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Abstract: Quadratic regressions extend linear models by simultaneously including

the main effects and the interactions between the covariates. As such, estimating

interactions in high-dimensional quadratic regressions has received extensive atten-

tion. Here, we introduce a novel method that allows us to estimate the main effects

and the interactions separately. Unlike existing methods for ultrahigh-dimensional

quadratic regressions, our proposal does not require the widely used heredity as-

sumption. In addition, our proposed estimates have explicit formulae and obey the

invariance principle at the population level. We estimate the interactions in matrix

form under a penalized convex loss function. The resulting estimates are shown

to be consistent, even when the covariate dimension is an exponential order of the

sample size. We develop an efficient alternating direction method of multipliers

algorithm to implement the penalized estimation. This algorithm fully exploits the

cheap computational cost of the matrix multiplication and is much more efficient

than existing penalized methods, such as the all-pairs LASSO. We demonstrate the

promising performance of the proposed method using extensive numerical studies.

Key words and phrases: High dimension, interaction estimation, quadratic regres-

sion, support recovery.

1. Introduction

A fundamental problem in scientific research is understanding how the fea-

tures under investigation interact. Interaction estimation has been shown to be

very attractive in both parameter estimation and model prediction (Bien, Taylor

and Tibshirani (2013); Hao, Feng and Zhang (2018)), especially for data sets with

complicated structures. Efron et al. (2004) pointed out that for Boston housing

data, the prediction accuracy can be improved significantly if interactions are

included in addition to all main effects. In general, ignoring interactions by

considering main effects alone may lead to an inaccurate or biased estimation,

resulting in a poor prediction of an outcome of interest. In contrast, considering
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both interactions and main effects can improve model interpretability and pre-

diction substantially, thus achieving a better understanding of how the outcome

depends on the predictive features (Fan et al. (2015)). While it is important to

identify interactions that may reveal real relationships between the outcome and

the predictive features, the number of parameters scales squarely with the number

of predictive features. This makes parameter estimation and model prediction

very challenging for problems with large, or even moderate dimensionality.

1.1. Interaction estimation, feature selection, and screening

Estimating interactions is a challenging problem because the number of pair-

wise interactions increases quadratically with the number of covariates. In the

past decade, there has been a surge of interest in interaction estimation in

quadratic regression. Roughly speaking, existing interaction estimation proce-

dures can be classified into three categories. In the first category of low- or

moderate-dimensional settings, standard techniques such as the ordinary least

squares can be readily used to estimate all pairwise interactions and main effects.

However, this simple one-stage strategy becomes impractical or even infeasible

for moderate- or high-dimensional problems, owing to the rapid increase in the

dimensionality caused by the interactions. In the second category of moderate-

or high-dimensional settings, where feature selection becomes imperative, several

one-stage regularization methods have been proposed, and some of which require

either the strong or the weak heredity assumption; see, for example, Yuan, Joseph

and Zou (2009), Choi, Li and Zhu (2010), Bien, Taylor and Tibshirani (2013),

Lim and Hastie (2015), and Haris, Witten and Simon (2016). These regulariza-

tion methods are computationally feasible and the theoretical properties of the

resulting estimates are well understood for moderate- or high-dimensional prob-

lems. However, in the third category of ultrahigh-dimensional problems, these

regularization methods are no longer feasible because their implementation re-

quires storing and manipulating a large-scale design matrix and solving complex

constrained optimization problems. The memory and computational costs are

usually extremely expensive and prohibitive. Several two-stage approaches have

been proposed for both ultrahigh-dimensional regression and classification prob-

lems, including Hao and Zhang (2014), Fan et al. (2015), Hao, Feng and Zhang

(2018), and Kong et al. (2017). Two-stage approaches estimate the main effects

and interactions in two separate stages, which significantly reduces their compu-

tational complexity. However, these two-stage approaches hinge heavily on either

the strong or the weak heredity assumption. These methods are computationally

scalable, but may break down when the heredity assumption is violated.
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1.2. Heredity assumption and invariance principle

Adding an extra layer of flexibility to linear models, quadratic regressions

include both the main effects and the pairwise interactions between the covariates.

Denote Y as the outcome variable and x = (X1, . . . , Xp)
T ∈ Rp as the covariate

vector. For notational clarity, we define u
def
= E(x) ∈ Rp. In general, a quadratic

regression has the form

E(Y | x) = α+ (x− u)Tβ + (x− u)TΩ(x− u), (1.1)

where α ∈ R1, β = (β1, . . . , βp)
T ∈ Rp, and Ω = (Ωk,l)p×p ∈ Rp×p are all

unknown parameters. To ensure model identifiability, we further assume that

Ω is symmetric; that is, ΩT = Ω. Our goal is to estimate β and Ω, which

characterize the main effects and the interactions, respectively. The intercept α

is also useful for prediction.

In the literature, heredity structures (Nelder (1977); Hamada and Wu (1992))

are widely imposed to avoid the quadratic computational cost of searching over

all pairs of interactions. The heredity structures assume that the support of Ω

can be inferred from the support of β. The strong heredity assumption requires

that an interaction between two covariates be included in the model only if both

main effects are important. The weak assumption relaxes this constraint, stating

that at least one main effect must be important. The strong and weak heredity

structures are defined as follows:

strong heredity: Ωk,l 6= 0⇒ β2k > 0 and β2l > 0,

weak heredity: Ωk,l 6= 0⇒ β2k + β2l > 0.

