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S1 TECHNICAL LEMMAS

Lemma 1. (Ledouz and Talagrand, |2015) Assume that the hypothesis class F C {f|f :
X — R}, and xy,--- ,x, € X. Let G : R — R be conver and increasing. Assume that

the function ¢ : R — R is L-Lipschitz continuous, and satisfies that ¢(0) = 0. We have:

1 & 1 &
G| sup [ — E € x; G| Lsup | — E € f(x;
(fE-g (n i=1 ot ))>> ( fe.% (n i=1 t ))>]

The lemma below is a more general version of (Mohri et al| 2012, Theorem 3.1),

E. <E.

where they assume a = 0, and the proof is very similar to the original one.

Lemma 2. Let z be a random variable of support Z and distribution D. Let S = {z1...2z,}
be a data set of n i.i.d. samples drawn from D. Let F be a hypothesis class satisfying

FCAf|f:Z2—10,A0}. Fizd € (0,1). With probability at least 1 — & over the choice
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of S, the following holds for all h € F:

Eplh] — Es|h]| < 20R,.(F) + Aq w

Proof. According to [Mohri et al.| (2012)[Theorem 3.1], fix § € (0,1). With probability at

least 1 — g over the choice of S, the following holds for all h € F:

log (2/9)

Exp(h/As] — Eslh/Ad] < 20.(F/Ap) + 14/ =

With probability at least 1 — g over the choice of S, the following holds for all h € F:

log (2/9)

Ep[—h/Ao] — ES[—h/AO] < 2R, (=F/Ao) + >

By the definition of Rademacher complexity, R, (—F/Ao) = R.(F/As) = R,.(F)/A.

Thus we complete the proof. O

Lemma 3. For any f € S./\f];’g’a and x € X,

1 (@)l < llofl o max (L, (cpy)*) -
Proof. We instead prove the result for any

FeDAT 2 (5. ge SN o |||, <1},
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and complete the proof by induction on depth k£ + 1. When k£ = 0,

s [f@)l.= s [VIa A @)

feDf,’Td a feDS,’fi 7 -
-7
|(via @y
=7r sup - L
fe,DS:rd’O- VlHl,oo
1 .
<r s —— Vi)
feD(c):fLa HVl 1,00
< rmax(L, [lz[,)
<.
Define di, = (do, coedp_q, di + 1).
- T
w @l = s [Vii(1oo @)
feDk,d,O- feDk,d,O- o0
- T
| (Vi oo @) |
=7 sup — =
sepido Ver|,
1 el T T
<r sup - Hvk+1(1>U o fi (x)) H
e |[Ven|, -
1
=7 sup  ——|(v, (1,00 f(x))")]
wdo vl
fe p,q,c,T
<rl[(Loo fl (@),

< || pg fi (@),

< rmax(1,¢cp,) sup 1f (@)l oo
feDk;Ldk-'do-
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The penultimate step follows from the fact that

(17 pO’fg)T & ma,X(l, CpO_)D]Z?Il,dk_hO"

Finally, the proof is completed by the induction assumption. O

Lemma 4. Assume A1-A2 hold. In addition, the loss function L(f(x),y) : Y xY —
0, Ao, is p-Lipschitz continuous on its first argument. Fiz § € (0,1) and o > 0, then with

probability at least 1 — § over the choice of the sample, every f € S./\f]j”od’a satisfies that

k

(k+1)log 16 (Z@pg)f " <c,o0>’f) + (cpy)/2Tog(2my) |

=0

log(2/8)  20p
SL(f) < A4 T + %

Furthermore, if cp, > 1, with probability at least 1 — 0 over the choice of the sample,

every f € SNIZ’Od’U satisfies that

log(2/0)  20p
8L(f) <A T + %

Proof. First, we upper bound R,,(SN lzoda) by the same bounds in Theorem 1, as Theorem

(coy )" (v/ (k + 3) log 4 + v/21og(2m.)).

1 holds for any sample S under our assumptions. Then we could further bound the
Rademacher complexity of the corresponding hypothesis class according to Lemma [If and

A2. Finally we get the desired result by Lemma [2] O

Lemma 5. Assume BI1-B2 hold. In addition, the loss function L(f(x),y) : Z x Y —

0, Ao], satisfies that

[L(f1(),y) = L(f2(2), 9)| < pllfi(e) = fa(@)],
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foranyx € X,y €Y. Fizr § € (0,1) and o > 0, then with probability at least 1 — § over

the choice of the sample, every f € SN’;’f,l"’ satisfies that

£.(f) < Ao log(2/5)

zf,o( >>

Furthermore, if cp,

V(k+1)log 16 (Z(cp(,)f + (cpg)’“> + (cpy)ty/21og(2mn)

=0

1, with probability at least 1 — & over the choice of the sample,

every f € SNk .o satisfies that

EL(f) < Aoy logéi/é 22 <Z 0]> cpg )" (\/(k + 3)log 4 + \/2log(2m1)).

