 to C5, by the conse-

quence of Theorem 1, we can derive
sup || (u, B) — Si(u, Bw))|| =0, as n— oc. (S4.46)
BxT

Hence, from (S4.43) and ([S4.46|), we have

sup ||[Vi(u, B) — vi(u, Bw))|| = 0, as n— occ. (S4.47)

BxT

By consequence of Lenglart inequality,

pr ({% 2:; /071(02- > u) K (u — t)dN;(u) > c}) <

J

ot ({ /OT % ;I(Ci > u) Kp(u — t)po(u) exp(B(u)z;)o;(u)du > 5}) ,

(54.48)
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when & > [ Kpu(u — ¢)po(w)Sg(u, B(u))du = po(t)Sg(t, 5(t)), the latter
probability tends to zero as n — oo, h — 0, and nh — oco. Thus the first
term converges to zero.

For the second term of the right-hand side,

% > /0 " Kot — )0 (u, B(u))d M (u)

is empirical process. by Lemma [5{ and vy (u, 5(u)) is non-negative function,
analogous to the proof of Theorem 2, using the Theorem 8.3 (the uniform
law of large numbers) of |Pollard (1990), we can demonstrate the second
term converges to zero.

For the third term of the right-hand side, under C'1 to C4, functions
v1(u, B(u)) are bounded. So from (S4.43), it is easy to prove the third
term tend to zero.

For the fourth term of the right-hand side, from (S4.45|), obviously, it con-
verges to zero.

Therefore,

IS1(t) = (1] = 0, as n— oco. (S4.49)

Next, we will prove S(t) converges to Sa(t) = o5(t)Qs by the following
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demonstration. Let

va(u, B(u)) = {= — St (u, B(u))/Sg(u, Blu))}. (S4.50)
For

Sa(t) =B (pa(t | 2)palt | () exp(2B(0)){z = a(®)/ao(t)}") @
- / REE (1)t~ ) () B pa(u | 2pa(u | 2) expl(28(u)2)

vy (u, B(u)))du + o(1).
(S4.51)

Then, using triangle inequality, we have

I55(8) = ()] <

153 [ hit =)= 071G, 2 et B ) e
doiudu [ i )(u — O Bu) Elu | It | 2ol
s B(u)) exp(28(6)2))dul

[ HRR = = 7 (@0, ) = 10 B0 ] )
v, B(0)) exp(26(1)2)) du

[ hER = = OBl | pata | 2valu, ) exp(2

B(t)2))du — E(pi(t | 2)pa(t | 2)id () exp(28(6)2){z = a1(£) /ao(t)}) -
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For the first term of the right-hand side, let Vo (u, ,@) = Sn1(u, B)/Sn,o (u, ,@),

and vy = S (u, B(u))/S§(u, f(u)). We have

~

%Z /OT hER (u—t)(w — )52 1(C; > u)Va(u, B)fia(u, B(u)) exp(25(t)z;)

0i(u)du = /OT DG (u— 1) (w = £) %75 (u, B(u)){ Sy o(u, 28(1)) — 255 1 (u,

26(t))Var (u, B) + S (u, 28(1)) Vi (u, B) }du.

(54.52)
From , we can derive, for j = 0,1, 2,
lsglig 1S (w, 23(75)) — S;(u,28(t))]| =0, as n— oo. (S4.53)
Analogous to the proof of V;(u, B), we can obtain
sup || Vai (u, B) — vni(u, B(w))| = 0, as n— oo, (S4.54)
and
sup V3 (w, B) = 031 (w, Bw)]| = 0, as n— oo. (54.55)

Hence, from (S4.52), (54.53)), (S4.54) and (S4.55), the convergence of the

first term can be demonstrated.
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For the second term of the right-hand side, let

2. Blu)) — 3 () = {fio(w, Bw) + po(w) }{fio 1w, Bw)) — o)}, (34.56)

and

~ /\

o(u, B(w)) — po(w) = {fo(u, B(w)) — fo(u, B(w)) } + {Ho(u, B(w)) — po(u) }

= H,(u, B){Bu) — Bu)} + = ZdM )/ S (1w, B(u)), (S4.57)

where Hy(u, §%) = =57 1 (u, 8) 3502, 1(Ci = w)Ni(u)oi(u)/n(S; o (u, 57))?,
and B* is between B(u) and 53(u).

