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Section S1 contains proofs of Theorem 3. The required Assumptions are also included for com-

pleteness. Theorems 1 and 2 follow from Theorem 3 with J = ∅ and X̃J = 1. In this case,

Uk = Xk − EW 2Xk/EW 2. And the proofs are omitted.

Section S2 contains proofs of Theorem 4. The required Assumptions are also included for com-

pleteness.

Section S3 contains discussion of the uniqueness condition on k0 and an extension of Theorem

1 to the case of non-unique k0.

Section S4 contains discussion of the doubly robust method when used in randomized trial.

Section S5 contains details of simulations.

S1 Assumptions and proofs of Theorem 3

Assumptions:

(C1) The error term ε in model (2.1) has mean zero, finite variance and is
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uncorrelated with W and WX.

(C2) EX4
k <∞ for k = 1, . . . , p.

(C3) φ̂n(X) is estimated from a P -Donsker class of measurable functions,

and there exists some fourth-moment integrable function φ̃(X) such

that E[φ̂n(X)− φ̃(X)]4
P→ 0 as n→∞.

(C4) k′0 , arg maxk:k∈JC

∣∣Corr(WUk,WU
Tβ0,JC )

∣∣ is unique if β0,JC 6= 0.

Proof for part i) of Theorem 3.

For k ∈ JC , let (α′k, θ
′
k) = arg min(α,θ)E[Y −E(Y |X)− (α+ θUk)W ]2.

By first order conditions, we have α′k

θ′k

 =

 EW 2 EW 2Uk

EW 2Uk E(WUk)
2


−1 E[W (Y − E(Y |X))]

E[WUk(Y − E(Y |X))]



=

 E[W (Y − E(Y |X))]/EW 2

E[WUk(Y − E(Y |X))]/E(WUk)
2

 ,

where the second equality follows from the fact that E(W 2Uk) = 0.

Under Assumption (C1), it is easy to verify that the new error term

ε′ in model (3.2) has mean zero, and is uncorrelated with W and WUk for

k ∈ JC . Replacing Y by the right hand side of (3.2) yields α′k = α′0 and
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θ′k = Cov(WUk,WU
Tβ0,JC )/E(WUk)

2. In addition, note that

E[Y − E(Y |X)− (α′k + θ′kUk)W ]2

=E[h′0(X) + (α′0 +UTβ0,JC )q0(X) + ε′ − E(Y |X) + (α′0 +UTβ0,JC − α′k − θ′kUk)W ]2

=E[h′0(X) + (α′0 +UTβ0,JC )q0(X) + ε′ − E(Y |X)]2 + E[(α′0 +UTβ0,JC − α′k − θ′kUk)W ]2

=E[h′0(X) + (α′0 +UTβ0,JC )q0(X) + ε′ − E(Y |X)]2 + E(UTβ0,JC )2

− [Corr(WUk,WU
Tβ0,JC )]2E(WUTβ0,JC ).

Thus choosing k to maximize Corr(WUk,WU
Tβ0,JC ) is equivalent to min-

imizing E[Y − E(Y |X)− (α′k + θ′kUk)W ]2. So θ′0 = θ′k′0
, where

k′0 = arg max
k∈JC
|Corr(WUk,WU

Tβ0,JC )| = arg min
k∈JC

E[Y − E(Y |X)− (α′k + θ′kUk)W ]2.

Similarly, we can verify that θ̂′n = θ̂′
k̂′n

, where

(α̂′k, θ̂
′
k) = arg min

(α,θ)∈R2
Pn[Y − φ̂n(X)− (α + θÛk)W ]2

=

(
Pn[W (Y − φ̂n(X))]

PnW 2
,
Pn[WÛk(Y − φ̂n(X))]

Pn(WÛk)2

)
,

and k̂′n = arg min
k∈JC

Pn[Y − φ̂n(X)− (α̂′k + θ̂′kÛk)W ]2 = arg max
k∈JC

(Pn[WÛk(Y − φ̂n(X))])2

Pn(WÛk)2

with Ûk = Xk − X̃
T

J γ̂k and γ̂k = arg minγ Pn[W (Xk − X̃
T

Jγ)]2.
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Note that PnW 2Ûk = 0., Again using first order conditions, we have

Pn
(
WÛk

)2
n1/2(θ̂′k − θ′k) = n1/2Pn

[
WÛk

(
Y − φ̂n(X)− θ′kWÛk

)]
=Gn

[
WUk

(
Y − φ̃(X)− θ′kWUk

)]
+ n1/2Pn

[
W (Ûk − Uk)

(
Y − φ̃(X)− θ′kWUk

)]
+ n1/2Pn

[
WÛk

(
φ̃(X)− φ̂n(X) + θ′kW (Uk − Ûk)

)]
, (S1.1)

where the second equality follows from the fact that

E
[
WUk

(
Y − φ̃(X)− θ′kWUk

)]
=E

[
WUk (Y − E(Y |X)− (α′k + θ′kUk)W ) +WUk

(
E(Y |X) + α′kW − φ̃(X)

)]
=0.

By definition of Uk and Ûk, it is easy to verify that PnW 2ÛkX̃J = 0

and n1/2(Ûk−Uk) = −X̃
T

J

(
PnW 2X̃JX̃

T

J

)−1
Gn(W 2X̃JUk). Thus the third

term in (S1.1) equals Gn

[
WÛk

(
φ̃(X)−φ̂n(X)

)]
. Note that E

[
WÛk

(
φ̃(X)−

φ̂n(X)
)]2 ≤ [

E(WÛk)
4E
(
φ̃(X) − φ̂n(X)

)4]1/2 P→ 0 under Assumptions

(C2) and (C3). by Lemma 19.24 of van der Vaart (1998), we have Gn

[
WÛk

(
φ̃(X)−

φ̂n(X)
)]

= oP (1). The second term in (S1.1) equals

−Pn
[
W
(
Y − φ̃(X)− θ′kWUk

)
X̃

T

J

] (
PnW 2X̃JX̃

T

J

)−1
Gn(W 2X̃JUk).