Proof. First, we upper bound R, (SN ljoda) by the same bounds in Theorem 1, as Theorem
1 holds for any sample S under our assumptions. Then we could further bound the
Rademacher complexity of the corresponding hypothesis class by (Maurer, 2016, Corollary

1) and B2. Finally get the desired result by Lemma . O

S2 DETAILED PROOFS

Proof of Theorem 1

Proof. We first show that

k
5%5(8/\/’5;?’0) <o W (Z(cpa)ﬁ + (cpg)k> + o(cpa)k

n
=0

21log(2m,)
—
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The proof has two main steps. Fixing the sample S, and the architecture of the DNN,

define a series of random variables {Zy, Z1,--- , Z;} as

n

Z() = Z €, L;

i=1 o

and
n
Z; = sup Z eoo fi(xz)||
jesntdo =1 oo

for j = 1,--- ,k, where {e, - ,¢,} are n independent Rademacher random variables,

and f; denotes the jth hidden layer of the sparse DNN f. In the first step, we prove by

induction that for j =1,--- [k and any t € R

; t°ns’ ;
Ecexp(tZ;) < 47 exp 5 +t(cpy )’ v/ 2nlog(2my) |,

where

Note that s;1 = cp,(s; +1).
When j = 0, by (Kakade et al., 2009, Theorem 3), E.Zy < /2nlog(2m;). Note that

Zy is a deterministic function of the i.i.d.random variables €, - ,¢,, and satisfies that
|Zo(€1, ERIR F SO ,Gn) — Z()(Gl, Rl VA ,En)| S 2 max HX1||OO

by Minkowski inequality. By the proof of Theorem 6.2 (Boucheron et al.| |2003), Z, is

subgaussian satisfies that

t2
E.exp (tZy) = E.exp (t(Zy — EZy)) * exp (tE.Zy) < exp (Tn +ty/2n log(2m1)>
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for any ¢ € R. For the case when 5 > 1,

n

Z €0 (\7?(1, oo fj_l(a:i))>

=1

Ecexp (tZ;) =Ecexp |t sup
v

<c

1,00

o0

fesntda

=FE.,exp |t sup
||’U||1§C

=1
feSN’é;od’U

Z €0 (’UT(l, oo fjl(zcz)))‘

(KU (R —

<2E.exp |t sup ZQU (v"(1,00 fi_1(z;))) (S2.1a)
fesntdo

n

<2Ecexp | tp, sup & (v'(1,00 fi_i(x:))) (52.1b)
||'U||1§C i=1

resntdo

n

Z (1,00 fi_1(x:))

i=1

< 2Ecexp | tep,  sup

feS/\/’c“;od’J

o

Z €ioo fi1(x;)

=1

)

[e.9]

< 2E. exp tcpa(|z €|+ sup
i=1 resntdo

1

[EE exp (r;tcpa Zj,l)] g

u.*"—‘

<2 (S2.1c)

2E. exp (rjtcpg Z ei>

i=1

. nt?c?p? (1 4+ s;_1)? o
< 4! exp( p0(2 i) +t07p70\/2nlog(2m1)>

S

. nt?c?p? s? o
=47 exp (TU] +tcpl \/2n 10g(2m1)>
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The step in equation (S2.1a]) follows from the observation that

E. exp (t sup |Z e (vioo j*1<$1))|> < E.exp (t sup ZQ‘U (v'(1,00 fj_l(zci)))> +

([P — V[, <e’, 2

E. exp <t sup Z(—Ei)(f (’UTU © fj—l(mi)))

IV, <e 7

(S2.2)

The step in equation (S2.1b)) follows from Lemma . Note that equation (S2.1c|) holds

or any r; > 1 and rf = — by Holder’s inequality < 7y i) e
f ;> 1and r = -5 by Hold lity E(|XY]) < E(|X[5)E(|Y|7). Th

T'j—l

step in equation (S2.1¢d)) follows from E. exp (| X|) < Ecexp (X) + Ec exp (—X). Note that

n
> € is also a deterministic function of the i.i.d.random variables €, --- ,€,, satisfying
i=1

that E. > ¢ = 0 and
i=1

]Zei—i—ej— (Zei—ej)\ < 2.

i#] i#]
Then by the proof of Theorem 6.2 (Boucheron et al., 2003]),

E. exp(t; €) < exp<%") (52.3)
for any ¢t € R. Then we get the desired result by choosing the optimal r;, = s;_; + 1 while
following the induction assumption.

