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S1 Proofs

In this section, we provide proofs for Lemma 1, Theorems 1 to 5, and

Corollary 1.

Proof of Lemma 1. It follows from the hierarchical models in (3.1) to (3.6),
we have
™ (7, 21V, X)

n

_ / T (V. 5) [T (Xl(L. D)) w2 (L. D))

i=1

X7 (By|y) m(v)m(2)dp,d(L, D)

(1) (2) / 7 (Y, 8) 7 (B ) B,
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< [ TI7 (XL D) a8 (L. DYL. D). (5L

First, note that by the conjugacy of the DAG-Wishart distribution, we
have

n

/ [T = (Xil(L, D) 782, (L, D))d(L, D)

i=1
29U+ XTX,n+ a(2))
29(U, (7)) ’

where z4(., .) is the normalized constant for the DAG-Wishart distribution.

Next, note that

/ w (Y, By) 7 (By ) dB,

x [ tem {0 - Xm0 - X))
1

2 _2\—1]|
X 20l e _
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n+|y 1 1 -1
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(o) % det (TXTX, + I)fé exp {—L (YT (In + TZXVXWTYI Y) } ’

202

(S1.2)
where the last term follows from the Woodbury matrix identity. Therefore,

by (S1.1), under the proposed hierarchical model and known o2, we have

7 (v,2|Y,X)

20U+ XTX,n+ a(2))

o (7|2)7(2) 29(U,a(2))

_1 1
< det (PXTX, + I,) " exp {_Tﬂ

(" (1 + 72X, x0) 7' Y) } ,
(S1.3)

where 24(+, ) is the normalized constant in the DAG-Wishart distribution.

[]

Proof of Theorem 1. It follows from Assumption 2, Assumption 3 and model

(3.6) that, for large enough n > N,

(7] 2)

(70| %) = exp (b (G = Go)n)

<exp (b70]*) < exp (o (logp/d*)) . (S1.4)

Let S = %X TX denote the sample covariance matrix of X. It follows from

(3.7), (S1.4), and Lemma 5.1 in Cao et al. (2019b) that

(70, 21Y, X)
W(VO: 90\Ya X)
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n+c;(20)—3

. . . ~ 2
< HMeXp (0 (10gp/d4)) (5—j> n? (\/%1—_61 ISZO’ 1 nte(2)=3

i= 721 (&
1 (Sipeuc))

q
21 PR(2, D). (SL.5)
=1

where Cz(@) = Oéz(@) — Vi(_@),ci(%)) = Oéi<.@0) — Vi(.@()), g =5 + %,

Silpai(2) = Sii — (S;_i)T(ggi)*lg_?],i, and M is some large enough constant.

Define the event E,, as

E”: {HS_EO”maxZC/VIO%}- (Sl6)

It follows from Lemma A.3 of Bickel and Levina (2008), Hanson-Wright in-
equality from Rudelson and Vershynin (2013) and the union-sum inequality,

there exists constants ¢’, my, mo, such that
— ~ lo ’
POW—&mmzd Jﬁ>§mm%wﬁﬂ%& (S1.7)
n

For all the following analyses, we will restrict ourselves to the event E°.
We now analyze the behavior of PR;(Z, %) under different scenarios

in a sequence of three lemmas (Lemmas 1-3). Recall that our goal is to find

an upper bound (independent of & and i) for PR;(Z, %), such that the

upper bound converges to 0 as n — oo.

Lemma 1. If pa;(2) D pa;(Z), then there exists Ny (not depending on

i or 9) such that for n > Ny we have PR;(2, %) < (Qp)f%(”"(’@)fw(%)),
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for any constant k > 1.