(S1.2)



S1. ASSUMPTIONS AND PROOFS OF THEOREM 3

Plugging in (S1.2) into (S1.1) and using LLN yields

Pn
(
WÛk

)2
n1/2(θ̂′k − θ′k)

=Gn

{
WUk

[
Y − φ̃(X)− θ′kWUk −WX̃

T

J

(
PW 2X̃JX̃

T

J

)−1
E
(
WX̃J

(
Y − φ̃(X)− θ′kWUk

)) ]}
+ oP (1)

=Gn[WUk(Y − φ̃(X)−Mk)] + oP (1) (S1.3)

where

Mk = θ′kWUk +WX̃
T

J

(
PW 2X̃JX̃

T

J

)−1
E
[
WX̃J

(
Y − φ̃(X)

)]
. (S1.4)

Case 1. β0,JC 6= 0. In this case,{
Pn[WÛk(Y − φ̂n(X))]

}2
Pn(WÛk)2

P→{E[WUk(Y − φ̃(X))]}2

E(WUk)2

=
{E[W 2Uk(U

Tβ0,JC )]}2

E(WUk)2

=Var(WUTβ0,JC )[Corr(WUk,WU
T)β0,JC ]2,

which is maximized at unique k′0 when β0,JC 6= 0. Since k̂′n maximizes the

left hand side of the above display, it follows immediately that k̂′n
P→ k′0 as

n→∞. Hence

n1/2(θ̂′n − θ′0) =n1/2(θ̂′k′0 − θ
′
k′0

) + oP (1)

=
Gn[WUk′0(Y − φ̃(X)−Mk′0

)]

P (WUk′0)
2

+ oP (1).
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The proof is completed by using Slutsky’s lemma and the CLT and noticing

that θ′k = E[WUk(Y−E(Y |X))]/E(WUk)
2 = E[WUk(Y−φ̃(X))]/E(WUk)

2.

Case 2. β0,JC = 0. In this case θ′k = 0 for all k ∈ JC . Thus

Pn
(
WÛk

)2
n1/2θ̂′k = n1/2Pn[WÛk(Y−φ̂n(X))] = Gn[WUk(Y−φ̃(X)−Mk)]+oP (1).

This implies that n1/2θ̂′k

n(Pn[WÛk(Y − φ̂n(X))])2/Pn(WÛk)
2


k∈JC

=

 1

Pn(WÛk)2

 Gn[WUk(Y − φ̃(X)−Mk)]

(Gn[WUk(Y − φ̃(X)−Mk)])
2



k∈JC

+ oP (1)

d→

 Zk/E(WUk)
2

Z2
k/E(WUk)

2


k∈JC

, (S1.5)

where {Zk : k ∈ JC} is a normal random vector with covariance matrix

given by that of the random vector with components {WUk(Y − φ̃(X) −

Mk), k ∈ JC}.

For any t ∈ R|JC |, let h(t) be a JC-dimensional vector of zeros, except

a 1 at the maximal element of t. We can re-write n1/2θ̂′n as

n1/2θ̂′n = n1/2({θ̂k}k∈JC )Th
(
{n(Pn[WÛk(Y − φ̂n(X))])2/Pn(WÛk)

2}k∈JC

)
.

Under Assumption (C4), we have |Corr(WUk,WUj)| < 1 for k 6= j, and

thus |Corr(Zk, Zj)| < 1. Since {Zk : k ∈ JC} is a normal random vector,
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we have

Z2
j

E(WUj)2
6= Z2

k

E(WUk)2
for any j 6= k a.s. (S1.6)

So K is unique a.s. Thus h is continuous at
(
{Z2

k/E(WUk)
2}k∈JC

)
a.s. And

the result follows by applying the continuous mapping theorem to (S1.5).

Proof for part ii) of Theorem 3.

We use P∗m to denote average over the bootstrap sample of size m, and

G∗m =
√
m(P∗m−Pn). In the case of Zn,k in which ε is not observed, we also

replace ε by ε̂n ≡ Y − α̂n − θ̂nX̂, resulting in Z∗n,k = G∗n[ε̂n(Xk − P∗nXk)]

where G∗ =
√
n(P∗n − Pn).

Let EM denote expectation conditional on the data, and let PM be the

corresponding probability measure. The bootstrap analog of θ̂′n is θ̂′∗m = θ̂′∗
k̂′m

,

where

k̂′∗m = arg min
k∈JC

P∗m[Y − φ̂n(X)− (α̂′∗k + θ̂′∗k Û
∗
k )W ]2

= arg max
k∈JC

{
P∗m[WÛ∗k (Y − φ̂n(X))]

}2
P∗m(WÛ∗k )2

,

(α̂′∗k , θ̂
′∗
k ) = arg min

(α,θ)
P∗m[Y − φ̂n(X)− (α + θÛ∗k )W ]2,

and Û∗k = Xk − X̃
T

J γ̂
∗
k with γ̂∗k = arg min

γ
P∗m[W (Xk − X̃

T

Jγ)]2.

By first order conditions, P∗m{W (1, Û∗k )T[Y − φ̂n(X)−(α̂′∗k + θ̂′∗k Û
∗
k )W ]} = 0.
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In addition, by the definition of Û∗k , P∗mW 2Û∗k = 0. This implies that

P∗m
(
WÛ∗k

)2
m1/2(θ̂′∗k − θ̂′k)

=m1/2P∗m
[
WÛ∗k

(
Y − φ̂n(X)− θ′kWÛ∗k

)]
+ P∗m

(
WÛ∗k

)2
m1/2(θ′k − θ̂′k)

=G∗m
[
WUk

(
Y − φ̃(X)− θ′kWUk

)]
+m1/2P∗m

[
W (Û∗k − Uk)

(
Y − φ̃(X)− θ′kWUk

)]
+m1/2P∗m

[
WÛ∗k

(
φ̃(X)− φ̂n(X) + θ′kW (Uk − Û∗k )

)]
+ (m/n)1/2Gn

[
WUk

(
Y − φ̃(X)− θ′kWUk

)]
+ P∗m

(
WÛ∗k

)2
m1/2(θ′k − θ̂′k) (S1.7)

By the definition of Û∗k and Uk, It is easy to verify that P∗mW 2Û∗kX̃J = 0

and EW 2UkX̃J = 0. Thus

m1/2(Û∗k − Uk)

=−m1/2X̃
T

J

[
P∗m
(
W 2X̃JX̃

T

J

)]−1
P∗m
(
W 2UkX̃J

)
=− X̃

T

J

[
P∗m
(
W 2X̃JX̃

T

J

)]−1[
G∗m
(
W 2UkX̃J

)
+ (m/n)1/2Gn

(
W 2UkX̃J

)]
.
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So the second term in (S1.7) equals

