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S1 Further numerical results

S1.1 Different choices of the truncation parameter

As pointed out by a referee it is of interest to study the impact of the
choice of the truncation parameter J on the optimal design. For the sake
of brevity we concentrate on processes with exponential covariance kernel
with L = 1. We now assume that either four, five or six basis functions

(i.e. J = 4,5, or 6) are used in the series estimator. For the truncation
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parameter J = 6 at least n = 7 observations are necessary to get a well-
defined estimator such that we further assume that the sample size isn = 7.

The optimal time points minimizing the criterion (4.22) are given by

0.00, 0.17, 0.33, 0.50, 0.67, 0.83, 1.00
0.00, 0.22, 0.37, 0.51, 0.72, 0.87, 1.00

0.00, 0.22, 0.28, 0.49, 0.61, 0.89, 1.00

for the truncation parameter J =4, J =5 and J = 6, respectively. These
designs differ substantially indicating some sensitivity of the optimal design
with respect to the number of basis functions in the series estimator. An
interesting problem for future research is the construction of optimal designs
addressing the problem of uncertainty in the truncation parameter.

In Table 1 we display the simulated mean integrated squared errors of the
estimators f(‘])’” and f)" for J = 4,5,6, where we consider the optimal
design and the design in (5.4). We obtain similar results as in Section 5.1,
where three basis functions are used and the sample size is also given by
n = 7. For each choice of the truncation parameter the new estimator f (J);n
outperforms (/)" in all cases under consideration, and using the optimal

time points even improves its performance.
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design (J =4) || design (J =5) || design (J =6)

f estimator | optimal | (5.4) || optimal | (5.4) || optimal | (5.4)
f)n 1.65 1.70 1.69 1.83 1.96 | 2.08

(5.5)
fm 1.80 1.83 1.79 1.93 203 | 2.14
fn 1.64 1.77 1.92 1.99 1.74 2.07

(5.6)
fn 1.80 1.93 2.04 | 2.10 1.81 2.14

Table 1: Simulated mean integrated squared error of the estimators f(‘])’" and f)m
defined in (5.1) and (5.2) for different seven-point designs, for different regression func-
tions and for different truncation parameters J of the series expansion. The covariance

kernel is given by exp(—|s — t|).

S2 Technical details

Proof of Theorem 1 We restrict ourselves to the proof of the result in
case (A), the other cases can be proved in a similar way. Note that the
function W; is convex on the space of all signed measures and therefore,
a signed measure ¢; minimizes ¥; if and only if the directional derivative

from &7 in any direction is nonnegative, that is
0

~ U ((1 - * >
aa ](( Oé)é} + 0477) =0 — 07
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for all signed measures 1 on the interval [0, 1]. A straightforward calculation

gives

0

St — g +an)| = [ [ 560500+ K0(€ @€ @0 - € @mian)

+ 6, / f(t) & (dt)).

(S.1)

Consequently, the signed measure {7 minimizes ¥; if and only the inequality

/ / F(S)F(8) + K (s,1) (€ (ds)& (de) — € (dyn(dt))
+ 6; / f(t) & (dt)) >0,

is satisfied for all signed measures 7 on the interval [0, 1].
In order to check (S.2) for the signed measure £; we calculate each term in
(S.2) separately, where we use the following representation of the quantities

n (3.13) - (3.16)

o [ LU foser,, SO
o V() uwt)u(t) — u(t)o(t) (0)v(0)’
p o~ L £(0)i(0) = £(0)u(0)
w(0) 0(0)a(0) — 5(0)u(0)”
p - fo(1) = f(Do(1)
(1) w(1)v(1) —u(1)o(1)’
1d [ ft)(t) — f)ot
) = ‘v(tm[uétivgtg_uét;@&;]
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FD@)f(1) —o(1) (1))
v(D)(a(1)o(1) - u(1)o(1))

To simplify (S.2) we note that integration by parts yields

—~|—~ ] —

))(

u(0)v(0)

1+c
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Similarly, we obtain

/O K(s,t)€1(ds) = / u(s)o()€:(ds) + [ utyo(s)E (dt)

_ Y ( (1) U0 (O) — u(0)£(0)
1+c\ 7 4(0)v(0) — u(0)0(0)
L [us) d o) fs) =) f )]
(t /(; U(S) ds [u(S)U(S) _ U(S)U(s)] d
o(D)f(1) — o) f(1)
HODe —umi
Lo [ [ri ) =i )]
(t)/t ds [u(S)U(S) _U(S)U(s)] d >
_ % /(0) £(0)
1+ c(v(t)v(()) + ) - U(t)v(o))
0
- 1)

where we have used again integration by parts for the third equality. Con-

sequently, we get

L ([ -

/ K(s,t)¢ ds dt ] )20,
and thus the left hand side of (S.2) reduces to
62c? 07c 0,
. ! —0)=0
(1—|—C)2+ 1+c 1+c /f 1+c ) =0,

for an arbitrary signed measure 7. This proves that (S.2) holds and the

signed measure £ defined in Theorem 1 minimizes the function ;.
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Proof of Proposition 1 For the term on the left hand side of equation

(4.11) we obtain

0
(J)|4 noot (J) .
= aranp B[ G5 ) G )i

n

E[(; / %@;‘Z@ (a0 = m)a(5)) (52)
" ti () 1 g T
(2 | (G Cae) ™ = m)a(55))

we use a transformation of the Gaussian process {Y; : t € [0,1]} to a
Brownian motion, as it was introduced by Doob (1949). This result shows
that the error process {e; : t € [0,1]} with covariance kernel (3.3) can be

represented by

where W = {W(s) : s € [¢(0),¢q(1)]} is a Brownian motion on the interval
[¢(0), ¢(1)]. We use this relationship to represent the process {Y; : ¢t € [0, 1]}

as

Yi = f(t)+e = )+ oW (g(t), telo,1.
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Dividing by v(t) and using the transformation s = ¢(t), we get the trans-

formed model

where
_ Y _ Sl
=iy M 9= )

[ (G0 - ) o)+ aw ),

where the function ®)(s) is given by ®)(s) = % and we set

t = ¢~ '(s). This gives for the transformed derivatives

4[O0O] _ d [8 )] ds _ d 8D (d N
dt{ o) } - ‘Z[ ) } i ds{ g 1)) } (F0')
) = Tala™s) 7 = (a7 (9)

We now introduce the notation

" d g |
X; = /q(ti_l) (E(I) (s) — Mi) (dg(s) +dW(s)) i=2,...,n.
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As W is a Brownian motion, the random variables Xs, ..., X,, are indepen-

dent and the expected value in (S.2) can be rewritten as

E[gxigxﬂ ZEX ~E[Xi])(X, +Z]E Z 7.

1=2

(S.3)

Obviously

E[X] - /q(t” (L50(s) — ) L ols)as

q(ti—1) ds
t; (J) -1
- [ G Gao) =) (5 |55

and [to’s isometry gives

E[(X; — E[X)])(X; — E[X;])"]

_ alts) d(i)(J) s) — i@u) §) — i TdS
(ds (5) )(ds ( )

q(ti—1)
t; (J) 1 J) . .
N /ti_l <% [q)v(t()tq (%q(t)> B “i> (% [q)v(;;)} (%Q(t)) - m) %q(t)dt.

Inserting these representations in (S.3) results in (4.11), which proves Propo-

sition 1.
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