Proof of Lemma 1. Since pa;(2) D pa;(Zy), we can write |SZ'| = |S§gHRS§ :
0

Here R sz is the Schur complement of S gé, defined by R sz = D—-BT (S%;) B,

>t 1

2 and

for appropriate sub matrices B and D of ggz Since 552 > (%)

N1
R;l is a principal submatrix of (S ;Z) , the largest eigenvalue of R;Z is
20 20

bounded above by 3. Therefore,

gzi 3 vi(D)—vi(%0)
|~f§| = |RL,|'? < (,/ﬁ> . (S1.8)
1551 20 0

Denote Sjig, = Sj; — (55.,)7(557)71S7.,. It immediately follows that

Silpai(2) 2= Silpai(7)- (51.9)

Since we are restricting ourselves to the event E¢, it follows from (51.6)

that

i i log p
152! — (Z0)Z: |l 22) < (i(Zo) + 1) -

Therefore,

1(82)7" = ((Z0)Z) e

:||(S§§)_1||(2,2)||S§§ - (20)23”(2,2)||((20)§z)_1”(2,2)

iN— iN— 1 , [logp
<(ISZN ™ = ((Z0)2) e + g)(’/z‘(@o) +1)c m (S1.10)

1For matrices A and B, we say A > B if A — B is positive semi-definite
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Recall d = maxi<i<p—1v(%). By the assumption that d 10% — 0 and

(S1.10), for large enough n, we have

iy— i 4det - [logp
1(SZ) ™ = ((Z0)z) o) < gd\/ = o(1) (S1.11)

and
1

Si|Pai (%0)

— [(s2)7], > %0 (S1.12)
Note that for any 2, ||§§Z — S lmax < %2 gives us ||§§; - S§é||(2,2) <

(vi(%) + 1)%2. Therefore,
1655) ™" = (55) ' ll22)

=152 MeallSz — Saillenll(S20) e

<ON83)" = (530 lear + ISE) ™ = (S3) sy + =) X (= + o(1)
x (pai(Zo) + 1)52 (S1.13)

E.
Following from (S1.11), (S1.12), and ¢ — 0, for large enough n, (S1.13)

yields

Lo , 8do d 1 ~si €
>iN—1 _ (g>iy—1 2 _ >0\ —1 0
I35 = (S50 o < 5 and 5—— = [(8597], > - (5119

Hence, it follow from (S1.14) and (S1.12) that,

1 1

Si|pai(@0) Silpai(go)

< 802 (S1.15)

2
€ n

and

5 d
|Silpa:(20) = Silpai(z0)| < S (S51.16)
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where ¢; = 644, /¢€; is a constant.
Further note that when pa;(%) C pai(2), (D)5 Sitpai(2) ~ X2
and n(Dy);'S; ilpas (%) = n(DO) s, ilpas (2 @XV () —vi(Z0) under the true model.

By Lemma 4.1 in (Cao et al., 2019a), we get

P [‘n(DO)i_ilSi‘pai(Q) —(n— 1/2(@))‘ > \/(n —vi(2))logp| < 2p_é — 0,

(S1.17)
and
P[ (Do) S i) — (Do) gty — (4(2) — (70))]
> \/ (vi(2) — vi(Dp)) logp
<2p7F — 0, (S1.18)

Following from (S1.8), (S1.9), (S1.14), (S1.16), (S1.17), (S1.18), and As-

sumption 4, for larger enough n > N; and some constant M’, we have
PR(2, %)

d
02\ 2 D —v,
< exp (o o/ ) (52 ) 0
n+c—3

x [ 1+ (Do) Sjipai(2) — M(Do)is Sipasa0) T oy \
n(Do)3i" Sitpai(2)

d

<M'exp (o (logp/d")) (%) e (gpre

< exp { vi(2D) = vi(Do) + Vi D) — vi(Do) logp + 1 iy + ¢ — 3}
n—vi(2)—/(n—vi(2))logp 2
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< (Qp)f%(w(@)f'”(%)) , for any constant x > 1. (S1.19)
The second inequality follows from 1— — 0 and 42 0, as n = oo and
3 < (Do)a < -

Lemma 2. If pa;(2) C pa;(Z), then there exists Ny (not depending on i

or 2) such that for n > Ny we have PR;(Z, %) < pontd,

Proof of Lemma 2. Now we move to discuss the scenario when pa;(2) is
a subset of pa;(%), i.e., pa;(2) C pa;(Py). Since pa;(Py) D pa;(Z), we

can write |§§ = |SZ'||Rs 52 , where Rg > denotes the Schur complement of

5%1;7 defined by Rg>i = D — BT(Sgi)_lB for appropriate sub matrices B
2 ,
and D of S*;;