− P∗m
[
W
(
Y − φ̃(X)− θ′kWUk

)
X̃

T

J

] [
P∗m
(
W 2X̃JX̃

T

J

)]−1
×
[
G∗m
(
W 2UkX̃J

)
+ (m/n)1/2Gn

(
W 2UkX̃J

)]
=− E

[
W
(
Y − φ̃(X)

)
X̃

T

J

] [
E
(
W 2X̃JX̃

T

J

)]−1
×
[
G∗m
(
W 2UkX̃J

)
+ (m/n)1/2Gn

(
W 2UkX̃J

)]
+ oPM (1),

(S1.8)

conditionally on the data, in probability. And the third term in (S1.7)

equals

m1/2P∗m
[
WÛ∗k

(
φ̃(X)− φ̂n(X)

)]
=m1/2P∗m

[
WUk

(
φ̃(X)− φ̂n(X)

)]
− P∗m

[
W
(
φ̃(X)− φ̂n(X)

)
X̃

T

J

]
×
[
P∗m
(
W 2X̃JX̃

T

J

)]−1[
G∗m
(
W 2UkX̃J

)
+ (m/n)1/2Gn

(
W 2UkX̃J

)]
=G∗m

[
WUk

(
φ̃(X)− φ̂n(X)

)]
+ (m/n)1/2Gn

[
WUk

(
φ̃(X)− φ̂n(X)

)]
− P∗m

[
W
(
φ̃(X)− φ̂n(X)

)
X̃

T

J

][
P∗m
(
W 2X̃JX̃

T

J

)]−1
×
[
G∗m
(
W 2UkX̃J

)
+ (m/n)1/2Gn

(
W 2UkX̃J

)]
,

which converges to zero, conditionally on the data, in probability, under

Assumptions (C2) and (C3). The last term in (S1.7) equals

Pn
(
WÛk

)2
m1/2(θ′k − θ̂′k) +

[
P∗m
(
WÛ∗k

)2 − Pn
(
WÛk

)2]
m1/2(θ′k − θ̂′k)

=− (m/n)1/2Gn[WUk(Y − φ̃(X)−Mk)] + oPM (1), (S1.9)
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where Mk = θ′kWUk + WX̃
T

J

(
PW 2X̃JX̃

T

J

)−1
P
[
WX̃J

(
Y − φ̃(X)

)]
is

defined in (S1.4). Plugging in (S1.8) and (S1.9) into (S1.7) yields

P∗m
(
WÛ∗k

)2
m1/2(θ̂′∗k − θ̂′k) = G∗m

[
WUk

(
Y − φ̃(X)−Mk

)]
+ oPM (1),

(S1.10)

conditionally on the data, in probability.

When β0,C 6= 0, it is easy to verify that{
P∗m[WÛ∗k (Y − φ̂n(X))]

}2
P∗m(WÛ∗k )2

=

{
P∗m[WUk(Y − φ̃(X))] + P∗m

[
W (Û∗k − Uk)(Y − φ̂n(X)) +WUk(φ̃(X)− φ̂n(X))

]}2

P∗m(WUk)2 + P∗m(WÛ∗k −WUk)2 + 2P∗m[W 2Uk(Û∗k − Uk)]
PM

→{E[WUk(Y − φ̃(X))]}2

E(WUk)2
= Var(WUTβ0,JC )[Corr(WUk,WU

T)β0,JC ]2

conditionally on the data, a.s. for k ∈ JC . This implies that

PM(k̂′∗m 6= k′0)

=PM

 ⋃
k:k 6=k′0


{
P∗m[WÛ∗k′0

(Y − φ̂n(X))]
}2

P∗m(WÛ∗k′0
)2

≤
{
P∗m[WÛ∗k (Y − φ̂n(X))]

}2
P∗m(WÛ∗k )2




≤
∑
k:k 6=k0

PM

{P∗m[WÛ∗k′0
(Y − φ̂n(X))]

}2
P∗m(WÛ∗k′0

)2
≤
{
P∗m[WÛ∗k (Y − φ̂n(X))]

}2
P∗m(WÛ∗k )2


→ 0 a.s.,

where the convergence follows from the condition that, when β0,JC 6= 0, k′0

uniquely maximizes |Corr(WUk,WU
T)β0,JC |. This, together with (S1.10)
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and k̂′n
P→ k′0, yields

m1/2(θ̂′∗m − θ̂′n)P∗m(WÛ∗
k̂′∗m

)2 =m1/2(θ̂′∗k′0 − θ̂k′0)P
∗
m(WÛ∗k′0)

2 + oPM (1)

=G∗m
[
WUk′0

(
Y − φ̃(X)−Mk′0

)]
+ oPM (1)

(S1.11)

conditionally in probability. The result follows from bootstrap CLT, con-

tinuous mapping theorem, and Slutsky’s lemma.

When β0,JC = 0, θ′k = 0 for k ∈ JC and θ′0 = 0. In this case, we need

m/n = o(1). Thus

m1/2(θ̂′∗m − θ̂′n) = m1/2θ̂′∗m −m1/2(θ̂′n − θ′0) = m1/2θ̂′∗m + oP (1),

and

 m1/2θ̂′∗k{
m1/2P∗m[WÛ∗k (Y − φ̂n(X))]

}2
/P∗m(WÛ∗k )2


k∈JC

=

 1

P∗m(WÛ∗k )2

 m1/2P∗m[WÛ∗k (Y − φ̂n(X)− θ′kWÛ∗k )]{
m1/2P∗m[WÛ∗k (Y − φ̂n(X)− θ′kWÛ∗k )]

}2


k∈JC

=

 1

P∗m(WÛ∗k )2

 G∗m[WUk(Y − φ̃(X)−Mk)]

(G∗m[WUk(Y − φ̃(X)−Mk)])
2



k∈JC

+ oPM (1)

d→

 Zk/E(WUk)
2

Z2
k/E(WUk)

2


k∈JC

.

conditionally on the data, in probability. The result follows by using similar

arguments are those at the end of the proof of part i).
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S2 Assumptions and proofs of Theorem 4

Assumptions.

(A1) EX4
k <∞ for k = 1, . . . , p.