Under C1 to C5, by Lemma , H,(u, 8*) is bounded, and B(u) uniform
converges to 5(u). Hence, we can derive

sup HHn(u,B*)(B\(u) —Bw)]| —0, as n— . (54.58)

ueT

or L 37" dM;(u)/ S} o (u, B(u)) is empirical process, analogous to the proof
of Theorem 2, using Theorem 8.3 (the uniform law of large numbers) of

Pollard| (1990), we can obtain

sup H—ZdM " o(w, B(w)] =0, as n— oo (S4.59)
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Under C1 to C5, Fig(u, B(w))+to(w) is bounded, in conjunction with (S4.50)),

(S4.57), (S4.58) and ((S4.59)), we obtain

sup [ (e, B(w) = ()| =0, a5 0= oo, (S4.60)
ue

Therefore, the second term converges to zero.

For the third term of the right-hand side, from (S4.51)), obviously, converges

to zero.
Hence,

1S5(t) — Sa()]| = 0, as n — . (S4.61)
Therefore, from (S4.49) and (S4.61)), we have i(t) is consistent. ]

S4.4 Proof of the asymptotic normality of ﬁo(t,g(t))

Proof. Let

= Vah{fio(t, B(0)) = io(t, () | + Vah{fio(t, B(0) ~ ml®)}  (54.62)
— H,(t, ﬁ*)m{g(t) - 5@)} kY AMU(E) /S ot B(0).

where H,(t,3*) = =S5 (t,6%) >0 I1(Ci > t)Ni(t)os(t)/nS;%(t, %), and

B* is between g(t) and [(t).
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For the second term of right-hand side of ((S4.62)), let

e ot
= Vnh), st JE > {810'(0. ) = 557! (1. 80 ade).
(S4.63)
Define
Us(s) = h i dM;(s). (S4.64)

Clearly, E[Us(s)] = 0.
Analogous to the proof of Lemma [f] using the functional central limit theo-
rem of Pollard, (1990)), we shall argument Us converges to Gaussian process

3. Now we test the conditions (i)-(v) in [Pollard, (1990).
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Under C1 to C5, by Lemmal[I], we have, for any s, s, € T,

lim E (Us(s1)Us(s2))

n—oo

= lim B <ﬁ zn: {dMi(Sl)dMi(S2)}>

=1

>

= hE({](O > s1)po(s1) exp(B(s1)2)o(s1) H{I(C > s2)po(s2) exp(B(s2)2)
o(s2)}) +0,(1)
hE (pi(s | 2)pa(s | 2)u3(s) exp(28(s)2)) + 0p(1), S1= 82 = 8,

0, S1 7& S9.

Then, by the classical multivariate central limit theorem for independent
random vectors, the finite-dimensional distributions of Us converge to those
of gaussian process &3, which converge to zero, as h gets to zero. Thus
condition (ii) holds. Next, checking the tightness. Under C1 to C5, we
know {I(C; > t)N;(t)o;(t),t € T} has finite points, and exp(8(t)z;)o;(t)
are bounded variation functions. Thus, {dMi(t),t € T} is manageable,
and the envelops can be chosen as constant B/y/n, then (i)(iii)(iv) holds.

To verify (v), for any s1,s9 € T, define

pu(s1,82) = B (Us(s1) — Us(s2))*,  pls1,82) = E (&(s1) — &(s2)).
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Further,

pu(s1, 59) ([Z {aMi(s)) dM(52)}>

=— ZE (Cs > s1)pd(s1) exp(2B(s1)zi)0i(s1) + 1(C; > s9)pd(s2) exp

(QB(SQ)Zi)Oi(SQ>) .

