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In this document, we present the detailed proofs of Theorems 1-5, and additional simula-

tion studies.

S1 Proofs of Theorems 1-5

S1.1 Proof of Theorem 1

Theorem 1 can be proved in a similar way to prove Theorem 2. We omit
the details. 0J

We list a lemma needed for proving Theorem 2.

Lemma 1. Assuming that Conditions (C1)-(C5) hold, under local alter-
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native (4.3), we have

VB, —B) = %2—1 En:g)? + XTE{XD(X,T)} + 0,(1).

Proof . By the definition of S;(¢,h),j = 0,1, 2, the law of large numbers
and Conditions (C4)—(C5), we can show that Sy(¢, h) = fi(t)+0,(1), S1(t, h) =
h2fl(t) [ 22K (z)dz + o,(h2), and Sa(t,h) = h2fi(t) [ 22K (2)dz + o,(h3).

Further we can prove that

Jin(t) = 1/ninKh(t = T5)/fi(t) + 0p(1) = E(X[T' = 1) + 0,(1) (SL.1)
and

Gon(t) = 1/%2n:5/jf<h(t =15/ 1i(t) + 0,(1) = E(Y|T = ) + 0p(1). (S1.2)

=1
Thus it is easy to derive that
1/nZ{X Gin(TOHX: = ua(T1)} T = 2+ 0,(1).
This, together with the definition of Bn, yields
Vit — B) = £ Ay + 0,(1), (S1.3)

where A, = 1/vn Y1 {Xi — gin( 1)}[3/ Gon(T) = {Xi = gun(TH)} T B

For A,,, we can decompose it into three parts:

4, = %;z[m—gxm}—{Xi—gm}%
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7 77 22 52T = () + {ano(T) = (T 5
Z{m = g1n(T)} [ {5 = 020 (T)} = £ = (1)} 7]

= Anl + Ang + Ang. (814)

Note that under Hy, as shown in (4.3), we have {V; — g2(T3)} — X8 =

5i+1/\/ﬁl3(Xi, T;), fori =1,...,n. It follows from the law of large numbers
that

Ay = zn: £ X; + B{XD(X,T)} + 0,(1).

\/ﬁ =1

For A,», recalling that

Gin(t ZX Kn(t —Tj)/ fe(t) + 0,(1),

G2n(t) ZYKh Tj)/ fu(t) + 0p(1),
we have the following decomposition:
Aw = —3/22X Z |92(T5) = Y5+ {X; = 2(T))} B| (T, = T3)/ f(T2)
_3/22X Z {9:1(T)) = u (1)} BEW(T; — T)/ £u(T5)

+n*3/2zxiz {9a(T) = ga(T3) Y (T = T3)/ £i(T3) + 0, (1)

= Al +A[ +A[2+op(1)

We can prove AE{{Z = 0,(1), j=1,2,3, by proving their second moments
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converging to zero. So we have
Ao = 0p(1). (S1.5)

Furthermore, using the similar method in Wang and Sun| (2007), we can

prove that

An3 = Op(l). (Sl6>
From (S1.3))—(S1.6]), we can obtain

Vilhy - 8) === X, +='E {Xﬁ(x, T)} +o,(1).  (SL7)

A=

Then Lemma [1] is proved. O

S1.2 Proof of Theorem 2

For any measurable function Y(X, U, W, u), let E{T(X,U,w,u)} = E{Y(X, U, W, u)|W

w} for w € SPTL. By the definition of M,, ,.,(u, W), for any given nuisance

parameter W = w € SP*!, we have
Magrots) = =32 [V (X 8] 10w < 0
1 n
= %Z {Yz‘ - Xl—l—/B - Q(Ti)}I(UiTw < U)
ZXTB B (U w < u)

\/1_2{9 }I w<u
= Bui(u,w) + Bpo(u,w) + Bps(u, w).
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For model (4.3), it is easy to prove that
B (u,w) = \/_Zaz I(Uw <u)+ E{D(X,T)I(UTw < u)} + 0,(1)

and

1 =
Bup(u,w) = ——=B{XTI(UTw <u)}") &X,

NG

—E{XTI({U w < u)}X'E{XD(X,T)} + 0,(1).
For Bs(u,w), we can divide it into

Bus(u,w) = \/—Z[ — {920 (T3) — 910 (T5) 571}} I(U w < u)
= f Z — {Gon(T) = Gun(T)TBY] 1(UT w < )

=: Bn371(u, U)) -+ Bn372(u, w) + Bn373(u, ’LU) (818)