Using the heredity assumptions, one can first seek a small number of important

main effects, and then only consider interactions involving these discovered main

effects. However, the main effects corresponding to important interactions may be

difficult to detect. An example is Y = (1+X1)(1+X2)+ε, where X1 and X2 are

drawn independently from N (−1, 1) and ε is standard normal. In this example,

cov(X1, Y ) = cov(X2, Y ) = 0. The main effects X1 and X2 are thus unlikely to

be detectable by a working linear model Y = α0 + α1X1 + α2X2 + ε, indicating

that the heredity assumptions do not necessarily facilitate finding interactions

by first searching for the main effects. Ritchie et al. (2001) provided a real-data

example to demonstrate the existence of pure interaction models in practice.

Cordell (2009) raised concerns that many existing methods that depend on the

heredity assumption may miss pure interactions in the absence of main effects.
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An ideal quantification of the importance of the main effects and interactions

should satisfy the invariance principle with respect to a location-scale transfor-

mation of the covariates. It is a natural and common strategy to quantify the

importance of the main effects and interactions through the supports of β and Ω

in model (1.1). In a conventional linear model, where only the main effects are

present and interactions are absent (i.e., Ω = 0p×p in model (1.1)), the invariance

principle is satisfied. In contrast, in a quadratic regression (1.1) with a general

Ω, the invariance principle is very likely violated. To demonstrate this issue, we

recast model (1.1) as

E(Y | x) = (α− uTβ + uTΩu) + xT(β − 2Ωu) + xTΩx. (1.2)

In this model, the importance of the main effects and interactions is naturally

characterized through the support of (β − 2Ωu) and Ω, respectively. This indi-

cates that the interactions are invariant, whereas the main effects are sensitive to

a location transformation. The heredity condition and the invariance principle

are discussed in detail by Hao and Zhang (2017). In an ultrahigh-dimensional

quadratic regression, using a one-stage approach which simultaneously estimate

the main effects and the interactions under the heredity assumption, or a two-

stage approach which searches for main effects prior to searching for interactions,

in model (1.1) or model (1.2) may lead to quite different conclusions. It is thus

desirable to estimate the interactions directly, without knowing the main effects

in advance. Direct interaction estimation without heredity constraints is, how-

ever, to the best of our knowledge, much more challenging and still unsolved in

the literature. If both β and Ω in model (1.1) are treated as random rather than

fixed, then the strong heredity condition is satisfied almost surely. In this case,

however, the main effects are too weak to be used to search for interactions.

1.3. Our contributions

We consider interaction estimation in ultrahigh-dimensional quadratic re-

gressions without the heredity assumption. We make at least the following two

important contributions to the literature:

1. We obtain a general and explicit expression for a quadratic regression with

as minimal assumptions as possible. Surprisingly, it turns out that such an

explicit solution relies only on certain moment conditions on the ultrahigh-

dimensional covariates, which is satisfied by the widely used normality as-

sumption. Explicit forms can be derived for both the main effects and the

interactions. Thus, the quadratic regression can be implemented separately
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as two independent tasks relating to the main effects and interactions. Un-

der weaker moment assumptions, our approach is still valid in detecting the

direction of the true interactions. Our proposed method differs from exist-

ing one-step and two-step procedures in that we do not require the heredity

assumption, and we give explicit forms for both the main effects and the

interactions. Estimating the main effects through a separate working linear

model ensures that the resulting estimate satisfies the desirable invariance

principle. We show that our approach to detecting interactions is robust

to the estimation of the main effects. Even when the main effects are not

estimated precisely, we are still able to detect the interactions accurately.

2. We show that the interaction inference is equivalent to a particular matrix

estimation at the population level. We estimate the interactions in matrix

form under a penalized convex loss function, which yields a sparse solution.

We establish the consistency of our proposed estimates when the covariate

dimension p grows, approximately, in an exponential order of the sample

size n; specifically, p = o
{

exp(ns−2p )
}

, where sp is the size of the under-

lying true model. Compared with the conventional penalized least squares

approach, the penalization of the matrix form is appealing in terms of both

memory storage and computation cost. An efficient algorithm is devel-

oped to implement our procedure. This algorithm fully exploits the cheap

computational cost for the matrix multiplication, and is more efficient than

existing penalized methods. For example, the algorithm can handle the case

with p = 10,000 covariates. The developed R package “PIE” is available at

https://github.com/cescwang85/PIE. More details can be found in the

package and the simulation part.

This remainder of this paper is organized as follows. We begin with a

quadratic regression model in Section 2, and derive closed forms for both the

main effects and the interactions. We propose a direct penalized estimation for

a high-dimensional sparse quadratic model. To implement the proposed method,

an efficient alternating direction method of multipliers (ADMM) algorithm is pro-

vided. We also study the theoretical properties of our proposed estimates. We

illustrate the performance of the proposed method, using simulations in Section

3, and an application to a real-world problem in Section 4. Section 5 concludes

the paper. All technical details and additional simulations are deferred to the

Supplementary Material.

The following notation is used throughout the remainder of the paper. For a

real p×q matrix Ap×q = (Ak,l)p×q, let λmax(A) and λmin(A) denote its maximum

https://github.com/cescwang85/PIE
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and minimum singular values, respectively. Let ‖A‖F
def
= {tr(ATA)}1/2 be the

Frobenius norm, ‖A‖ be the spectral norm, and tr(·) be the trace operator of A.