(A2) There exist functions h̃(X) and q̃(X) such that n1/2[ĥn(x)− h̃(x)] =

∆h(x)Ŝh + oP (1) and n1/2[q̂n(x) − q̃(x)] = ∆q(x)Ŝq + oP (1), where

∆h(x) and ∆q(x) are vector-valued deterministic functions of x, and

Ŝh and Ŝq are data dependent random vectors satisfying

i). ∆h(X) and ∆q(X) are square integrable random vectors; and

ii)

({
Gn

[
W̃Lk

(
Y − h̃(X)− ψkALk − E

[
W̃
(
Y − h̃(X)

)
X̃

T

J

][
E
(
AW̃X̃JX̃

T

J

)]−1
× AX̃J

)]}
k∈JC

, Ŝh, Ŝq

)T

d→ ({Zo
k : k ∈ JC}, Sh, Sq)T ∼ N(0,Σo)

for some variance-covariance matrix Σo assumed to exist.

(A3) The error term ε in model (2.1) has mean zero, finite variance, and is

uncorrelated with (W̃ , W̃X), where W̃ = A− q̃(X).

(A4) ko0 is unique when β0,JC 6= 0.

(A5) q̃(X) = q0(X) or h̃(X) = h0(X) a.s.

(A6) m1/2[ĥ∗m(x)− ĥn(x)] = ∆h(x)Ŝ∗h + oPM
(1) and m1/2[q̂∗m(x)− q̂n(x)] =

∆q(x)Ŝ∗q + oPM
(1) conditionally on the data (in probability), where
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∆h(x) and ∆q(x) are defined in Assumption (A2), and Ŝ∗h and Ŝ∗q are

bootstrap sample dependent random vectors satisfying({
G∗m
[
W̃Lk

(
Y − h̃(X)− ψkALk − E

[
W̃
(
Y − h̃(X)

)
X̃

T

J

][
E
(
AW̃X̃JX̃

T

J

)]−1
AX̃J

)]}
k∈JC

, Ŝ∗h, Ŝ
∗
q

)T

d→ ({Zo
k : k ∈ JC}, Sh, Sq)T ∼ N(0,Σo)

conditional on the data, in probability.

Proof for part i) of Theorem 4.

First note that for k ∈ JC ,

Pn[AŴL̂2
k]n

1/2(ψ̂k − ψk) = n1/2Pn
[
Ŵ L̂k

(
Y − ĥn(X)− ψkAL̂k

)]
= Gn

[
W̃Lk

(
Y − h̃(X)− ψkALk

)]
+ n1/2Pn

[
Ŵ (L̂k − Lk)

(
Y − h̃(X)− ψkALk

)]
+ n1/2Pn

[
(Ŵ − W̃ )Lk

(
Y − h̃(X)− ψkALk

)]
+ n1/2Pn

[
Ŵ L̂k

(
h̃(X)− ĥn(X) + ψkA(Lk − L̂k)

)]
. (S2.12)

Recall that Lk = Xk−X̃
T

Jηk and L̂k = Xk−X̃
T

J η̂k, where ηk = arg minη E
[
AW̃ (Xk−

X̃
T

Jη)2
]

and η̂k = arg minη Pn
[
AŴ (Xk− X̃

T

Jη)2
]
, respectively. First order

conditions implies that E(AW̃LkX̃J) = 0, Pn(AŴL̂kX̃J) = 0, and

n1/2(η̂k − ηk) = [Pn(AŴX̃JX̃
T

J )]−1
(
Gn[AW̃LkX̃J ] + n1/2Pn[A(Ŵ − W̃ )LkX̃J ]

)
= [E(AW̃X̃JX̃

T

J )]−1
(
Gn[AW̃LkX̃J ]− E

[
ALkX̃J∆q(X)

]
Ŝq

)
+ oP (1),

where the second equality follows from Assumptions (A1) and (A2). Thus
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the second term of (S2.12) equals

−E
[
W̃
(
Y − h̃(X)

)
X̃

T

J

][
E
(
AW̃X̃JX̃

T

J

)]−1
(
Gn[AW̃LkX̃J ]− E

[
ALkX̃J∆q(X)

]
Ŝq

)
+ oP (1),

the third term of (S2.12) equals −E
[
Lk

(
Y − h̃(X)−ψkALk

)
∆q(X)

]
Ŝq +

oP (1), and the fourth term equals −E
[
W̃Lk∆h(X)

]
Ŝh + oP (1). Plugging

these into (S2.12), we have

Pn[AŴL̂2
k]n

1/2(ψ̂k − ψk)

=Gn

[
W̃Lk

(
Y − h̃(X)− ψkALk − E

[
W̃
(
Y − h̃(X)

)
X̃

T

J

][
E
(
AW̃X̃JX̃

T

J

)]−1
AX̃J

)]
− E

{
Lk

(
Y − h̃(X)− ψkALk − E

[
W̃
(
Y − h̃(X)

)
X̃

T

J

][
E
(
AW̃X̃JX̃

T

J

)]−1
AX̃J

)

∆q(X)

}
Ŝq − E

[
W̃Lk∆h(X)

]
Ŝh + oP (1) (S2.13)

Case 1. β0,JC 6= 0. In this case, (S2.13) implies that ψ̂k
P→ ψk. In addition,

it is easy to verify that Pn(AŴL̂2
k)

p→ E(AW̃L2
k). By Slutsky’s Lemma,

ψ̂2
kPn(AŴL2

k)
p→ ψ2

kE(AW̃L2
k),

which is maximized at unique ko0 when β0,JC 6= 0 by Assumption (A4).

Since k̂on = arg maxkinJC

[
ψ̂2
kPn(AŴL2

k)
]
, it follows immediately that k̂on

P→

ko0. Hence

n1/2(ψ̂n − ψ0) = n1/2(ψ̂ko0 − ψko0) + oP (1)
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The result follows from Assumption (A2’)

Case 2. β0,JC = 0. In this case ψk = 0 for k ∈ JC under Assumptions

(A3) and (A5). Thus nψ̂2
kPn(AŴL̂2

k) = [n1/2(ψ̂k − ψk)]
2Pn(AŴL̂2

k). The

result follows using similar techniques as those in the proof of part i) of

Theorem 3.

Proof for part ii) of Theorem 4.