It follows by (S1.10) that if restrict to E¢, we have |[(SZ)) ™1 —((S0)71) | 22) <

ac logp - 1
- dy/ =22 and HRS R(2 2

22) < ‘tc d 1"%, for n > Nj, where R

represents the Schur complement of (20)7 defined by Rz = D —
2

BT ((20)7')"'B for appropriate sub matrices B and D of (Zo)gé. Hence,

there exists NV} such that

o L
SEN 1 1
521) TiRLE S i
Z 1 d /o
7 (/\min (R > );z) - K% %)

M

1
<|—= ;. .
< (60/2> for n > N (S1.20)
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Since pa;(2) C pa;(%y), we get S'“pai(%) < S‘i‘pai(@).
Let Ky =4 /e3. By (S1.5) and 2 < ¢;(2),¢;(%0) < ¢, it follows that there

exists V)’ such that for n > N’ we get

PR{(2, %)

d vi(20)—vi(2) 1 K.d logp
02\2 o 2n  _ (Z0)i1pa
<M'exp (o (logp/d*)) (5) n’ <\/—5 —4 1) ey *
1 2€0 1 — Kyd logp

(Z0)ilpa;(20)

2log M’ + o (log p/d*) + dlog ( 20, ) + 4clogn .\ Nog(q~/n) (vi( D) — vi(D))

<
< exp n—1 n—1
_n=1
(et — ) — 2K, d, /82
“1a (X0)ijpa;(29)  (20)ijpa;(2) (S1.21)
Sy T H1dy
ilpa;(2) "

It then follows from Proposition 5.2 in Cao et al. (2019b) that,

PR,(2, %)

2log M’ + o (log p/d*) + dlog ( 22 ) + 4clogn 2log(pa1\/ﬁ) (vi( Do) — v4(D))

<|le
= | P n—1 n—1

€052 (vi(Do) — vi(2)) — 2K, d IOnﬂ
< 1+ . (S1.22)
2/60

dy/ e .
Note that % — 0 and Y52 — 0asn — oo. Since e* < 1+ 2z

n n

for x < %, there exists NJ” such that for n > NJ"

€05 (i(Z0) — vi(2)) — 2K, d logp €0s>
2/60 - 2 ’
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and
92
. 2log M' + o (log p/d*) + dlog (30—51> + 4clogn . 2log(p® /1) (v(%o) — (D))
X
P n—1 n—1
262

<1 0 n
<1+ 3

It follows by (S1.21) and the above arguments that

n—1

1+ B2\ 7
PR(2, Ty < (i>

G .2
1+Z‘Sn

for n > max(Ny}, NJ', N}, NJ”'). Since there exist a (Lg);; such that s2 <

(Lo)}i < (K(LDO[?{?P) < (Qfo)” < & and e§s2 < 1, it follows that there exists
7 0

Ny = max(N5, N, NJ', NJ") such that for n > N, such that

dlogp _, ), as n — o0. ]
ns2

The last inequality follows from

Lemma 3. If pa;(2) is not necessarily a superset or a subset of pa;(Zy),

i.e. pai(Po) # pai(D), pai(Zo) € pai(D), and pai(Zo) P pai(D), then

there exists N3 (not depending on i or Z) such that for n > N3 we have

PR(D, ) < (2p)” =+ "D,

Proof of Lemma 3. Next consider the scenario when pa;(¥) is not neces-

sarily a superset or a subset of pa;(%), i.e. pa;(Zy) # pai,(2), pa;(Zy) €
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pa;(2), and pa;(Py) D pai(2). Let Z* be an arbitrary DAG with pa;(2*) =
pa;(2) N pa;(Zy). Immediately we get pa;(2*) C pa;(Zy) and pa;(2*) C

pa;(2). 1t follows from (S1.5) that

PR,(2, %)
n+c;(2%)-3
d vi(2)=vi(7*)  ssi1 (S
0\ 2 02 g 551 ( 1‘1”‘“(9*))
<M logp/d)) [ =) n* |/ ——— =
<V exp (O(ng/ )) <51> n < nl—gq ‘S;Z% - nt(2)-3
(Si\pai@))
n+c;(99)—3
vi( 7)) i) | x>ii1 (&
X - —_—— —— =
o) " \VnT=y¢ S D=