We further define

‖A‖∞
def
= max

1≤k≤p,1≤l≤q
|Ak,l|, ‖A‖1

def
=

p∑
k=1

q∑
l=1

|Ak,l|, and ‖A‖L
def
= max

1≤k≤p

q∑
l=1

|Ak,l|.

2. The Estimation Procedure

2.1. The rationale

In this section, we discuss how to estimate β and Ω, which characterize

the main effects and the interactions, respectively, in model (1.1). Note that

β = E{∂E(Y | x)/(∂x)} and Ω = E{∂2E(Y | x)/(∂x∂xT)}
/

2. Therefore, esti-

mating β and Ω amounts to estimating E{∂E(Y | x)/(∂x)} and E{∂2E(Y | x)

/(∂x∂xT)}, respectively. However, this is not straightforward, especially when x

is ultrahigh dimensional. To illustrate the rationale of our proposal, we assume

for now that x follows N (u,Σ). It follows immediately from Stein’s Lemma

(Stein (1981); Li (1992)) that

E

{
∂E(Y | x)

∂x

}
= Σ−1cov(x, Y ) and

E

{
∂2E(Y | x)

∂x∂xT

}
= Σ−1ΛyΣ

−1,

where Λy
def
= E[{Y − E(Y )} (x−u)(x−u)T]. Define r

def
= Y −E(Y )− (x−u)Tβ,

which is the residual obtained by regressing Y on x linearly. The Hessians of

E(Y | x) and E(r | x) are equal. Accordingly, we have

E

{
∂2E(Y | x)

∂x∂xT

}
= E

{
∂2E(r | x)

∂x∂xT

}
.

By Stein’s Lemma, we can obtain that

E

{
∂2E(r | x)

(∂x)(∂xT)

}
= Σ−1ΛrΣ

−1,

where Λr
def
= E {r(x− u)(x− u)T}. This indicates that, if x is normal, we have

explicit forms for β and Ω. Specifically,

β = Σ−1cov(x, Y ), and Ω =
1

2
Σ−1ΛΣ−1,
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where Λ stands for either Λy or Λr.

Note that the normality assumption is widely used in the literature on inter-

action estimation; see, for example, Hao and Zhang (2014), Simon and Tibshirani

(2015), Bien, Simon and Tibshirani (2015), and Hao, Feng and Zhang (2018). In

the present context, we show that the normality assumption can be relaxed.

Proposition 1. Suppose x is drawn from the factor model x = Γ0z+u, where Γ0

satisfies Γ0Γ
T

0 = Σ > 0 and z
def
= (Z1, . . . , Zq)

T, where Z1, . . . , Zq are independent

and identically distributed (i.i.d.), with E(Zk) = 0, E(Z2
k) = 1, E(Z3

k) = 0 and

E(Z4
k) = ∆. We further assume either (C1): ∆ = 3 or (C2): diag(ΓT

0ΩΓ0) = 0.

Then, the parameters α, β, and Ω in model (1.1) have the following explicit

forms:

α = E(Y )− 1

2
tr(Σ−1Λ), β = Σ−1cov(x, Y ), and Ω =

1

2
Σ−1ΛΣ−1. (2.1)

The factor model is widely assumed in random matrix theory (Bai and

Saranadasa (1996)) and high-dimensional inference (Chen, Zhang and Zhong

(2010)), where higher-order moment assumptions of x are required. The mo-

ment conditions on z play an important role in deriving an explicit form for

Ω. Condition (C1) is satisfied if x is normal. When Γ0 = Ip×p, condition (C2)

requires the absence of quadratic terms of the form X2
k in model (1.1); that is,

E(Y | x) = α+ xTβ +
∑
i 6=j

Ωi,jXiXj ,

where X1, . . . , Xp are i.i.d..

We provide two explicit forms for estimating Ω. One is based on the response

Y , and the other is based on the residual r. The difference between Λy and Λr is

that we remove the main effects in Λr, or equivalently, the linear trend in model

(1.1), before we estimate the interactions Ω. It is natural to expect that the

residual-based Λr is superior to the response-based Λy in that the sample estimate

of Λr has less variability than that of Λy (Cheng and Zhu (2017)). In effect, we

can replace β with an arbitrary β̃ ∈ Rp, which yields r̃
def
= Y − E(Y ) − (x −

u)Tβ̃. Similarly, we can define Λr̃
def
= E {r̃(x− u)(x− u)T}. Under the normality

assumption, x is symmetric about u and, hence, Λr = Λr̃. This ensures that,

to estimate Ω accurately, the proposed method does not hinge on the sparsity of

the main effects because we do not require β to be estimated consistently. Even

if the main effects are not sufficiently sparse or are not estimated very accurately,

we can directly use the response-based method Σ−1ΛyΣ
−1 or the residual-based
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method Σ−1Λr̃Σ
−1, which uses a lousy residual r̃ = Y −E(Y )− (x−u)Tβ̃, and

β̃ can be a lousy estimate of β. In effect Λy equals Λr̃ by setting β̃ = 0p×1 in r̃.

This makes the proposed method quite different from existing procedures, which

assume the heredity conditions and require an accurate estimate of the main

effects in order to recover the interactions. In contrast, the proposed method

does not require that we estimate the main effects precisely. We illustrate this

phenomenon using simulations in Section 3.