For k ∈ JC , let (δ̂
∗
k, ψ̂

∗
k) be the solution to

P∗m
[
(X̃

T

J , Xk)
TŴ ∗(Y − ĥ∗m(X)− (X̃

T

Jδ +Xkψ)A
)]

= 0,

where Ŵ ∗ = A− q̂∗m(X). Then

ψ̂∗k = P∗m
[
Ŵ ∗(Y − ĥ∗m(X))L̂∗k

]/
P∗m
[
AŴ ∗(L̂∗k)

2
]
,

where L̂∗k = Xk − X̃
T

J η̂
∗
k and η̂∗k = arg minη P∗m[AŴ ∗(Xk − X̃

T

Jη)2]. The

m-out-of-n bootstrap analog of ψ̂n is

ψ̂∗m = ψ̂∗
k̂o∗m
, where k̂o∗n = arg max

k∈JC

{
(ψ̂∗k)

2P∗m[AŴ ∗(L̂∗k)
2]
}
.
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For k ∈ JC , note that E
[
W̃Lk

(
Y − h̃(X)− ψkALk

)]
= 0. Thus

P∗m[AŴ ∗(L̂∗k)
2]m1/2(ψ̂∗k − ψ̂k)

=m1/2P∗m
[
Ŵ ∗L̂∗k

(
Y − ĥ∗m(X)− ψkAL̂∗k

)]
+m1/2P∗m

[
AŴ ∗(L̂∗k)

2(ψk − ψ̂k)
]

=G∗m
[
W̃Lk

(
Y − h̃(X)− ψkALk

)]
+m1/2P∗m

[
Ŵ ∗(L̂∗k − Lk)

(
Y − h̃(X)− ψkALk

)]
+m1/2P∗m

[
(Ŵ ∗ − W̃ )Lk

(
Y − h̃(X)− ψkALk

)]
+m1/2P∗m

[
Ŵ ∗L̂∗k

(
h̃(X)− ĥ∗m(X) + Aψk(Lk − L̂∗k)

)]
+ (m/n)1/2Gn

[
W̃Lk

(
Y − h̃(X)− ψkALk

)]
+m1/2P∗m

[
AŴ ∗(L̂∗k)

2(ψk − ψ̂k)
]

(S2.14)

By definition of η̂∗k and ηk, we have

m1/2(η̂∗k − ηk)

=
[
P∗m
(
AŴ ∗X̃JX̃

T

J

)]−1 [
G∗m(AW̃LkX̃J) + (m/n)1/2Gn(AW̃LkX̃J)

+m1/2P∗m(A(Ŵ ∗ − W̃ )LkX̃J)
]

=
[
P∗m
(
AŴ ∗X̃JX̃

T

J

)]−1 [
G∗m(AW̃LkX̃J) + (m/n)1/2Gn(AW̃LkX̃J)

− P∗m[ALkX̃J∆q(X)](Ŝ∗q + (m/n)1/2Ŝq) + oPM (1)
]

=
[
E
(
AW̃X̃JX̃

T

J

)]−1[
G∗m(AW̃LkX̃J) + (m/n)1/2Gn(AW̃LkX̃J)

− E[ALkX̃J∆q(X)](Ŝ∗q + (m/n)1/2Ŝq)
]

+ oPM (1)

conditional on the data, in probability. Thus the second term of (S2.14)
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equals

−m1/2P∗m
[
Ŵ ∗X̃

T

J

(
Y − h̃(X)− ψkALk

)]
(η̂∗k − ηk)

=− E
[
W̃
(
Y − h̃(X)

)
X̃

T

J

][
E
(
AW̃X̃JX̃

T

J

)]−1[
G∗m(AW̃LkX̃J)

+ (m/n)1/2Gn(AW̃LkX̃J)− E[ALkX̃J∆q(X)](Ŝ∗q + (m/n)1/2Ŝq)
]

+ oPM (1).

(S2.15)

conditionally in probability. Similarly, the third term of (S2.14) equals

−E
[
Lk

(
Y − h̃(X)− ψkALk

)
∆q(X)

][
Ŝ∗q + (m/n)1/2Ŝq

]
+ oPM (1)

(S2.16)

conditionally in probability, and the fourth term of (S2.14) equals

−E
[
W̃Lk∆h(X)

]
[Ŝ∗h + (m/n)1/2Ŝh] + oPM (1) (S2.17)

conditionally in probability. Note that the last two terms in (S2.14) are

negligible. Plugging (S2.13) and (S2.15)-(S2.17) into (S2.14), we have

P∗m[AŴ ∗(L̂∗k)
2]m1/2(ψ̂∗k − ψ̂k)

=G∗m
[
W̃Lk

(
Y − h̃(X)− ψkALk − E

[
W̃
(
Y − h̃(X)

)
X̃

T

J

][
E
(
AW̃X̃JX̃

T

J

)]−1
AX̃J

)]
− E

{
Lk

(
Y − h̃(X)− ψkALk − E

[
W̃
(
Y − h̃(X)

)
X̃

T

J

][
E
(
AW̃X̃JX̃

T

J

)]−1
AX̃J

)
∆q(X)

}
Ŝ∗q − E

[
W̃Lk∆h(X)

]
Ŝ∗h + oPM

(1)

conditionally in probability. The result follows using similar arguments as

those in the proof of Theorem 4.
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S3 Non-Uniqueness of the Most Informative Predic-

tor

Theorems 1-4 requires that the most informative predictor of T (X) to be

unique under Ha so that the parameter in the hypotheses are well defined.

In fact, this condition can be removed with a slight modification of the

parameter and test statistic. In this section, we demonstrate the extension

of Theorem 1 to the case of non-unique k0. Extension to other theorems

can be derived in a similar fashion.

Denote the set of maximizers byK0 := arg maxk∈{1,...,p} |Corr(WX ′k,WX
T)β0|.

Note that

Corr(WX ′k,WX
Tβ0) =

[
E(WX ′k)

2

Var(WXTβ0)

]1/2
θk.

Since Var(WXTβ0) does not depend on k, we haveK0 = arg maxk∈{1,...,p} | [E(WX ′k)
2]

1/2
θk|,

and Hypothesis (2.4) in Section 2 is equivalent to

H0 : τ0 = 0 vs. Ha : τ0 > 0

where τ0 = maxk∈{1,...,p}
∣∣ [E(WX ′k)

2]
1/2
θk
∣∣, which can be estimated by τ̂ =

maxk∈{1,...,p}
∣∣ [Pn(WX̂ ′k)

2
]1/2

θ̂k
∣∣.

Theorem S1. Assume conditions (C1) - (C3) in Section S1 hold. Then
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under model (2.1),

n1/2 (τ̂ − τ0)
d→


maxk∈K0 [2(1θk>0 − 1/2)Z ′k] if τ0 > 0

maxk∈{1,...,p} |Z ′k| if τ0 = 0,

where (Z ′1, . . . , Z
′
p)

T ∈ Rp is a mean zero normal random vector. with co-

variance matrix given by that of the random vector with components

WX ′k
[E(WX ′k)

2]1/2

{
Y − φ̃(X)− E[W (Y − φ̃(X))]

EW 2
W − E[WX ′k(Y − φ̃(X))]

2E(WX ′k)
2

WX ′k

}
.