The second step is based on the idea of (Golowich et al.; 2018) using Jensen’s inequal-
ity. For any A > 0,

ni)A%S(S/\/'f;g’U) = K. sup (Z Eif(mi))

feSN’i;Dd’U i=1
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1 n
gxlogEeeXp A sup (ZQf(%))

feSN’,?;od’a i=1
n

Z (1,00 fr(x;))

1
< X logE.exp | Ao sup

resntdo [li=1 o
1 No*n(sy + 1) -
< X (k+1)log4 + 5 + Xoc®p v/ 2nlog(2my) | (S2.4a)

where the step in equation ([S2.4a)) is derived using a similar technique as in equation

(S2.1a]) to equation (S2.1¢)). By choosing the optimal A = —m, we have

_ k+ 1)log16 (<& - 2log(2m1)
ms(lecc;gi,O') <o (—i_% (Z(Cpg)l_'_ (Cpo-)k) +0(Cp0_)kW

=0

We then show that

Rs(SNEAT) < —o(cpy)*(v/(k + 3)log 4 + v/2log(2my)).

1
—o0
NZD
when cp, > 1. Similar to the general case, the proof has two main steps. In the first

step, we prove by induction that for j =1,--- ,k and any t € R

J o nt2c2(j—i+1) 24 ‘ nt2c2i p2i A
E.exp(tZ;) < Z 2972 exp (_,00 +27 exp et +t(cp, )’/ 2nlog(2m,)

— 2 2
When j = 0, we already have for any ¢ € R,

#2n max ||x;||,

E.exp (tZy) < exp ( 5 + tA}nl’S) .
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For the case when 7 > 1,

n

ZEin o (\7;[(1, oj-10 fi—1(x;))

i=1

Ecexp (tZ;) =Ec.exp [t sup
<c

feSN’ZodU

oo

n

=Ecexp | ¢ Shlp |Z€i‘71("’T(la‘fjflofjfl(wi)))\
(KO PRNCR—

feSN]Z;Od‘U

n

<2E.exp |t sup Zeiaj (v"(1,0j-1 0 fii(x:))) (S2.5a)

[ (V[P R—

fesnt A0

< 2Ecexp | tp, sup ev (1,05 10 fj_1(x;)) (S2.5b)

lv]l,<c i=1
resntdo

n

Z €i(1,05-10 fi_1(x:))

=1

< 2E.exp | tep,  sup

o0

feSNf.;od’U

n

Z €i0j—10 fi—1(z;)

i=1

n
< 2Eexp | tcp, max |Z €|, sup
=1 pesntdO

o0

n

Z €i0j-10 fj-1(x;)

=1

n
= 2E. max | exp(tcp, |Z €), exp sup
=1 jesntdo

< 2E. exp (tcp0|z 61]> + 2K, exp (tcpaZj,l)

t2C n nlc t 2 I 2(j—1)
§22exp( p ) 22] Z+1exp< (pg)gpg) +

[e.9]
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A n(cp t)?(cp,, )20~ .
271 exp( (cpgt) (2PU) + (tepg ) (epy )~ 2n10g(2m1))] (S2.5¢)

The step in equation follows from equation (S2.2)). The step in equation ([S2.5b))
follows from Lemma . The step in equation follows from equation and the
induction hypothesis.

The second step is by Jensen’s inequality. For any A > 0,

nRs (SN ’j;od"’ ) = E. sup <Z & f (-’Bi))

st \ 5

llogIE exp | A sup (iej(%))

feSN’j;Dd’U i=1

>~

n

Z &i(l,00 fi(z;))

i=1

logE.exp [ Ao  sup
resntdo

exp ()\O|Z €l ) + exp (AoZy)

=1

\202n k oo n02)\2(cp0)2(k—i+1)
2 exp( 5 )+i212 exp 5 +

2)2 2k N 112
2k exp (TLO (Cpo') 2HlaXz ”wz“oo —l—tO(CpU)k 2nlog(2m1)>] ’ (82.6’&)