2.2. Interaction estimation

We showed that both β and Ω have explicit forms under moment conditions

in Section 2.1. In particular, β = Σ−1cov(x, Y ) and Ω = Σ−1ΛΣ−1/2 for Λ

being Λy or Λr. In this section, we discuss how to estimate Σ−1cov(x, Y ) and

Σ−1ΛΣ−1 at the sample level. Estimating Σ−1cov(x, Y ) is straightforward by

noting that it is a solution to the minimization problem

argmin
b

E{Y − E(Y )− (x− u)Tb}2.

Therefore, we can simply estimate Σ−1cov(x, Y ) using the penalized least squares

by regressing {Y −E(Y )} on the ultrahigh-dimensional covariates (x−u) linearly.

We do not provide details about how to estimate Σ−1cov(x, Y ) because the pe-

nalized least squares estimation is well documented (Tibshirani (1996); Fan and

Li (2001)). Throughout our numerical studies, we use the LASSO ((Tibshirani

(1996)) to estimate β. The resulting solution is denoted by β̂.

In what follows, we concentrate on how to estimate Σ−1ΛΣ−1/2, where Λ

can be Λy or Λr. For an arbitrary matrix B = (Bk,l)p×p, we have

Ω = argmin
B

[
tr

(
B− 1

2
Σ−1ΛΣ−1

)
T
(

B− 1

2
Σ−1ΛΣ−1

)]
= argmin

B

[
tr

(
B− 1

2
Σ−1ΛΣ−1

)
T

Σ

(
B− 1

2
Σ−1ΛΣ−1

)
Σ

]
,

and

tr

(
B− 1

2
Σ−1ΛΣ−1

)
T

Σ

(
B− 1

2
Σ−1ΛΣ−1

)
Σ

= tr(BTΣBΣ)− tr(BΛ) +
1

4
tr(Σ−2Λ2).

Ignoring the constant, the term tr(BTΣBΣ) − tr(BΛ) quantifies the distance

between B and Σ−1ΛΣ−1
/

2. Therefore, to seek a p × p matrix B that can
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approximate Σ−1ΛΣ−1
/

2 very well, it suffices to consider the following mini-

mization problem:

argmin
B

[
tr(BTΣBΣ)− tr(BΛ)

]
, (2.2)

as long as we have faithful estimates of Σ and Λ. The above loss function in

matrix form is convex, which guarantees that the local minimum must be a

global minimum.

To construct faithful estimates for Σ and Λ, we suppose {(xi, Yi), i = 1, . . . , n}
is a random sample of (x, Y ). Denote

x
def
= n−1

n∑
i=1

xi, Y
def
= n−1

n∑
i=1

Yi, Σ̂
def
= n−1

n∑
i=1

(xi − x) (xi − x)T ,

Λ̂y
def
= n−1

n∑
i=1

(Yi − Y ) (xi − x) (xi − x)T , Λ̂r
def
= n−1

n∑
i=1

r̂i (xi − x) (xi − x)T ,

where r̂i
def
= Yi − Y − (xi − x)Tβ̂. We propose the following penalized interaction

estimation (PIE) to estimate Ω, for Λ̂ being Λ̂y or Λ̂r:

PIE: Ω̂ = argmin
B∈Rp×p

tr(BTΣ̂BΣ̂)− tr(BΛ̂) + λn‖B‖1, (2.3)

where λn is a tuning parameter and ‖B‖1 =
p∑

k=1

p∑
l=1

|Bk,l|. To ease subsequent

illustration, we further define the following notation:

PIEy: Ω̂y = argmin
B∈Rp×p

tr(BTΣ̂BΣ̂)− tr(BΛ̂y) + λ1n‖B‖1, (2.4)

PIEr: Ω̂r = argmin
B∈Rp×p

tr(BTΣ̂BΣ̂)− tr(BΛ̂r) + λ2n‖B‖1. (2.5)

2.3. Implementation

In this section, we develop an efficient algorithm to solve (2.3), which includes

(2.4) and (2.5) as special cases. We rewrite the problem as

min
B∈Rp×p

tr(BTΣ̂BΣ̂)− tr(BΛ̂) + λn‖Ψ‖1, such that Ψ = B, (2.6)

which motivates us to form the augmented Lagrangian as

L(B,Ψ,L) = tr(BTΣ̂BΣ̂)− tr(BΛ̂) + λn‖Ψ‖1

+tr {L(B−Ψ)}+

(
ρ

2

)
‖B−Ψ‖2F , (2.7)
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where ρ > 0 is a step size parameter. By the standard ADMM Boyd et al.

(2011), the augmented Lagrangian (2.7) can be solved by successively updating

(B,Ψ,L):

The B step: Bk+1 = argmin
B∈Rp×p

L(B,Ψk,Lk), (2.8)

The Ψ step: Ψk+1 = argmin
Ψ∈Rp×p

L(Bk+1,Ψ,Lk), (2.9)

The L step: Lk+1 = Lk + ρ(Bk+1 −Ψk+1). (2.10)

Define the elementwise soft thresholding operator soft(A, λ)
def
= {max(Ak,l −

λ, 0)}p×p. For the Ψ step, given Bk+1, Lk, ρ, and λn, the solution is

Ψk+1 def
= soft

(
Bk+1 + ρ−1Lk,

λn
ρ

)
.