Silpai(2+)

Note that pa;(2*) C pa;(2). It follows from (51.19) that

PR(2,7") < (2p)7a71(”(@)7”i(9*)) , for any constant x > 1 and n > Nj.
(S1.25)

Following from (S1.23) and the fact that pa;(2*) C pa;(Z), we have

2 d

PR{(2,2*) <p = ¢, for n > Ns. (51.26)
By (S1.24) and v;(2*) < d, we get
PR(Z,9") < (2p)” #7770 =5k
< (2p)_%”(% ,for n > N3 = max{Ny, Ny }. (S1.27)

O
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The proof of Theorem 1 immediately follows after these three lemmas.
For any & # %, there exists at least one 1 < i < p — 1, such that
pai(2) # pai(Z). It follows from Lemmas 1-3 that, for large enough

n > N3, under the true variable indicator =g,

(v, 2|Y, X) p
0 . S1.28
Deo w v, DolY, X) T (51.28)

Proof of Theorem 2. Now for the fixed & case, it follows from Lemma 1

and model (3.6) that
(1, 2lY, X)
_exp (—al™y + 07" Gy) det (PXTX, + 1))
exp (—al®yo + byg GYo) get (T2 XL X0 + L))
exp { s (V7 (14 72X,x7) ')
exp { otz (¥7 (1 +72X,x7) ') }

1
2

[SIE

X

(S1.29)

NI

For any model v presenting the variable space, denote @), = det (TQX,? X, + 1 hl)_ ,

Py = XW(X;FXW)AXE,F?
R =Y" (L, + X, X7) 'Y and R, = Y" (I, - P,) Y.

Our method of proving variable selection consistency involves utilizing prop-

erties of R, and approximating R’ and R with R, and R,, respectively.
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Using the Woodbury matrix identity, we have
Ry =Y (I + 72X, X0) 7Y =T (1= X (L7 + X5 X,,) T XD ) Y.
Note that for 1 <1 < p,

* -1 -1
Ry =Y (L + 72X, X0) 7Y =T (1= X (L/72 + X5 X,,) 7 X0 ) Y
and Ry, = Y7 (I, = X, (X7X,) " X7) Y. It follows that

R:, — Ry >0 (S1.30)

and

R”;o - R”VO
_1 _ —1 _1
—Y X (X X,) (]n — (L, + (X2 X)) /7) >(X7TO X)) iXTY

T

PWO 2 Y 0
Note that — ~ X | and —— ol

o2

Tp. Y BEXT X, Bo
~ Y2 20207 ) - Here we denote

X2, as the centered chi-squared distribution with degrees of freedom m >
0 and X2 (\) as the noncentral chi-squared distribution with noncentral

parameter . It follows from Lemmas 4.1 and 4.2 in Cao et al. (2019a), and

Assumption 2 that

R
PH = (n=ol)| > V(n — ol logp| <2075 =0, asn - oo,

(S1.32)
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and
Pl—F=- (hol 4 B0 XXl 7050) > nlogp — | — L0l 3 wh
o o? o
70| } nlogp nlogp
< Pty el o F
PN T2 | e 8| T A
o2 o2
1
<exp {_M {LPT}} = exp {—c’\/logp} — 0, asn — oo.
4 20260 50

(S1.33)

Further note that,

R: = Ry =YTX,(XTX,)"> (In — (I + (X;FXV)*/#)‘I) (XTX,) "5 X7y

o

—YTP Y. S1.34
€ + 2n72 ( )