Proof. Denote Zn,k = n1/2
{[

Pn(WX̂ ′k)
2
]1/2

θ̂k − [E(WX ′k)
2]

1/2
θk

}
.

First, consider under H0. In this case, [E(WX ′k)
2]

1/2
θk = 0 for all k.

Thus

n1/2(τ̂ − τ0)

=n1/2

(
max

k∈{1,...,p}

∣∣∣∣[Pn(WX̂ ′k)
2
]1/2

θ̂k −
[
E(WX ′k)

2
]1/2

θk

∣∣∣∣)
= max

k∈{1,...,p}
|Zn,k|.

Second, consider under Ha. When K0 = {1, . . . , p},
∣∣ [E(WX ′k)

2]
1/2
θk
∣∣

is positive and takes the same value for all k. We have

n1/2 (τ̂ − τ0)

= max
k∈{1,...,p}

(∣∣Zn,k + n1/2
[
E(WX ′k)

2
]1/2

θk
∣∣− n1/2

∣∣ [E(WX ′k)
2
]1/2

θk
∣∣)

= max
k∈{1,...,p}

[2(1θk>0 − 1/2)Zn,k] + oP (1),
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where the second equality follows since n1/2
∣∣ [E(WX ′k)

2]
1/2
θk
∣∣ → ∞ and

Zn,k = Op(1) as n→∞.

When K0 6= {1, . . . , p}, denote

δn := 1{
max

k∈KC
0

∣∣[E(WX′k)
2]

1/2
θk

∣∣≥maxk∈K0

∣∣[E(WX′k)
2]

1/2
θk

∣∣}.
It is easy to see that

P
(

max
k∈KC

0

∣∣ [E(WX ′k)
2
]1/2

θk
∣∣ ≥ max

k∈K0

∣∣ [E(WX ′k)
2
]1/2

θk
∣∣)

≤P

 ⋃
k∈KC

0

⋂
j∈K0

{∣∣ [E(WX ′k)
2
]1/2

θk
∣∣ ≥ ∣∣ [E(WX ′j)

2
]1/2

θj
∣∣}

≤
∑
k∈KC

0

P

( ⋂
j∈K0

{∣∣ [E(WX ′k)
2
]1/2

θk
∣∣ ≥ ∣∣ [E(WX ′j)

2
]1/2

θj
∣∣})→ 0.

Thus δn = oP (1). Therefore,

n1/2 (τ̂ − τ0)

=n1/2
(

max
k∈K0

∣∣∣ [Pn(WX̂ ′k)
2
]1/2

θ̂k

∣∣∣(1− δn) + max
k∈KC

0

∣∣∣ [Pn(WX̂ ′k)
2
]1/2

θ̂k

∣∣∣δn
−max

k∈K0

∣∣∣ [E(WX ′k)
2
]1/2

θk

∣∣∣)
=n1/2

(
max
k∈K0

∣∣∣ [Pn(WX̂ ′k)
2
]1/2

θ̂k

∣∣∣−max
k∈K0

∣∣∣ [E(WX ′k)
2
]1/2

θk

∣∣∣)
+ n1/2

(
max
k∈KC

0

∣∣∣ [Pn(WX̂ ′k)
2
]1/2

θ̂k

∣∣∣−max
k∈K0

∣∣∣ [Pn(WX̂ ′k)
2
]1/2

θ̂k

∣∣∣) δn
= max

k∈K0

[2(1θk>0 − 1/2)Zn,k] + oP (1)
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where the last equality follows since

0 ≤n1/2

(
max
k∈KC

0

∣∣∣ [Pn(WX̂ ′k)
2
]1/2

θ̂k

∣∣∣−max
k∈K0

∣∣∣ [Pn(WX̂ ′k)
2
]1/2

θ̂k

∣∣∣) δn
≤n1/2 max

k∈KC
0

(∣∣∣ [Pn(WX̂ ′k)
2
]1/2

θ̂k

∣∣∣− ∣∣∣ [E(WX ′k)
2
]1/2

θk

∣∣∣) δn
−n1/2 max

k∈K0

(∣∣∣ [Pn(WX̂ ′k)
2
]1/2

θ̂k

∣∣∣− ∣∣∣ [E(WX ′k)
2
]1/2

θk

∣∣∣) δn
≤2 max

k∈{1,...,p}
|Zn,k|δn = oP (1).

The result follows by showing that (Zn,1, . . . ,Zn,p)T converges in distribu-

tion to (Z ′1, . . . , Z
′
p)

T, using arguments similar to that in Section S1.

S4 More on the Doubly Robust Method

Note that the doubly robust method presented in Section 4 can also be

used for randomized trials. However, as compared to the method presented

in Sections 2 and 3, this approach may cause dispersion in variance of the

estimate. Below we illustrate this point at the initial step (i.e. when J = ∅).

Consider a trial where two treatments are randomized with equal prob-

ability q0(X) = 1/2. We estimate the propensity score by the sample

proportion of patients who were assigned to treatment A = 1. In this case,

q̃(X) = q0(X) = 1/2 and W̃ = W = 1A=1−1/2. We can further verify that

X ′k = Lk = X −EXk, θk = ψk, and k0 = ko0, where θk and k0 are defined in
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Section 2 below equation (2.3), and ψk and ko0 are defined in Section 4 by

setting J = ∅. Thus the parameters in the hypotheses (2.4) and (4.2) are

the same (i.e. θ0 = ψ0).

To ensure a fair comparison, we further assume that the main effect

can be consistently estimated by both methods, namely, φ̃(X) = E(Y |X)

and h̃(X) = E(Y |A = 0).

Denote gk(X) := X ′k[(X − EX)Tβ0 − θkX ′k]. Based on Remark 2 of

Theorem 1, it is easy to see that the asymptotic variance of θ̂k is

Var

(
Zk

E[WX ′k]
2

)
=

Var (WX ′kε) + Var [W 2gk(X)]

{E[WX ′k]
2}2

=
4Var (WX ′kε) + Var [gk(X)]

{E[X ′k]
2}2

.

Similarly, by Theorem 4, the asymptotic variance of ψ̂k is

Var

(
Z̃k

E(AWX ′k
2)

)
=

Var(WX ′kε) + Var(W [Agk(X)− EAgk(X)])

[E(AWX ′k
2)]2

=
4Var (WX ′kε) + 2Var [gk(X)]

{E[X ′k]
2}2

.