>

o0

log E,

>/I>—‘

IA
> =

log

where the step in equation ([52.6a)) follows from the first main step. Especially, if cp, > 1,

[k+1 212 2k 212 2k
no“\*(c no“\*(c
log Z 2F 2 exp < (2'00) ) + 2F exp (# + to(cpy ) /20 10g(2m1))]

2)2 2% 2)2 2%
log |22 exp (%) + 22 exp (% + to(cpg)]’C 2n log(2m1))}

1
A
2)\2
< ilog 2543 o (M

+ do(cp, )*/2n IOg(2m1))}
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)2k

log 2 2\
— <k + :i\) og + no (;PO- + 0(cpo_)k\/ 2n log(2m1)

By choosing the optimal A, we have

Rs(SNHDT) < %o(%)'f(\/(/ﬂ T+ 3)log 4 + \/2Tog(2my))

Proof of Theorem 2

We provide a general version of Theorem 2 with no assumption on the values of ¢ or p,;.

Theorem 2 is the direct conclusion of the proposition below.

Proposition 1. Assume A1-A8 hold. Fiz § € (0,1), then with probability at least 1 — ¢

over the choice of the sample, for every sparse DNN fr € Sf’d’a = Tjy1000T0-- 00071},

we have
Ers(fr) S\/log(%) + 21og(|| Th+11l; +2)+
2n
k
(Tl + 1) [V 0816 (Z(%u(c%)k%(c%)km |
=0

Furthermore, if cp, > 1, With probability at least 1 — 0 over the choice of the sample, for

every sparse DNN fr € Si“’dﬂ =Tg1000Tp0---000Ty, we have

0l g\/ Pt 2RI D) s 2 (il + 1) G B o+ /2o

Proof. The proof is inspired by (Bartlett et al., 2017). Given a positive integer [, Define
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a set

Correspondingly subdivide 9 as

Fix any [, we could get the corresponding generalization bounds as an instance of

Lemma . By A3, for any f € S/\/'Z’(fl’a, x e X,y <€), we have

OL(f(=),y)| _

st _, .
and

IL(f (=), y)| < 1. (S2.8)

Thus for the mean square error, we could replace p and Ay in Lemma 4 with equations
(S2.7) and (S2.8)), respectively, and get the corresponding generalization bound.

AS D en, 0(1) = 0, the preceding bound holds simultaneously for all functions in the
union U{B(1) : I € N;} with probability at least 1 —d. Thus given fr, choose the smallest

I such that fr € B(I). As Tjy1(u) = VL (1,u”)7, then the smallest [ satisfies that
U ([Tl + 1.

Further replace the s with ||Tj44||; + 1, thus we get the desired result. O
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Proof of Theorem 3

We provide a general version of Theorem 3 with no assumption on the values of ¢ or p;.

Theorem 3 is the direct conclusion of the proposition below.

Proposition 2. Assume B1-B2 hold. Fiz ¢ € (0,1), ¢ > 0, the number of hidden layers
k € [0,00), and widths d € N¥2 with dy = my and dyyy = 1. With probability at least

Sk,dp’

1 — ¢ over the choice of the sample, for every sparse DNN fr € =Ty1000T0

-~oo0 o1, we have

ma2
log \/%-1— leog(ﬂm D1 [5]ll1 +2)
iz

1
E1o(r) < (20 Tiaall e+ oy (1 (o)) + o -

2\/_ mo — 1
\/— (HTkHHl 1 1) (1 Ty (ma = 1) exp(=2(|| Tkl oo + 717) max (1, (Cpa)k))>

(k+1)log16 (Z(cpg)é + (cpa)k> + (cpy ) \/210g(2my)

=0

*

Furthermore, if cp, > 1, With probability at least 1 — 0 over the choice of the sample, for

every sparse DNN fr € Sf’d’a =Ty1000T0---000T), we have

ma
log \/% + leog(mQ [T [7l]; +2)
iz

n

1
E1o(fr) < (20Tisall o+ ) epg )+ ogma

mo — 1
= (il +1) 1+ : .

+
1 (ma = D exp (=201 T o + 75)(e0)")

e

(cpy )" (v/(k + 3) log 4 + /2 log(2m1)).

Proof. The proof is inspired by (Bartlett et al., 2017). Given positive integers I =
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(I1,- -+ ,lm,), define a set

B(l) = SN’Z’l‘f’Z .