In the case when all the active elements of the true model vy are contained

in model v, it follows that 220 ~ X%v\—hol‘ Again, by Lemma 4.1 in Cao

et al. (2019a), it follows that

YT(P, — P,)Y
P{[FHEZ R (1= | > VIR Pl o]
<2 F =0, (S1.35)
and
R, R
PH%—(IVI—IW )| > /(1] = ol) logp}

<op7F — 0, (S1.36)
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as n — oo. Hence, by (S1.29), (S1.31), (51.33), (S1.36) and R} — R, > 0,

we have

exp (" (r+ 725, X0 1Y) }

exp (vr(1+72x,x7) 7'y ) |

{-5
{-s
oo {g )
o
o

| /\
’U

1 1
— +—  Y'P Y| -
202 <( 1+ neyr?/2 o > RV) }

1
1 ——nl .
(11 bl + VIRT= Tl Togp + ez gmlogn ) |

(S1.37)
Next, note that it follows from v D 7, Assumption 2 and the arguments

leading up to (S1.8) that for large enough n (not depending on v, 2),

Therefore, it follows from Assumption 3, v D 7o, (S1.29) and (S1.37)

that, for large enough n > Ny,
™ (v, 21Y, X)
m (’70a @|Y’ X)
—1
exp (—alT'y + bWTGW) Q. P {—# <YT (I + TZX—YXWT) Y)}
exp (—al®yo + 635 G70) Qro exp {‘L (YT (I + 72X, XL) Y) }

[vI=lvol

<exp{ "Y| |’70|) +bR721} (72) :

1 1
x L (. oDl -
exp{w (Iv| 7ol + /(171 = [10]) log p + T ner?/a” ng)}

«
<exp { == (7] = ol) log p} - (S1.38)
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Next, when v C 7, Let Z be a standard normal distribution. When v C 7y,
it follows from Lemma L.1 in Cao et al. (2019a), Assumption 2 and the

relation between noncentral chi-squared and normal distribution that,

- R
P (}%—270 < 4|70]10gn10gp>
o

<P ((Z — V)2 < 4]y 1ognlogp>

_ neglole?
<e 12 — 0, asn — 0. (S1.39)
: B0T (XTI Py Xy ) o > .
where p; = minje,, |fo;| and A = = ( 200 o) > neo!;yQo\pl 1t again

follows from (S1.29), (S1.31), (S1.39) and R} — R, > 0, with probability
tending to 1, we have
o (77150 )
o {35 (7 (1%, 0) 1)}
1 * *
exp _ﬁ<RV — R’YO)
L R R, + L YTP Y
eXp T2 y T + negr2/2 Yo

1
<exp {—4]70] log nlogp + mnlng} . (S1.40)

IN

Next, note that it follows from v C vy, Assumption 2 and the arguments

leading up to (S1.20) that for large enough n (not depending on v, 2),
[vol =1l

3—7 < -t (601/2> . Therefore, it follows from 72 ~ /Iogp, a ~
70

logp, v C 7, (S1.29) and (S1.40) that, for large enough n > Nj, with
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probability tending to 1,
(v, 2|Y, X)
™ (70, 2|Y, X)
exp (—alTy + 7/ TGy) Q, ©XP {—# <YT (I+ TQXVX;F)_l Y)}
ol g Qe [ (v7 (172, X0) V)

Ivol=Ivl
2

7ol 1
< 2 —_
—eXp{a’70|}n (60/2)

1
X exp {—4\70| lognlogp + mnlogp}

<exp {—2[70[log p} . (S1.41)

Next, consider the scenario when v € 7y and v 2 7. Denote 7/ = v N 7.