That is, ψ̂k has larger asymptotic variance than θ̂k. So we expect the doubly

robust method to be more conservative than the method in Section 2 when

applied to randomized trials.
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S5 Details of simulations and tables

S5.1 Simulations for randomized trials

In the randomized trial setting, we compare the sampling from null (NULL),

m-out-of-n bootstrap for known propensity score (m̂-boot), and the dou-

bly robust method (m̂-boot-DR) procedures with the following competing

methods.

Likelihood ratio test (LRT). This test is based on assuming a full

linear model (3.1) of the interaction terms. At each step, under the

null hypothesis, β0,JC = 0, the reduction in the residual sum of squares

is compared to the residual sum of squares for the full model using an

F-ratio.

Multiple testing with Bonferroni correction (BONF). At each

step, marginal regression models are used. A t-test with Bonferroni

correction is then carried out to detect whether each regression co-

efficient θ′k is non-zero. The intersection of the |JC | null hypotheses

coincides with our null in each step.

n-out-of-n bootstrap (n-boot). This procedure is similar to the

proposed m-out-of-n approach, except that the usual n-out-of-n boot-

strap is used at each step.
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m-out-of-n bootstrap with m chosen by Bickel and Sakov’s

method ( m̂BS-boot). This procedure is similar to the proposed

m-out-of-n approach, except that m is chosen via Bickel and Sakov’s

method at each step.

We consider three examples for the data generating model: i) Y =

ε, ii) Y = 0.6X1(A − 0.5) + ε, and iii) Y = 0.6(X1 + X2)(A − 0.5) +

ε. In all examples treatment A ∼ Bernoulli(0.5), and X is generated

from a mean zero p-dimensional normal distribution with an exchangeable

variance-covariance structure Var(Xk) = 1 and Cov(Xj, Xk) = ρ for j 6= k,

where ρ takes values 0 and 0.6, and the noise ε ∼ N(0, 1) is independent of

X.

In the first model, there is no active interaction term. We perform one

step screening test to evaluate the type I error rate of the proposed test. In

the second model, there is one active interaction term. Thus we perform

sequential tests in two steps. The first step evaluates the power of the test

and the second step evaluates the type I error rate. Similarly, in the third

example, we conduct the test in three steps, the first two steps for power

and the last step for type I error rate control.

We consider n = 200, and p = 10, 50, 100. A nominal 5% significance

level is used throughout. The number of bootstrap resamples is taken as
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1, 000. Empirical rejection rates based on 500 Monte Carlo replications

are reported in Tables S1 and S2. The two proposed methods (NULL and

m̂-boot) provide good control of type I error rate and good power in all

cases. m̂-boot-DR, m̂BS-boot and LRT are less powerful as compared to

the proposed methods. n-boot fails to control the type I error rate. In

the case of independent X, BONF is as good as our proposed methods in

terms of type I error rate control and power (Table S1). However, when the

components of X are highly correlated, BONF is less powerful for large p

(Table S2).

S5.2 Simulations for observational studies

In the observational study setting, we compare the proposed m̂-boot-DR

method with m̂BS-boot and n-boot methods. We consider four data gener-

ating models:

i’) logitP (A = 1|X) = (X1 + X2)/2 + (X4 − X3)/4, Y = (X1 + X2 +

X3)
2/4 + ε;

ii’) logitP (A = 1|X) = (X1 + X2)/2 + (X4 −X3)/4, Y = (X1 + X2 +

X3)
2/4 + (1 +X2)A+ ε;

iii’) logitP (A = 1|X) = (X1 +X2)
2/2− (X3 +X4)

2/2, Y = (X1 +X2 +

X3)/2 + ε;
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Table S1: Rejection rate (%) over 500 Monte Carlo replications for independent X for

randomized trials (n = 200).

Model Step p NULL m̂-boot m̂-boot-DR m̂BS-boot n-boot LRT BONF

i) step 1 10 4.0 6.6 3.8 5.8 36.2 2.4 4.2

(type I error 50 4.0 7.2 1.0 4.2 70.4 4.0 4.4

rate) 100 3.6 6.8 1.8 2.4 83.6 3.0 4.8

ii) step 1 10 90.4 88.6 81.0 82.6 98.6 79.0 89.4

(power) 50 79.8 83.2 52.0 65.4 99.0 32.4 81.6

100 71.2 76.6 38.2 52.2 98.6 16.6 73.2

step 2 10 4.0 5.2 3.8 5.2 34.6 2.4 3.8

(type I error 50 4.0 6.0 1.0 4.0 68.0 4.2 4.0

rate) 100 3.0 3.4 1.0 2.0 82.2 2.6 3.2

iii) step 1 10 97.8 97.0 93.8 91.4 99.8 98.6 97.6

(power) 50 93.2 95.6 73.0 84.4 99.8 73.0 94.0

100 91.6 94.6 54.0 77.4 100 44.0 92.6

step 2 10 82.0 75.4 68.0 68.4 97.2 65.4 82.4

(power) 50 63.2 63.2 27.6 40.4 97.8 22.2 64.8

100 50.8 49.8 13.4 27.4 97.0 11.4 53.8

step 3 10 3.8 4.2 4.4 4.2 30.2 2.8 3.8

(type I error 50 4.0 3.8 1.6 2.6 68.0 4.2 3.8

rate) 100 3.0 1.2 0.8 1.2 81.4 2.8 3.2
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Table S2: Rejection rate (%) over 500 Monte Carlo replications for X with pairwise

correlation of 0.6 for randomized trials (n = 200).