The B step amounts to solving the equation

2Σ̂Bk+1Σ̂ + ρBk+1 = Λk, (2.11)

where Λk def
= Λ̂ − Lk + ρΨk. We make a singular value decomposition to obtain

Σ̂ = UD0U
T, where U ∈ Rp×m, m = min(n, p), and D0

def
= diag(d1, . . . , dm) is a

diagonal matrix. Define D
def
= (Dk,l)p×p, where Dk,l

def
= 2dkdl/(2dkdl + ρ). Given

Ψk, Lk, and ρ, the solution to (2.11) is given by

Bk+1 = ρ−1Λk − ρ−1U{D ◦ (UTΛkU)}UT,

where ◦ denotes the Hadamard product.

The algorithm is summarized in Algorithm 1. This algorithm yields a sym-

metric estimate of Ω, which is denoted by Ω̂. The computational complexity of

each iteration is no more than O{min(n, p)p2}, and the memory requirement is

no more than O(p2) because we only need to store a few p × p or p ×min(n, p)

matrices in computer memory.

As a first-order method for convex problems, the convergence analysis of

the ADMM algorithm under various conditions has been well documented in the

recent optimization literature; see, for example, Nishihara et al. (2015), Hong

and Luo (2017), and Chen, Sun and Toh (2017). The following lemma states the

convergence of our proposed ADMM algorithm.

Lemma 1. Given Σ̂ and Λ̂, suppose that the ADMM algorithm (2.8)-(2.10) gen-

erates a sequence of solutions {(Bk,Ψk,Lk), k = 1, . . .}. Then, {(Bk,Ψk), k =

1, . . .} converges linearly to the minimizer of (2.6), and ‖Bk −Ψk‖F converges
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Algorithm 1 ADMM algorithm for solving (2.3)

Initialization:
1: Input {(xi, Yi), i = 1, . . . , n}, the tuning parameter λn and ρ;

2: Calculate Λ̂ and the singular value decomposition of the centered design matrix (x1−
x, . . . ,xn − x)p×n to get Σ̂ = UD0U

T, where U ∈ Rp×m, D0 = diag{d1, . . . , dm},
and m = min(n, p);

3: Define D
def
= (Dk,l)m×m, where Dk,l = 2dkdl/(2dkdl + ρ);

4: Start from k = 0, L0 = 0p×p,B
0 = 0p×p.

Iteration:
5: Define Λk def

= Λ̂− Lk + ρBk. Update Bk+1 = ρ−1Λk − ρ−1U{D ◦ (UTΛkU)}UT;

6: Update Ψk+1 def
= soft(Bk+1 + ρ−1Lk, λn/ρ);

7: Update Lk+1 def
= Lk + ρ(Bk+1 −Ψk+1);

8: Update k = k + 1;
9: Repeat step 5 through step 8 until convergence.

Output: Ω̂ = Bk+1.

linearly to zero, as k →∞.

It remains to choose an appropriate tuning parameter for PIEy or PIEr.

Motivated by Efron et al. (2004), we use PIE to find a sparse model, but not

to estimate the coefficients. For a given λn, we fit a least squares estimation on

the support of Ω̂ estimated by PIEy or PIEr, which yields the residual sum of

squares. We choose λn that minimizes the Bayesian information criterion (BIC).

Our limited experience indicates that this procedure is very fast and effective.

2.4. Asymptotic properties

For notational clarity, we denote the support of Ω = (Ωk,l)p×p by S def
=

{(k, l) : Ωk,l 6= 0}, the complement of S by Sc, and the cardinality of S by

sp
def
= ‖Ω‖0. Similarly, we denote by Ŝy and Ŝr the respective support of Ω̂y and

Ω̂r, and by Ŝcy and Ŝcr the respective complement of Ŝy and Ŝr. We further define

Γ
def
= Σ⊗Σ, M

def
= ‖Γ−1S,S‖L, and κ

def
= 1−‖ΓSc,SΓ

−1
S,S‖L, where ΓS,S is a submatrix

of Γ with rows and columns indexed by S, and ΓSc,S is a submatrix of Γ with

rows and columns indexed respectively by Sc and S. Denote c0, C0, c1, C1, . . . as

a sequence of generic constants, which may take different values at various places.

We assume the following regularity conditions in order to study the asymptotic

properties of Ω̂y and Ω̂r.

(A1) Assume c−10 ≤ λmin(Σ) ≤ λmax(Σ) ≤ c0, where λmin(Σ) and λmax(Σ) are

the respective smallest and largest eigenvalues of Σ.

(A2) Assume Xk is sub-Gaussian; that is, E{exp(c0|eTx|2)} ≤ C0 < ∞, for any
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unit-length vector e.

(A3) Assume E{exp(c1|Y |α)} ≤ C1 <∞, for some 0 < α ≤ 2.

(A4) Assume the irrepresentability condition holds; that is, κ > 0.

(A5) Assume x is symmetric about u.

Conditions (A1) and (A2) are widely assumed in the literature. Condition (A3)

is assumed to control the tail behavior of Y through concentration inequalities.

Condition (A4) is analog, but not identical, to the irrepresentability condition

used to establish model selection consistency in the LASSO. In our context, the

irrepresentability condition is imposed on Γ
def
= Σ ⊗ Σ because the interaction

effects are included. This condition is also used to study the model consistency

of the graphical LASSO (Ravikumar et al. (2011); Zhang and Zou (2014); Liu

and Luo (2015)). In contrast, if the linear effects are of primary interest, the

irrepresentability condition is imposed on Σ; see, for example, Zhao and Yu

(2006) and Zou (2006). Condition (A5) is assumed to ensure the consistency of

residual-based approaches.