For B3 1(u,w), it follows from (S1.1))— (S1.2)) that

Bn3,1(u7 w)

n 303 {a(T) Yy + X[ B} (T~ T)IU] w < )/ fi(T) +0,(1)

i=1 j=1

73 {0(T) = Y5+ X BY KT = T)IHUTw < w)/f(T)

11]1

n7 3D S (o(T) — (T3} T = T w < )/ 4T + 0,(1)

Bl

1]

3,1

=1 j=1
(u, w) + Bfé,lw, w) + 0,(1).
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For the first term Bg’l(u, w), we have

Bl (w) = —n R3S e (T~ T U w < )/ (T
i=1 ] 1
‘2ZZD o T KW (T — T LU w < )/ filT)
i=1 j=1

1,1 1,2
= B?E:‘},:E(U’? w) - B?ES,:E(UW w)

For the first term, it can be proved that

n

Bii(ww) = =023 "N Ky(T — THI(U w < )/ f(T5)

jl =1

- \/_Z@E{I (UTw < u)|Ti} + 0p(1).

For the second term, we can validate that

n

Biiluw) = —ZI Tw < w)/ fA(T) {1/ (nha) 3 DXL TYE((T; = T,)/h) }

_ —ZI Tw < w)E{D(X,T)|T;} + o,(1)

= E[[(UTw < wWE{D(X,T)|T}] + 0,(1).
Therefore we have
B | (u,w) = —% isE {I(UTw < w)|T}—E [I(UTw < w)E{D(X, T)|T}] +0,(1).
For Bg’l(u, w), we have

B2 (uw) = —3/221 Tw < u)/ f(T; Z{g T)}YEW(T, — Tj)

n Z (U7 w < w)/f(T) S (T = T))g (T Kn(Ts — T)) + 0,(1)

J=1
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= % ZI(Ufw < u)/ft<Ti>E{(Ti — T)g'(T)Ku(T; — T)m} +0,(1).

By some tedious proof, we can validate that B%’l(u,w) = 0,(y/nh?) =

0p(1) by Condition (C5). Thus, it yields

Bpsi(u,w) = —%ZsiE{](Ungu)m}

-E [[(Z&Tw < wWE{D(X,T)|[T}] + 0,(1). (S1.9)

In the following, we consider Byss(u,w) and B,ss(u,w). Following the
result of Theorem 6 in Masry| (1996)), we have that sup, |§1.(t) — ¢1(¢)| =
Op((nh,)~Y?) 4+ Op(h?). Further note that even under Hi, as shown in
(4.3), v/n(B,—fB) = Op(1). Then by the law of large numbers and Condition

(C5), it is easy to prove that

Busa(u,w) = —Z{gm D) — (T} LU w <u)vn(B, - B)

and

Busa(u,w) = E{gi(T) I({UTw < u)}v/n(B, = 8) + 0,(1)
= =B{o(T)THUTw < w)s Z)?
+E{g(T) " I(UTw < u)}S'E{XD(X,T)}

+o,(1). (S1.11)
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Therefore by (S1.8)— (S1.11]), we have

Bualuw) = —Z=B{on(1) 10w < )2 3 sk,

_% ggiE{I(UTw < w)|T})
+E{g(T) " I(UTw < u)}S'E{XD(X,T)}

—E{I(UTw < wE{D(X,T)|T}} + 0,(1).
So we have the following expression for M, ,.(u, w),

My o, w) = % Sl (U w < w) ~ B{IUTw < w|T)

—%F(u, w)n i i X; — D(u, w)S"E{XD(X,T)}

+E{D(X, V(U w < u)} + o0p(1).

Let My](ﬂ,w) = I(a'w < u). It is easy to see that My](ﬂ, w) is mono-

tone with respect to u. By Lemma 9.10 of Kosorok (2008)), the function

class {Ml[bl](ﬂ, w) : u € R} is a VC-class. Let Ml[?](ﬂ, w) = BE{I(UTw <
w)|T,W = w}. Then similarly the function classes {ME} (@,w) : u € R}

and {T'(u,w) : u € R'} are both VC-classes. By Lemma 2.6.8 of [van der|

|Vaart and Wellner| (I1996I), the function classes {EMQ[L” (@,w) : u € R},

{eMP(@,w) : uw € R}, and the class {T'(u,w)S'eX : u € R'} are al-

1 VC-class. Then by Lemma 9.17 of Kosorok (2008), the function class

{U,(4,7,e,w) : u € R'} is a VC-class. We can take the envelop function as

le| +E(|| X7 ||)|e|= 7 X]|. By Theorem 2.6.7 and Theorem 2.5.2 of
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Vaart and Wellner| (1996), we can prove that for given W = w, the estimat-
ed empirical process M, ,ro(u, w) converges weakly to M,,,(u, w) + Q(u, w)
in the Skorohod space S[—o00,00]. It can further be obtained the result
that M, pro(u, w) converges weakly to M,,,(u, w)+Q(u, w) in the Skorohod
space S[II] by the fact that W is independent of (X, Y, T, ¢) and follows the
uniform distribution on the unit ball in RP*!. By the continuous mapping

