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Generalization of Theorem 2.

The following conditions on g or F' will be needed by Theorem 2 in Section 2 and

Theorems 7-9 in this section.

(9-1)

(9-2)

(9-3)

Lipschitz continuous: The function, ¢ : RY — R, is said to be Lipschitz continuous
if there exists a constant ¢ > 0 such that |g(a;) — g(az)| < c||a; — az||2 for any

a;,a; € RY. Example: First-order polynomial functions.

Order-p continuous: The function, g : R — R, is said to be order-p continuous
if there exists a constant ¢ > 0 and ¢,(a; —az) < ¢+ max®(||a1||2, ||az||2) for any
a1, a2 € R? such that |g(a1) — g(az)| < ¢(ar, az)|[ar — agl|s for any a;,a € R?.

Example: All polynomial functions.

Uniformly bounded-variation: For a real valued function f : R — R, the total
variation of f is defined as Vr(f) = Sup,»o SUP_aoce, .. cp<o0 P fein) — fled)l.
The function, g : R* — R, is said to be uniformly bounded-variation if there exists
a constant ¢ > 0 such that Vz(g(-, 2o, ...,24)) < c for any (x,...,24) € R4L.

Example: Linear combinations of sign functions, e.g. g¢(z1,x2) = sign(zizy) +
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sign(zy + x3).

(F) Light-tailed distribution: The distribution of a random variable X is said to be
light-tailed if there exists constants ¢,¢; > 0 such that P(|X| > z) < e~ for all
x > c;. Example: Normal distribution, exponential distribution, and truncated

distributions.

Lemma 4. Suppose F is light-tailed. Let X.x = max{|Xi|,...,|X.|}. Then, for

arbitrary a > 0 with n — oo, we have

EX: .. = O(logn)®.

max

Proof. Since the distribution is light-tailed, we have P(| X| > z) < e~ for any |z| > co,

where ¢ and ¢y are two fixed positive numbers.

E(Xnax)® :/ az ' P(Xpax > 7)dw
>0

IN

2¢=1logn 0o
/ az® 'dx +/ az ' P(Xpax > 7)do
0 2

c~llogn
= O(logn)* +/ az ' P(Xpax > 7)dw
2¢—1llogn

= O(logn)“+/ az 'ne”“dr = O(logn)*+ O(1). O

2c¢—1llogn

Lemma 5. Suppose (i) g is order-p continuous, and (i) F is light-tailed. We have

_ 1
EUy—-V)?=0 <E(log n)2p+2) :
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Proof. Let Xyax = max{|Xi]|,...,|X,|}. Forl € Z;, define d; = max{|X;, — X,,]| :

i1,i2 € Gi}. Since g is order-p continuous, for n ~ 1’ in G, |g(X,;) — g(Xy)| <

(c1 + Xha)d'2dy, and 50 g(Xy) — (X)) P < (e1 + XBo)? - d- D25, )

Since U,, and V always use the same S,, = {n',...,n™}, we have

For 41 # 1o, E(Q(*Xnil) - g(Xnil))(g(XnQ) - g(Xrﬂ?)) =0.
E(U,—V)? = *QEZ — 9(Xi))?

d
< m_2EZc + X2 )2 -d-Zd%
i=1 j=1

Since Zlel d; < 2Xax, We have Zle d? < 4X?2 . Using Lemma 4, we have

max"*

m d d m
E(Ue—V)* < m™dE < o+ XP Y D d ) = m~*dE ((c + X0 )Y D

i=1 j=1
d 1
= m2dE < ¢+ XP )2 ;m 14)(;”) =0 (E(log n)2p+2> o O

Theorem 7. Suppose (i) The kernel function g is order-p continuous, and (ii) F is

light-tailed. For U,, based on OA(m,d, L,t), we have

MSE(Us,) = MSE(Up) + % + O (%) + 0 (i> : (6.14)

m n?

Proof. This is the direct result of (6.6), Lemma 1(¢7), Lemmas 2 and 5. [
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Theorem 8. Suppose the kernel function g has uniformly bounded variation. For U,,

based on OA(m,d, L,t), we have

MSE(Usa) = MSE(Up) + % +0 (i) + O ( ! ) : (6.15)

mL n?
Proof. From (6.6), Lemma 1(iz) and Lemma 2, we only need to prove E(U,, — V)? =
O(m~'L™1). First, we introduce some notations that will be used only in the proof of
this theorem. Given the order statistic of {X7,...,X,} denoted by X,..., X, for
l=1,...,L and (2,...,24) € R, define D(l|xs, ..., xk) = MaX(_1)nL—1<iy<ip<inL-1
19(X 1), 25 2x) — 9(X(iy), @2, . .., @x)|. Since g has uniformly bounded variation, g

is bounded, say |g| < M.

El(g(Xy) = g(Xp)PIn~n] = L™ 1Gal> > > (9(Xy) — g(Xy))?

aezg "lega nlega

2M L™ G,| 2 Z Z Z 19(Xy) — g(Xy )|

aezg nega n’ega

VAN

Note that g(X,,) — g(X,;) can be written as the summation of the difference in changing

each element of &, = (X

s Xpy) to Xy = (X, , ..., X, ) one by one as follows.