Theorem 1. Let λ1n
def
= c1{n−α/(α+1) log(p)}1/2 for sufficiently large c1, and

assume sp{n−1 log(p)}1/2 → 0. Under conditions (A1)–(A4),

(i) if we further assume min
(k,l)∈S

|Ωk,l| > c2Mλ1n for sufficiently large c2, then

pr
(
Ŝy = S

)
= 1−O(p−1).

(ii) pr
(
‖Ω̂y −Ω‖∞ ≤ c3λ1nM

)
= 1−O(p−1), for sufficiently large c3.

(iii) pr
(
‖Ω̂y −Ω‖F ≤ c4s1/2p λ1nM

)
= 1−O(p−1), for sufficiently large c4.

Theorem 1 shows that, as long as the signal strength of the interactions is

not too small, the proposed method can identify the support correctly with a

very high probability. In other words, Ω̂y is asymptotically selection consistent.

Theorem 1 also shows that Ω̂y is a consistent estimate of Ω under both the

infinity norm and the Frobenius norm.

Theorem 2. Let λ2n
def
= c5{n−α/(α+1) log(p)}1/2 + c5‖β̂ − β‖1{log(p)/n}1/2 for

sufficiently large c5, and assume that sp{n−1 log(p)}1/2 → 0. Under the condi-

tions (A1)–(A5),

(i) if we further assume min(k,l)∈S |Ωk,l| > c6Mλ2n for sufficiently large c6,

then pr
(
Ŝr = S

)
= 1−O(p−1).
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(ii) pr
(
‖Ω̂r −Ω‖∞ ≤ c7λ2nM

)
= 1−O(p−1), for sufficiently large c7.

(iii) pr
(
‖Ω̂r −Ω‖F ≤ c8s1/2p λ2nM

)
= 1−O(p−1), for sufficiently large c8.

Theorem 2 shows that Ω̂r, as well as Ω̂y, possesses both selection and estima-

tion consistency asymptotically. Moreover, the convergence rate of Ω̂r depends

on β̂. If ‖β̂ − β‖1 = o{n1/(2α+2)}, the convergence rate term involving β̂ will be

absorbed in the first term of Theorem 2. In other words, unless the estimation

error of β̂ diverges faster than n1/(2α+2), Ω̂r and Ω̂y share the same convergence

rate.

3. Simulations

In this section, we conduct simulations to evaluate the performance of our

proposed method and compare it with that of the RAMP method (Hao, Feng and

Zhang (2018)) and the all-pairs-LASSO (Bien, Taylor and Tibshirani (2013)),

which fits a LASSO model on all p main effects and p(p+ 1)/2 interactions. Hao,

Feng and Zhang (2018) claimed that the RAMP outperforms other methods, such

as the iFOR (Hao and Zhang (2014)) and hierNet (Bien, Taylor and Tibshirani

(2013)), under heredity assumptions. Therefore, we do not include iFOR and

hierNet in our comparison. In what follows, we refer to the RAMP method under

the strong heredity condition as “RAMPs,” and that under the weak heredity

condition as “RAMPw.” We also include the oracle estimate as a benchmark,

which assumes that the main effects and the support of the interactions are known

in advance. The oracle estimate simply fits the least squares estimation on the

support of the interactions using the truly important main effects. We denote it

as “Oracle.” The RAMP and all-pairs-LASSO methods are implemented by the

R packages “RAMP” and “glmnet,” (Friedman, Hastie and Tibshirani (2010))

respectively.

To ease illustration, we denote the estimate of Ω by Ω̂, obtained with different

approaches. We evaluate the accuracy of the estimation using five criteria: the

support recovery rate, denoted by “rate”; the Frobenius loss, denoted by “loss”;

the number of interactions estimated as nonzero, denoted by “size”; and the exact

support recovery rate, denoted by “exact.” Specifically, the criteria are defined

as follows:

rate
def
=
B−1

∑B
b=1

∑
l≤k I(Ω̂

(b)

k,l 6= 0,Ωk,l 6= 0)∑
l≤k I(Ωk,l 6= 0)

× 100%,
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loss
def
= B−1

B∑
b=1

‖Ω̂
(b)
−Ω‖F , size

def
= B−1

B∑
b=1

∑
l≤k

I(Ω̂
(b)

k,l 6= 0), and

exact
def
= B−1

B∑
b=1

I
(
Ŝ(b) = S

)
,

where S and Ŝ are the supports of Ω and Ω̂, respectively, the superscript (b)

stands for the bth replication, the subscript k,l stands for the (k, l)th entry of

the associated matrix, I(E) is an indicator function, equal to one if the random

event E is true, and zero otherwise. The closer “rate” is to one, “loss” is to zero,

“size” is to the number of truly important interactions, and “exact” is to one,

the better the performance a proposal exhibits.

We consider the following four models:

Y = X1 +X6 +X10 + 2X1X6 +X2
6 + 2X6X10 + ε, (3.1)

Y = X6 + 2X1X6 +X2
6 + 2X6X10 + ε, (3.2)

Y = X1 +X2 + 2X1X6 +X2
6 + 2X6X10 + ε, (3.3)

Y = 2X1X6 +X2
6 + 2X6X10 + ε. (3.4)

The strong heredity condition holds in (3.1), and the weak heredity condition

holds in (3.2). Neither the strong nor the weak heredity condition holds in (3.3)

or (3.4). In particular, (3.4) is a pure interaction model. We replicate each

scenario B = 100 times to evaluate the performance of the proposals.