theorem, we can prove the result for 7, . O

S1.3 Proof of Theorem 3

Under the local alternative (4.4), we have

V(B — B) = %21 >+ Vs TB{RDX, )} + 0,(1).

By a similar method to prove the results of Theorem 2, we can validate

that for any given W = w,

1 n
]\4717]7,‘0(11/7 ’LU) = % Z \Iju(Uz; }/;7 Eis w) + \/EQ(UW 'l,U) + Op(]‘)‘
i=1

As n — 00, vnQ(u,w) — oo for any u € RY. Thus M, ..(u,w) — oo as

n — 00. The result of Theorem 3 follows. O

S1.4 Proof of Theorem 4

The proof of Theorem 4 is similar to that of Theorem 3. We omit the

details. O
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S1.5 Proof of Theorem 5

We only prove the result under alternative hypothesis (4.4). By assuming
the deviation function D(X,T) = 0, the result under the null hypothesis
(1.1) can be proved similarly and the details are omitted.

Let B = [ {Xi—g1n(TH) HXi =1 (T)} 171 i { Xi—un(T) Y7 —
35(T)}, where Y, = X[ B+ 4u(T3) + [Yi = { X[ B + 4u(T1)}]V; and

{Sa(t, h) — Si(t, h)(T; — ) K (t — T3)Y7
Z So(t, h)Sa(t, h) — SZ(t, h) '

We first prove that

S S Rl (X T (1) (5112

with )?Z* =X, — gin(T3),i = 1,...,n. It is easy to see that 1/n > " {X; —

Gin(TH)HX: — G1n(T3)} " = £ 4 0,(1). Then we have
V(B = Bu) = 71 A; + 0,(1), (S1.13)

where A, = 1/yv/n Y37 {X0 = Gua(T)MY; = 5,(T) — X0 — g1a(T3)} 7 Bl.

For g3, (t), we have

{5a(t, h — S1(t, h)(T; — 1)} K (t = T))
Z DS h) — (0 2)

(Xm + 9n(T3) + Y = (X Ba + u(T)NV; )

Note that the i.i.d. random variable sequence {V},j =1,...,n} with mean

zero and variance 1. Further, V; is independent of (Y}, X;,T};). Then it can



S1. PROOFS OF THEOREMS 1-5

be validated that
B(t) = G1n(t) " Bu + Gu(t) + 0p(B2). (S1.14)

Thus Y7~ 33,(T3) = X, Butiu(T)+ [Yi X But-Gu(T) Y Vi {G1n(T3) T Bt
Gn(T)} + 0p(h2)= {Xi — §1n(T)} B + [Yi = {X] B + 0u(T) Vi + 0,(h2).
Then Y;* — 35, (T:) — {Xi — g1n(T)} B = [Yi = {X] Ba+ 3 (T1) }Vi + 0,(h2).

For A’ , we have

A =10 S XVl = {X] B+ Gu(T)H +0,(1).  (S115)

i=1
Then from (S1.13)) and (S1.15]), we can prove (S1.12)).
Let My (i, w) = 1/3/m 20 1Yy = {XT 3+ gu(TO NI (U w < w),u €

R, where §*(t) = ¢5 (t) — G1,(¢) T 3%. In the following, we aim for proving

that

M) = = VY= (X B+ (U <

vr
X (Y~ (X B+ Gu(TONT: + 0y(1).

CR{I(UTw < w)|T3] — ——T(u, w)5! SV

Note that Y;*—{ X[ 35+5(T:)} = X, ButGa(T2)+[Yi—{X] ButGu(T:) HVi—
(X B 4a5(T) Y= Yi— X Bt g (T)NVi= X[ (B —B) — {93 (T) = (T)}].
Then we have

1

My pouw) = —= ST (IY = {XT 8o+ gu TNV = XT (3 = Bo)
=1

Bl
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~{33(T) = u(T)}) (U] w < )
= = (X B+ TV w < )
= X (B = AT < w
2= Y (0(T) ~ BT v < )
( (u,w) + My (u,w). (S1.16)