Clearly, {p,} is equicontinuous on 7', and lim, . pn(s1, S2) = p(s1,52), p
is pseudometric on T'. Thus p, converges, uniformly on 7', to p. And, let
{1, {5} be any two sequence in T, it follows that if p(s\™, s{”) — 0,
then p, (s, s"7) — 0, then (v) holds. Therefore, Us converges in distribu-
tion to Gaussian process on 7', and covariance matrix is diagonal matrix,
and the matrix is zero, when h gets to zero. That is, Us converges in distri-
bution zero, as n — oo, h — 0 and nh — oco. Moreover, using the Strong
Representation Theorem of |Pollard (1990), we have a new probability space

and

sup ||Us(s) = 0|l = 0, as n — oo. (54.65)
seT

By Lemma [I] and C1 to C5, we can obtain

sup [|Se! (t, 8(t) — S5~ (¢, B(E)| = 0, as n — oo. (54.66)

seT
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Then, by Lemma [2| combined with (S4.65) and (S4.66|), we can derive, in

probability,

n

(h/n)"2 Y {s;;jOl(t, B(t)) — iU, B(t))}dMi(t) 50, as n— oo
i=1
(54.67)
which holds in the original probability space. And in analogy with the prove

of Us(s), we can check that, in distribution,

(nh)'/? idMi(t)/nSS(t,ﬁ(t)) —0, as n— oo. (54.68)

Therefore, from (54.63)), (54.67) and (S4.68]), we can obtain, in probability,

(nh)'/? idMi(t)/nSgo(t,ﬁ(t)) —0, as n— oo (54.69)

i=1

For the first term of right-hand side of (54.62). Under C1 to C'5 and

Lemma [I], we obtain

H,(t,8") = —q1(t)/qo(t), n — oo. (54.70)
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By the assumption of nh® = o(1), we can derive

(nh)l/z{g(t) — B(t)} = N(0, 07 (t)o2(t)), as n—oco.  (S4.71)

Therefore, from (54.70) and ((S4.71f), we have

H,(t, ﬂ*)(nh)lm{g(t)—ﬁ(t)} — N(Vqu_Q(t)ql(t)01_2(t)02(t)), as n — 00.

(S4.72)

Hence, form (54.62)), (S4.69) and ((S4.72), using Slutsky’s theorem, we ob-

tain
(nh) 2 {Fio(t B1) = po(t) b = N0, T(t)), =00,  (S473)

where Y3(t) = voqy 2(t)qu(t) oy 2(t)oa(t). O

S5 Additional Simulations

ere, we show the simulation results about the local kernel estimators B (t)
with corresponding setting that 8(¢)=0-5{Beta(t/12,4,4)+Beta(t/12,5,5)}
and B(t) = sin(7t/6), respectively, under sample sizes equal to 500. As the

following figures show.
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Figure 1: (cl) and (d1): The true and the average of the local kernel estimator, with h=0-5
and hcy, respectively. (c2) and (d2): Comparison of empirical standard errors (ESE) and the
estimated standard errors (MSE) of B(t), with h=0-5 and he,, respectively. (c3) and (d3):
Empirical coverage probabilities of the 95% confidence intervals for B\(t), with h=0-5 and hcy,
respectively. (c4) and (d4): Comparison of the true baseline curve and the average of the
Breslow-type estimator, with h=0-5 and h.,, respectively.
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Figure 2: (cl) and (d1): The true and the average of the local kernel estimator, with h=0-5
and hcy, respectively. (c2) and (d2): Comparison of empirical standard errors (ESE) and the
estimated standard errors (MSE) of B(t), with h=0-5 and he,, respectively. (c3) and (d3):
Empirical coverage probabilities of the 95% confidence intervals for B\(t), with h=0-5 and hcy,
respectively. (c4) and (d4): Comparison of the true baseline curve and the average of the
Breslow-type estimator, with h=0-5 and h.,, respectively.
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