3.1. Estimation accuracy

We draw x independently from N (0p×1,Σ), where Σ = (0.5|k−l|)p×p, and

generate an independent error ε from N (0, 1). We set the sample size n = 200

and the dimension p = 100 or 200.

The simulation results for models (3.2) and (3.4) are shown in Table 1; those

for models (3.1) and (3.3) are shown in Table 1 of the Supplementary Material.

The proposed method exhibits stable performance across almost all scenarios.

Not surprisingly, the RAMP method with the strong heredity condition, denoted

by RAMPs, completely fails in models (3.2)–(3.4), where the strong heredity con-

dition is violated. In addition, the RAMP method with weak heredity condition,

denoted by RAMPw, fails in models (3.3)–(3.4), where the weak heredity con-

dition is violated. The RAMP method exhibits satisfactory performance when

the required heredity condition is satisfied. In particular, RAMPs performs quite

well in model (3.1). For models (3.2)–(3.4), the oracle estimate has the smallest
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Table 1. The averages (and standard deviations) of the support recovery rate (“rate”),
Frobenius loss (“loss”), model size (“size”), and exact support recovery rate (“exact”)
for models (3.2) and (3.4). Simulation results for models (3.1) and (3.3) are given in the
Supplementary Material.

p PIEy PIEr RAMPs RAMPw all-pairs-LASSO Oracle

model (3.2) where the weak heredity condition is satisfied

100 rate 98.67(6.56) 99.33(4.69) 40.67(26.20) 91.33(27.88) 100.00(0.00) 100.00(0.00)

size 4.19(3.03) 3.73(2.11) 1.67( 1.51) 3.91( 3.39) 7.38(6.40) 3.00(0.00)

loss 0.24(0.20) 0.18(0.16) 1.81( 0.55) 0.30( 0.68) 0.41(0.11) 0.09(0.05)

exact 0.57(0.50) 0.70(0.46) 0.06( 0.24) 0.75( 0.43) 0.16(0.37) 1.00(0.00)

200 rate 99.00(5.71) 99.00(5.71) 29.67(23.16) 77.67(41.32) 100.00(0.00) 100.00(0.00)

size 3.99(2.44) 3.42(1.08) 1.12( 1.22) 4.09( 4.34) 6.08(4.59) 3.00(0.00)

loss 0.23(0.21) 0.19(0.19) 1.98( 0.40) 0.62( 0.97) 0.45(0.11) 0.09(0.04)

exact 0.65(0.48) 0.73(0.45) 0.03( 0.17) 0.68( 0.47) 0.29(0.46) 1.00(0.00)

model (3.4) is a pure interaction model where the heredity conditions are violated

100 rate 99.67(3.33) 100.00(0.00) 11.67(24.33) 31.67(44.79) 100.00(0.00) 100.00(0.00)

size 4.18(4.24) 4.24(4.22) 0.71( 1.58) 3.00( 4.92) 5.57(3.86) 3.00(0.00)

loss 0.13(0.12) 0.13(0.09) 2.11( 0.41) 1.64( 1.01) 0.42(0.11) 0.09(0.04)

exact 0.72(0.45) 0.72(0.45) 0.03( 0.17) 0.23( 0.42) 0.27(0.45) 1.00(0.00)

200 rate 100.00(0.00) 100.00(0.00) 9.67(20.26) 24.33(41.26) 100.00(0.00) 100.00(0.00)

size 3.45(1.00) 3.49(0.99) 0.51( 1.21) 2.95( 5.49) 5.46(5.27) 3.00(0.00)

loss 0.11(0.06) 0.12(0.07) 2.15( 0.21) 1.78( 0.91) 0.44(0.11) 0.09(0.04)

exact 0.72(0.45) 0.69(0.46) 0.00( 0.00) 0.18( 0.39) 0.45(0.50) 1.00(0.00)

Frobenius loss, followed by our proposed method. Our method outperforms the

all-pairs-LASSO in terms of the Frobenious loss and model size. For the pure

interaction model (3.4), where no main effects are present, fitting a linear regres-

sion to obtain the residuals very likely introduces some redundant bias. It is thus

not surprising to see that our proposed response-based procedure (PIEy) slightly

outperforms our residual-based procedure (PIEr).

3.2. Estimation of main effects

In this section, we evaluate how the estimation of the main effects affects

the estimation of the interactions. Both our proposed residual-based penalized

interaction estimation and the RAMP method are relevant to estimating the

main effects. To fix the signal-to-noise ratio for all settings, we simply draw

the covariates x = (X1, . . . , Xp)
T from N (0, Ip×p), and consider the following

quadratic model:

Y = d−1/2
(
X1 +X6 +X10 +Xk1 + · · ·+Xkd−3

)
+ 2X1X6 +X2

6 + 2X6X10 + ε.
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Figure 1. The vertical axis is the support recovery rate (left) and the Frobenius loss

(right) of Ω̂, and the horizontal axis is the number of main effects.

The number of main effects is increased from d = 3 to 48. We always include

X1, X6, and X10 to ensure that the strong heredity condition holds. We also

randomly choose Xk1 , . . . , Xkd−3
from X11, . . . , Xp. Figure 1 reports the support

recovery rate of Ω̂ and the Frobenius loss of ‖Ω̂−Ω‖F .