= M*

nl,pro

(u,w) — M

n2,pro

It follows from (S1.13)) that

. 1 ¢ L
MnQ,pro(uv w) = % Z X;(Bn - ﬁn)[(U:w < U)
=1

_ 1 T T -1 & ok
= %E{X (U w <u)}® ZX v
N i=1
X[Y; = { X[ B + Gu(Ti)}] + 0,(1). (S1.17)
In the same way, we have
* 1 - A A~k ~ o
Mn3,pro(u7 w) = _TL [gn(ﬂ) - {QQn(E) - gln(E)Tﬁn}]](Uz—rw S u)
i=1
1 - A A~k A TA T
= = > 13(T) — {55(T) — 41a(T) B (U w0 < w)
i=1
1 . . 2
i=1
1 n
= M:;&l, ro(ua U)) + —P(U, w)z—l Z V;
’ v =

X [Y; = {X B0+ 3(T) Y3 (T3) + 0p(1).
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From (S1.14)), we have

M;?),l,pro Uu, U) \/— Z |:gn + gln )TBn

{52 t,h) — Si(t, h) (T — )} Ku(t — T5)Y} -
n Z So(t, 1) Sa(t, h) — S2(L, h) < (U w < u).

By the definition of Y*, it can be proved that

Mol 0) = fZZK*;Lf; )y, (X8, 4 TNV w < )

7,1]1

= % S VY — (57 TONE (U < w)[T} + o0 (1).
i=1
Therefore, it follows that

My, (tw) = % S Vs = (X B+ a0 < )| T3} — %F(u,wx

n! sz-m —{X; B+ Gu(T3) Y9 (T3) + 0,(1). (S1.18)

From (S1.16)-(S1.18]), and by the facts that the i.i.d. random variable
sequence {Vj},j = 1,...,n} with mean zero and variance 1 and that V; is

independent from (Y}, X;,T};), we can further prove that

AﬁmWW)Z\FENW’{Xﬁ+ﬂ)MH w < u)

CR{I(UTw < w)|T)} — %F(u, WETY Y,

<[V; = {X B+ g(TH) X, + 0,(1)

1 n
- = D Vil (U, Vi, g5,w) + 0p(1).
=1
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In the above process of proof, we should note that the terms such as
E{VD(X,T)I(UTw < u)} are all zero due to the fact that mean-zero vari-
able V; is independent of (Y, X;,T;) for j = 1,...,n. Moreover, it is easy
to prove that for given w, the function class {V¥,(a,7,&,w) : u € R'} is
a VC-class. By the similar argument to the proof of Theorem 2, we can
prove that the conditional distribution of 7, ., converges in distribution to

the limiting null distribution of 7y, ,ro. O

S2 Additional simulation studies

In this section, we report additional simulation results to evaluate the finite
sample performance of the proposed method. The settings are the similar
to those in the main text of the article but with 5— and 10— dimensional

linear covariates. Two examples are considered:

Example 1. The candidate models have 5-dimensional linear covariates

and possible interaction between the linear and nonparametric components:

Y=X"B+g(T)+C> X, T/2+¢, (S2.1)
where X = (X1,...,X;5)", g(T) =sin(T?) + 2T, T ~ N(0,1), ¢ ~ N(0, 1),
and 8 = (—2,-1,2,1,3)". Let X follow multivariate normal distribution

/\/’5(0,2) with ¥ = (Ujj’) and 0jj = 1,] = 1,...,5;0'jj/ = 055 = 0.3,j/ =
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7+1,7=1,2,3,4. C was chosen to be 0,0.2,0.4,0.6,0.8, 1.0.

Example 2. The candidate models have 10-dimensional linear covariates

and possible high effects between the covariates in linear parts:
Y =X"8+g(T)+C> X/10+¢, (S2.2)

where X = (Xy,..., X0)", g(T) = T3, T ~ N(1,1), e ~ N(0,0.5), and
B =(0.3,0.8,0.4,—1.3,-1,0.2,0.5,—0.2, —0.4,1.2) . The linear covariates
X follow a multivariate normal distribution N¢(0, ) with ¥ = (0;;/) and
oji = 0.16=7'1 5 4/ =1,...,10. To consider different data generating pro-

cesses, we chose C' = 0,0.5,1,2,3,4.

In Example , the empirical sizes of T)) and 7, p,, are close to the
nominal levels, while the empirical sizes of T* and T-X* are lower than the
nominal levels. Observed the power curves, 7, pr, stands out remarkably
as the best method, followed by T, TX" and T in a consistent order for
all different configurations.