Correspondingly subdivide 9 as

)
Ll 4+ 1) by (g + 1)

5(1) =

Fix any I, we get the corresponding generalization bound as an instance of Lemma [5]
: k,d,o %
Consider f € SNoo",x € X,y €. Forj #y,

‘M' <1/(1+ ) exp(—(oj +oy)max (1, (cp,)*)) -

0 (@) P
For y,
Of (x)[y] 1+ ; exp (f(z)[j] — f(=)[y])
iy
<I|1- L
- 14+ ; exp ((oj + 0,) max (1, (cpa)k)) '
Additionally,
|Le(f (), y)| < maxlog (Z exp{(0; + 0;) max (1, (Cpg)k)}) :
J =
For simplicity, we assume o; < og for j =1, -+, mg, then
8Lc(f(a3), y) my — 1
A\ d) S2.9
H of(x) I = (ma — 1) exp(—209 max (1, (¢p,; )*)) (529)
and

|Lo(f(x),y)| < 200 max (1, (cpa)k) + log ms. (52.10)
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We could replace p and Ag in Lemmawith equations (S2.9) and (S2.10)), respectively,

and get the corresponding generalization bound for SN ’;g <
As Y joym2 0(1) = 6, the preceding bound holds simultaneously for all functions in
+
the union U{B(l) : I € N**} with probability at least 1 — §. Thus given fr, choose the

smallest I such that fr € B(l). As Tyyi(u) = Vi (1,u”)7, then the smallest I satisfies

that
lj < ma || T [f]1l; + 1,V
Therefore
mo l
> L < Tellyy +1, maxly < ma||Thaaly o + 1.
= Mo J

Therefore we get the desired result. O
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S3 ADDITIONAL EXPERIMENTS

We extend the classification experiment in Section 5.2.

Firstly, we examine the effect of the sample size on generalization. As shown in Table

[1, when the sample size increases, the generalization error becomes smaller, while having

the normalization constant ¢ fixed.

size=500 size=1000 size=1500 size=2000 size=2500
c =00 1.674/69.90 | 1.576/71.00 | 1.528/72.20 | 1.508/75.70 | 1.489/76.60
¢=0.16 | 0.441/87.03 | 0.343/88.10 | 0.258/89.30 | 0.208/91.50 | 0.199/92.74
¢=0.13 | 0.376/87.23 | 0.334/87.80 | 0.252/89.47 | 0.171/91.76 | 0.171/92.80
¢=0.10 | 0.324/87.78 | 0.280/87.60 | 0.223/90.30 | 0.176/90.70 | 0.169/90.80
¢=0.07 | 0.260/88.34 | 0.241/87.80 | 0.189/90.80 | 0.162/91.21 | 0.133/91.86
¢=0.04 | 0.134/89.57 | 0.112/89.94 | 0.102/91.31 | 0.084/91.72 | 0.073/92.24
¢=0.01 | 0.068/88.48 | 0.079/89.15 | 0.034/90.30 | 0.036/91.00 | 0.024/91.47

Table 1: Generalization error/test accuracy for the classification experiment with different

and sample sizes.

values of ¢

Secondly, we check the relationship between the depth of the neural network and

the generalization error. The result is shown in Table[2. When c is relatively large, the

generalization error increases, as the neural network grows deeper. On the contrary, when

c = 0.04,0.01, the generalization error might even decrease, as the depth increases. This

might be caused by the shrinkage of the term (c¥).
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100-20-2 100-50-20-2 | 100-100-50-20-2

00 1.535/70.30 | 1.674/69.90 1.710/69.10
¢=0.50 | 0.461/83.14 | 0.478/84.78 0.542/82.42
¢=0.16 | 0.351/84.67 | 0.441/87.03 0.456,/84.41
¢=0.13 | 0.322/85.35 | 0.376/87.23 0.431/84.89
¢=0.10 | 0.312/86.10 | 0.324/87.78 0.383/86.03
c¢=0.07 | 0.245/88.42 | 0.260/88.34 0.274/87.98
¢=0.04 | 0.103/89.12 | 0.134/89.57 0.131/88.33
¢=0.01 | 0.072/87.74 | 0.068/88.48 0.094/87.52

Table 2: Generalization error/test accuracy for the classification experiment in Section 5.2 with different

network structures and sample sizes.

Yo 0.050 | 0.045 | 0.040 | 0.035 | 0.030

Training error (%) | 90.15 | 90.04 | 90.12 | 90.07 | 90.10

Table 3: Effect of the initial step size vy on the algorithm.

Thirdly, we show that the projection gradient descent algorithm is not sensitive to

the initial step size vy, as shown in Table [3]
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