It can be clearly seen that, as the number of main effects increases from

d = 3 to 48, both RAMPs and RAMPw deteriorate gradually in terms of both

criteria, indicating that the RAMP method requires an accurate estimate of the

main effects. For the all-pairs-LASSO, the support recovery rate appears very

stable, while the Frobenius loss becomes worse when d increases. In contrast, our

method is very robust to the number of main effects. When the number of main

effects increases, PIEy is slightly better than PIEr in terms of the Frobenius loss.

These findings confirm our theoretical results in Theorem 2 because β̂ becomes

worse when d increases.

4. An Application

In this section, we apply our method to the red wine data set that is publicly

available at https://archive.ics.uci.edu/ml/datasets/Wine+Quality. The

data consist of 11 measurements of several chemical constituents, including the

determination of the density, alcohol, or pH values for 1,599 red wine samples

from the northwest region of Portugal. The response variable is the median of

the scores evaluated by human experts, and each score ranges from 0 (very bad)

https://archive.ics.uci.edu/ml/datasets/Wine+Quality
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to 10 (very excellent). The same data set was analyzed by Cortez et al. (2009).

In their analysis, interactions are found to be very helpful for prediction. The

sample size n = 1,599 and the covariate dimension p = 11. Following Radchenko

and James (2010), we standardize all variables and conduct two experiments:

• Experiment 1. In addition to the original 11 covariates X1, . . . , X11, we

add 100 noise variables X12, . . . , X111, among which the first 50 are gener-

ated from the standard normal distribution, and the rest are generated from

the uniform distribution on the interval [−
√

3,
√

3].

• Experiment 2. We generate the covariates in the same way as in Experi-

ment 1 and modify the response variable Y by adding two more interactions:

Y + 0.5X12X13 + 0.5X61X62. In this experiment, both the strong and the

weak heredity conditions are violated.

In both experiments the covariate dimension is updated to p = 111, leading to

111× 100/2 = 6,105 possible interactions. We randomly select 400 observations

as the sample, and the procedure is repeated 100 times. The heat map of the

frequencies of the identified interactions are summarized in Figure 2. It can be

clearly seen that, in Experiment 1, the selected interactions mainly occur among

the first 11 covariates collected in the original data set while the interactions

related to the remaining 100 noisy covariates are rarely detected. This indicates

that both PIEy and PIEr are able to exclude irrelevant interactions. In Ex-

periment 2, both methods are able to exclude irrelevant interactions with high

probability. In addition, the interactions X12X13 and X61X62 are successfully

identified throughout.

We further compare our proposed PIEy and PIEr with the all-pairs-LASSO

in terms of prediction. We randomly split the observations into two halves. We

use the first half as a training sample and the second as a test sample. We fit

quadratic regressions using the training sample and perform a prediction using

the test sample. To implement the PIEy and PIEr, we follow Example 1 and

generate 100 additional noise covariates. To implement the all-pairs-LASSO,

we use the original 11 covariates only. We record the averages of the squared

prediction errors for each random split. Table 2 summarizes the mean and stan-

dard deviation of the squared prediction errors and the model sizes based on 100

replications. Compared with the all-pairs-LASSO, which includes around seven

interactions, the PIEy and PIEr both include fewer than four interactions and

yield models that are more parsimonious. In terms of the prediction performance,

the PIEy and PIEr are both comparable with the all-pairs-LASSO method.
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Figure 2. Heat maps of the frequency of the interactions identified out of 100 replications
using PIEy and PIEr. Upper panel: Experiment 1. Lower panel: Experiment 2.

Table 2. The prediction performance on the red wine data set. The PIEy and the PIEr
are both fitted with 100 additional noise covariates, while the all-pairs-LASSO is fitted
with only 11 original covariates.

PIEy PIEr all-pairs-LASSO
prediction error 0.706(0.035) 0.702(0.034) 0.671(0.032)

model size 3.600(1.980) 3.640(1.580) 7.020(1.880)

5. Conclusion

In this paper, we have proposed a penalized estimation for detecting inter-

actions without requiring heredity conditions. We developed an efficient ADMM
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algorithm to implement our estimation, and demonstrated the effectiveness of

our method using numerical studies. Note that if the strong or the weak heredity

condition is satisfied, some existing methods, such as the RAMP method, may

work relatively well, as long as the main effects are sufficiently strong. However,

if the main effects are too weak to be detectable, the performance of existing

methods that require the heredity assumptions may deteriorate. Our proposed

method is highly robust to a violation of the heredity assumptions, because the

estimation of the interaction is separable from the estimation of the main effect.

Even with a lousy estimate of the main effects, we are still able to estimate the

interactions consistently. When we have little prior information about whether

the heredity condition holds in an application, we advocate using our method

because it does not require this assumption. If the heredity condition is known

to be satisfied, we can incorporate this into our method through a two-stage pro-

cedure. In the first stage, we use the penalized least squares to identify the main

effects. In the second stage, we implement our procedure using only the main

effects selected in the first stage. This allows us to handle ultrahigh-dimensional

problems efficiently. Moreover, it would be interesting to combine our proposed

method with screening procedures such as the SIRI (Jiang and Liu (2014)) in

order to further improve its estimation efficiency.

Supplementary Material

The online Supplementary Material contains the technical proofs and addi-

tional simulation results.
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