!
o d

|9(Xn> _Q(Xn’ﬂ
= |g<Xm7X7127' ) _g(Xﬁi’anv ) )| + |g(X77’17XTI27X?737' ) _g(Xnﬁ7X77£’X7737"')‘
+ et ‘Q(anXn’g’Xné:'“ 7X77§i_ X )_g(Xn{7Xn§’Xn§,7"' , Xy Xn;)’

17774 Ng—1’

< D(a| X,y Xy,) + D(as| X, X, X))+ 4 Dlaa| Xy, Xop oo Xy )

R I /) Ng_1

For orthogonal arrays, we can separate Zaezg Y ncGa 2omrecs Plar]| Xns, -, X))
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into |2¢||G4|?/ L groups such that each group contains L elements whose summation is
control by the total variation ¢ > 0. So we have

S 3N DXy, Xy, < eLGal?/L.

acz{ ncfa n'cla

Similarly analyzing the D(ag|X,;, X Xp,)s - D(ag| Xy, Xy

. Wy Xy -+ Xy, We have

E[(g(X,) — 9(Xy))*m ~n'] = O(L™1) and so E(Uy, — V)? = O(m~'L~1). Theorem 8

is the direct result of (6.6), Lemma 1(i¢), Lemma 2. O

Theorem 9. Suppose (i) The kernel function g is a linear combination of some order-

p continuous functions and some uniformly bounded-variation functions, and (i) F' is

light-tailed. Then (6.14) still holds with L* < n(logn)~'.

Proof. This is the direct result of Theorems 7 and 8.
Choosing L and t.

From Eq(2.13) of Theorem 3 in the manuscript and the relation m = AL', we
know that the trade-off between L and ¢ depends on the variance of each component
in the Heoffding’s decomposition, i.e., 5?-, 7 =1,...,d. We shall give these variances
a estimator 532 Using Eq(2.13) with R(t) and Ey?(X1,...,X,) being estimated as a

function of 5?, we should choose the combination of L and ¢ which minimizes

_ Rt) d 7 o
B(Lit) = ==+ s By (X, X,

where R(t) and E~4%(Xy,. .., X,) are functions of 532’5.
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Now we provide two methods for generating 3? (1) When the Heoffding’s decom-
position is easy to calculate, one can write down the analytical expression and give a
direct estimation of 532’5. (2) We can use a bootstrap approach for 5?-’5. With a small
sample size n' < n, it is easy to bootstrap MSE(Up) (the complete U-statistic). For
details of the bootstrap approach, we may refer to Marie Huskova and Paul Janssen
(1993a,b). Now, let us review the formula of MSE(Uy):

- () £ 06 - £O)

j=1

Usually, with at most d different n’'(> d), we can generate linear equations of 5]2 based
on the d different @(Uo) based on the bootstrap approach. And the solution of these
linear equations can be used as the estimation of 5]2-’5.

For the second method, we now use the setup in Example 1 for illustration. For
convenience, we set n = 10* and m = 10°. The two choices of the combination of L
and ¢ is (L = 100,t = 3) and (L = 1000, ¢ = 2). We use bootstrap method to estimate
the variance of the complete U-statistic with n’ = 4,5,6. The subsample size n’ is
so small that the computational burden of the bootstrapped complete U-statistic, i.e.,
(g) is negligible. Simulation reveals that 51 = 0.0557, 52 = 0.00217 and 33 = 1.06257.
Simple analysis reveals that ¢ = 3 shall work better than ¢ = 2, which is verified by the
simulation result. Actually, with m = 10%, the efficiency of U,, is 100.0% when ¢t = 3

and 97.88% when t = 2.

Examples for multi-sample and multi-dimensional cases. Consider
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the multi-sample case. Suppose d; = dy = 2, n1 = ny = 9 and the two samples are

Then we have L = 3 groups listed as Ggl) = {6,8,2},G§1) ={4,7, 5},G§1) = {3,9,1}
and G? = {2,7.3},G? = {6,1,4},GY = {5,9,8}. An example of OA(m = 9,d =
4, L = 3,t =2) in step 1 is given as follows in transpose.
11122 2 33 3

123123123

AT =
12323131 2
123312231
Then we could possibly have the X,:, 7 = 1,...,9, used in the construction of 9-run

multi-sample construction as follows.

¢

Xs(l) X2(1) Xél) X;El) Xﬁl) Xél) Xél) Xl(l) Xél)

1
(X Xy} = .

\ X?E2) XéQ) Xé2) XéQ) X:)()2) X{Q) XéQ) X8(2) X?E2) l
Consider the multi-dimensional case. Suppose X; = (1.0,3.2), X, = (0.9,1.0),
X3 = (0.9,3.1), X,y = (0.8,2.1), X5 = (0.7,2.2), X5 = (0.9,1.2), X7 = (0.9,1.9),
Xs = (0.8,1.1), X9 = (0.9,2.8). Simple clustering methods reveal G; = {6,8,2}, Gy =
{4,7,5},G3 = {3,9,1}. The choosing of n*, i = 1,...,9, might be the same as (2.9).
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