It follows from (S1.29) that

(v, 2]Y, X)
(70,9|Y,X)
(v, 21V, X) 7 (v, 2|V, X)
Y, -@IKX)W(%,@IY X)

_1(712) Q exp{ (YT ([—I—T2X XT Y)}
r12) 0y exp {—2— (YT (1+72x,X7) 'Y}
(712) @, e { =5 (YT (14 72X, X2) Y ) |
m( | ) Qvo exp {_ﬁ (7 (1+2x,,x2) 'y ) |

Since v/ C v and v C 7, following the same arguments leading up to

™
™
7T
7T

(S1.42)

X

(51.38) and (S1.41), we have for large enough n > max{N,, N5}, with

probability tending to 1,

7 (v, 2|Y, X)
T (70, 2|V, X)
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(6]
<exp {~=2(1n] — 7)) logp | exp {~2}y0| log p}
(6]
<exp { = (7] = [7/]) logp — 200l log p | (81.43)

Theorem 2 immediately follows after (S1.38), (S1.41) and (S1.43). For any

v # 7o, for large enough n > max{N,, N5}, we have

(1, 21Y, X) P
max ——————— — 0, asn — oc. S1.44
(v, 2)#(70,%0) 7T(F}/Oa -@‘Ya X) ( )
]
Proof of Theorem 4. We have
1—7(y,2|Y,X)
(Y0, 21Y, X)
2t "0 2ol X)
DY, X 9|V, X 21V, X
> 77 @O”Y X>> t 2 77:((30 @”Y X)> s f(ff @’rY X>>'
T R Z7 5 0, 974 10O
(S1.45)

Note that it follows from the proof of Theorem 2 that for large enough

constant N > max{Ny, N5},

Z (v, ZolY, X)
S (70, Z0|Y, X)
W(W/v-@O‘YvX) W<7790‘Y7X) 7T-(’77-@0|Y2‘XP>
< + +
; (Y0, Zo|Y, X) Z W(VOaQOIYaX) mz;zw (Y0, 20|, X)

7ol

<3 () e {=Stholtosn} + S (7Y esp (ool - b ey

Ivl= IvI=lol+1
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Rn
P Q
3 (7)) e {= 2001 = 1 togp — 2huliog ).

lv|=1

Further note that the upper bound of the binomial coefficient satisfies (z) <

p¥, for any 1 < k < p. It follows that when a; > 2k for some x > 1,

— 0, asn— oo. (S1.46)

Z 71—(77 -@0|Y7 X)
(%0, ZolY, X)

Y#Y0

Next, it follows from Lemmas 1-3 that if we restrict to Ef, then for large

enough constant N > N3, we have

s 0,9Y,X
)3 (0, Z21Y, X)

-1
< pz: S (10, 21, X)
=1 pa;(7)#pa;(Zo) (Y0, Z0|Y, X)

1

J
S (0, 21V, X) > (%, 2|V, X)
(Y0, Zo|Y, X) (Y0, Zo|Y, X)

=1 *pa;j(2)Cpa;(Zo) pa;(2)Dpaj(%o)

7T(707@|Y7X)>
(70, ZolY, X)

p—1 ,vj(%)-1 R,
V'(@o)) 20 ( p—vj(%) > — %L (1(D) i (@
< J K d-'— J 2 P ( l( ) 1( 0))
= ( 2 ( 7| )" 2 @) wyian) @

’ ]‘ vi(2)=v;j(%o)+1
Ry,
p —Luy(2)
+ > (w( 9)) (2p) ) (S1.47)

Again it follows from (i) < p¥, for any 1 < k < p that when o; > 2k for

some K > 1,

7T(),@Y,X
3 (%0, 21Y, X)

— 0, asn — 0. S1.48
70, Z0lY. X) (5149

D+Dy
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Finally, by (S1.46) and (S1.48), note that

(v, 21Y, X w(v, 2|Y, X (v, 2|Y, X
Z (v, 2| )<Z (v, 2| )Z (v | )

775701@7&@0 7T<f>/07 ‘@0|Y7 X) - '775')/0 7T(’)/07 ‘@|Y7 X) @¢@0 7.‘-(’}/07 ‘@0‘}/7 X)

— 0, asn— oo. (S1.49)

Therefore, following from (S1.45), (S1.46), (S1.48) and (S1.49), we have
(Y0, Z0lY) — 1, as n — oo, which completes our proof of the strong

model selection result in Theorem 4. OJ

Proof of Corollary 1. Note that with the extra layer of inverse gamma dis-
tribution on 02, by integrating out % in the proof of Lemma 1, the (marginal)

joint posterior distribution is given by

™ (v, 21Y, X)

= [ 7 (13) T 7 (Kl D) 785 (2. D)

=1

x 7 (By|y) ()7 (2)7(0)dB,d(L, D)d(?)