In Example [2| the performance of the four tests still show a ranking
similar to the one in Example , except that T-X% is slightly superior to 77
in some configurations. However, the performance of 7, p,, is much better
than that of the other three tests. T always has very small empirical size

and power no matter how large or small the sample size. T}; also yields low
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Table 1: Failure times among the 1000 replicates for the four tests in models (S2.1)) and

(52.2) with different sample sizes and different C' values.

n=60 n=100 n=200
C Fu o s Fu o s Fu o ps FXia  pPro
model (S2.1
0.0 156 0 136 0 78 0 0 0
0.2 151 0 116 0 79 0 0 0
0.4 142 0 109 0 70 0 0 0
0.6 154 0 111 0 80 0 0 0
0.8 151 0 99 0 76 0 0 0
1.0 166 0 105 0 73 0 0 0
model (S2.2
0.0 998 173 999 12 1000 0 0 0
0.1 997 170 1000 14 1000 0 0 0
0.2 994 163 1000 9 1000 0 0 0
0.3 991 160 998 15 998 0 0 0
0.4 998 171 997 8 999 0 0 0
0.5 995 164 999 18 1000 0 0 0

F*, Fs, FXi@ and FP°: corresponding to the tests by [Fan and Li (1996), |Zhu and Ng

(2003)), Xial (2009) and this paper.

empirical size and power, whereas T cannot control the type I error.
We report failure times of the tests 7%, T, T:X*® and T, p., under Ex-
amples [I] and [2] in Table [ In Example [I} 7} did not degenerate, but
T" degenerated at least 150 times among the 1000 replicates for sample
size n = 60, and at least 70 times for sample size n = 200. This situa-

tion becomes much worse when the dimension of X increases to 10. Both



S2. ADDITIONAL SIMULATION STUDIES

(a) : n= 60 with level 5% (b) : n= 60 with level 10%
@
@
c c
S S
£ 2 4
2 2 o
o o
s s
g § 3
g g
o o
[7) [7)
« ¢ o |
o
o
o T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
c c
(c) : n= 100 with level 5% (d) : n=100 with level 10%
< <
S S
S S
2 2
o o
s s
= =
=} =}
3 3
o o
o o
'3 '3
c
(e) : n=200 with level 5%
o
4
c = c
S S
S S
Q ~ Q
15 15
a a
c c
S ] S
3 3
2 2
o o
4 _ 4
o 'j—
2 - - -m- - »----E-----%----B
e T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
c c

Figure 1: Simulation results for model (S2.1)) in Example Rejection proportions of

four methods against C' with different sample sizes and test levels 0.05, 0.1. 7T;, pyro: the

proposed test (solid line with filled diamond); T5: the test of|Zhu and Ng| (2003) (dotted

line with filled circle); T}*: the test of [Fan and Li| (1996|) (dashed line with filled square);

and 7X@ the test of Xia| (2009) (dot-dash line with filled triangle). The thin horizontal

line indicates the nominal level 0.05 or 0.1.
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(a) : n= 60 with level 5% (b) : n= 60 with level 10%
o
4
@
s s °© ]
5 5
2 2 ]
o o
s s
= =
=} =} -
[7) [7)
-2 o ]
L T T T T T
0 1 2 3 4 0 1 2 3 4
c c
(c) : n= 100 with level 5% (d) : n=100 with level 10%
o o
b b
c = c =
S S
S S
2 _ g ]
o o
s s
= =
S i S 4
3 3
o o
o o
'3 . '3 .
o o
S S
0 1 2 3 4 0 1 2 3 4
c c
(e) : n=200 with level 5% (f) : n= 200 with level 10%
o o
4 4
c = c =
=} =}
S S
Q ~ Q ~
15 15
a a
g 3 g 3 e
s s AT
o ) T reieene
3 i i3 i DRTSRRIPCRIRILILE
Al
MTEEEY Of
e 4 Q Ja - m-mm-- o ——— - - oo n
e e T T T T T
0 1 2 3 4 0 1 2 3 4
c c

Figure 2: Simulation results for model (S2.2)) in example [2 The legend is the same as

in Figure

T% and T almost always degenerated in all configurations. This may ex-
plain why the power curves of these two tests in Figures [1] and [2] are so
flat. This deficiency for T is not surprising given the fact that 7} is

based on the local smoothing estimation for E(¢|X,T"). For T, recall that
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75 = [{1/Va Y, &Us, B, in(T)) 1(X; < 2)[(T; < £)} Fod(z,t). The
indicator weighting function I(X; < x)I(T; < t) can easily be null, and
cause 1 to degenerate. Such a degeneration implicitly indicates that 77

still suffers from curse of dimensionality.
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