20(U+ XTX,n+ a(92))
29U, a(2))

x(7|2)n(2) Q,

1 T 2 7\~ 1 ~(5 o)
< (5 <Y (I +72X,X7) Y) +by , (S1.50)

N

where Q, = det (7?XTX, +I},)) *. The proofs for Lemmas 1-3 will go

through with the new posterior. For the variable selection consistency, it
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follows from (S1.50) that,
7 (v, 21Y, X)
T (70, 21Y, X)
_exp (—al™y + "'Gy) Q,
~exp (—alTvy + byl Gyo) Q-
(2 4ag)
(; (YT (I +72X,x7) " ) +b0> 2

—(%+ao)

(- (YT (I +72X,,X7)"" Y) n bo)

1

2

_exp (—al"y +07'Gy) Q, ( R+ 2by )_(TQLMO)
exp (—alTvo + byg Gyo) @y \ 123, + 2bo

(S1.51)

It follows from the arguments leading up to (S1.41) and 1+ x < e” that

when v D vy, we have

(v, 2]Y, X)
™ (0, 2|V, X)
R: — R:\ 2t
<exp {—a(]9] = [rol) + bR} (nr2e) ™ (HM)

[7I=lvol
2

<exp {—a(|[y| = |ol) +bR:} (%)

(3 +a0) (1 = hol + V(DT = o) Togp + s log)

X exp
n—|v] —+/(n—|y|)logp + 2bo

(6%
<exp {—fw ~ ol logp} (S1.52)

Next, when v C 7, it follows by the arguments leading up to (S1.41) and

1 — 2 < e " that,

(v, 2|Y, X)
™ (707 .@lY, X)

_exp (—alTy + 07" Gy) (nr2ep) B! (1 R -R, ) 2
exp (—alT~y + by Gyo) R + 2bg
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vol=1l
2

5 1
< exp {alol}n'® (7)

(2 + ao) (—4|70| logp + mnlogp>

n =y + (= )logp + Y TRY + 2b

X exp

<exp {(—2[ro|logp)} - (51.53)

When v € 7 and v 2 7o, the exact same results as the previous case with-
out the inverse gamma prior can be obtained by following the arguments
leading up to (S1.43). Similarly, Corollary 1 can be acquired from the same

arguments leading up to (S1.49). O

Proof of Theorem 5. We start proving Theorem 5 by considering the ratio
between posterior ratios under two settings corresponding to b > 0 and
b = 0 respectively. Specifically, let m (v, Z|Y, X) represent the posterior
probability under b > 0 and (v, Z2|Y, X) represent the posterior proba-

bility under b = 0. It follows from (S1.29) that

1 (7,20|Y,X)
©1(v0,20|Y,X) T T
moavn = eP{r Goy =7 Gow}- (S1.54)

m2(70,%0|Y,X)

Note that by Condition 1, for any v, v/ Gyy = > 1<ij<p(Go)ijviv; will be

maximized at v = 7. Therefore, for any v, we have

1 (%-%MX) < T2 (%90|Y7X)
1 (Y0, Z0|Y, X) ~ w2 (Y0, Z0|Y, X)

(S1.55)

In addition, over all possible scenarios of v, there exists at least one v #
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7o such that v"Goyy < +I'Gyyo and % is strictly smaller than

% Hence, it follows from (S1.55) that

T (V,@0|Y7X) UP] (%90|Y7X)
< , S1.56
Z 1 (70790’}/7)() Z T (70,-@0|Y>X) ( )

Y#Y0 Y#Y0

which is equivalent to

L —m (90, 2|Y, X) 1—m2(v,%|Y,X)

S1.57
(1 (707@0|Y7X) () (’70;-@0|KX) ( )

Therefore, we have

™ (’}/0, .@()lY, X) > Ty (")/0, .@[)IY,X) .
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