Model Step p NULL m̂-boot m̂-boot-DR m̂BS-boot n-boot LRT BONF

i) step 1 10 3.8 5.0 4.4 5.0 22.0 2.4 1.8

(type I error 50 4.4 6.6 3.2 5.6 35.0 4.0 2.4

rate) 100 4.0 6.8 3.6 6.0 36.6 3.0 1.6

ii) step 1 10 94.4 91.2 86.2 82.6 99.2 79.6 92.4

(power) 50 90.8 91.8 69.2 75.6 98.0 33.4 86.6

100 90.2 89.4 72.4 72.2 99.0 15.8 84.6

step 2 10 2.4 3.6 2.8 3.6 20 1.4 2.2

(type I error 50 2.6 4.8 2.8 4.2 37.2 2.6 2.4

rate) 100 2.2 5.4 2.2 5.2 43.6 1.6 1.6

iii) step 1 10 100 100 99.8 99.2 100 100 100

(power) 50 100 100 99.4 99.0 100 93.0 100

100 100 100 99.6 97.4 100 73.4 100

step 2 10 50.4 43.8 40.4 42.8 82.6 26.2 47.8

(power) 50 26.2 30.4 13.4 28.4 84.2 9.4 24.0

100 19.6 27.6 15.4 26.6 87.0 5.2 16.2

step 3 10 3.4 5.0 4.4 5.0 15.8 1.0 3.2

(type I error 50 2.4 4.4 2.6 4.2 39.0 2.8 2.2

rate) 100 1.6 5.0 2.2 5.0 47.2 1.6 1.2
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iv’) logitP (A = 1|X) = (X1 +X2)
2/2− (X3 +X4)

2/2, Y = (X1 +X2 +

X3)/2 + (1 +X2)A+ ε.

In all examples X is generated from a mean zero p-dimensional normal

distribution with an exchangeable variance-covariance structure Var(Xk) =

1 and Cov(Xj, Xk) = ρ for j 6= k, where ρ takes values 0 and 0.5, and the

noise ε ∼ N(0, 1) is independent of X.

In the analysis, linear logistic regression model with adaptive lasso is

used to estimate the propensity score model q0(X), and linear regression

with adaptive lasso is used to estimate the main effect h0(X). So in mod-

els i’) and ii’), q0(X) is correctly specified, while h0(X) is misspecified; in

models iii’) and iv’), q0(X) is misspecified, while h0(X) is correctly speci-

fied.

Similar to the randomized trial setting, there is no active interaction

term in models i’) and iii’). We perform one step screening test to evaluate

the type I error rate of the proposed test. In models ii’) and iv’), there is

one active interaction term. Thus we perform sequential tests in two steps.

The first step evaluates the power of the test and the second step evaluates

the type I error rate.

We consider n = 200, and p = 10, 50, 100. A nominal 5% significance

level is used throughout. The number of bootstrap resamples is taken as
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1, 000. Empirical rejection rates based on 500 Monte Carlo replications

are reported in Table S3. The proposed m̂-boot-DR method provides good

control of type I error rate and good power in all cases. m̂BS-boot lacks

power as compared to m̂-boot, and n-boot fails to control the type I error

rate.

S5.3 Simulation for Test of Global Null

In this section, we report simulation results for testing the global null hy-

pothesis

H0 : there is no treatment by covariate interaction

vs. Ha : there is treatment by covariate interaction

This corresponds to the first step of our method. We compare out method

with two competing methods:

Kernel Machine based Score test. This test is proposed by Shen and

Cai (2016) to identify whether a set of covariates are predictive of treatment

difference in the setting of randomized trials. They consider three kernels

(linear, quadratic, and Gaussian) and an Omnibus test to choose the best

kernel. Since our models are linear, we consider the linear kernel and denote

the method by KMl.

Gene Environment Set Association Test (GESAT): This is a variance
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Table S3: Rejection rate (%) over 500 Monte Carlo replications for observational studies

(n = 200).

Corr(Xj , Xk) = 0 Corr(Xj , Xk) = 0.5

Model Step p m̂-boot-DR m̂BS-boot n-boot m̂-boot-DR m̂BS-boot n-boot

i’) step 1 10 4.6 3.4 28.4 6.6 4.6 24.4

(type I error 50 1.0 1.0 21.6 4.2 4.0 15.8

rate) 100 1.4 1.4 27.8 6.6 6.6 20.2

ii’) step 1 10 80.4 65.4 94.4 43.2 24.2 64.8

(power) 50 68.0 52.0 91.6 30.0 18.6 48.2

100 60.2 55.8 87.4 29.6 27.8 40.8

step 2 10 3.2 2.6 25.8 2.4 2.0 16.2

(type I error 50 1.0 1.0 21.8 0.8 0.8 10.8

rate) 100 1.8 1.8 25.6 1.4 1.4 13.4

iii’) step 1 10 4.0 4.0 26.4 6.4 6.0 16.6

(type I error 50 2.4 2.0 23.6 3.6 3.4 12.8

rate) 100 4.4 3.8 22.8 4.4 4.4 11.2

iv’) step 1 10 99.8 93.0 100 100 91.2 100

(power) 50 97.6 87.2 100 96.4 76.8 99.8

100 96.0 91.4 99.8 94.4 77.8 98.0

step 2 10 4.2 4.2 22.4 5.8 5.8 24.6

(type I error 50 1.6 1.6 20.4 2.8 2.8 14.2

rate) 100 3.0 2.6 21.2 4.6 4.6 16.4
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component test proposed by Lin et al. (2013). It relies on the correct

specification of the full linear model. We use it as an example of set-based

test for gene by environmental interactions.

For the randomized trial setting, we consider models i) and ii) in Sec-

tion S5.1, and a new model iv) Y = (
∑p

k=1Xk)(A − 0.5)/10. Model i)

represents the null hypothesis, model ii) represents the presence of a strong

sparse signal (since there is only one large nonzero treatment-by-covariate

interaction term), and model iv) represents the case of weak dense signals

(since all treatment-by-covariate interaction terms are nonzero and small).

For observational studies, we consider the two null models i’) and iii’) in

Section S5.2 to check the validity of the two competing methods.

Simulation results are presented in Tables S4 and S5. In randomized

trials, the m̂-boot method is slightly anti-conservative when p = 50 in the

case of independent covariates. (note, with 500 Monte-Carlo replications,

a rate of 7% or more is considered as significantly bigger than the nominal

5% rate.) Otherwise, all methods provide good control of type I error

rates. In the case of strong sparse signal (Model ii), our methods have

significant larger power as compared to two competing methods. In the

weak dense signal case (Model iv), all methods are comparable and have

increasing power as p increases (i.e. more signals), while KMl performs
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slightly better when p is large. This is expected as our methods are based on

the test of selected covariate, while the two competing methods incorporate

all covariates in the test. If those extra covariates bring in signals to the

model, then the power of the test would increase; otherwise, those covariates

would just increase noise and thus decrease the power. All methods perform

better when covariates are correlated. From Table S5, we see that KMl fails

to control type I error rate as expected since the method is designed for

randomized trial data, while GESAT is only valid in Model iii’) where the

main effect model is correctly specified.

S5.4 Tuning parameter selection

In this section, we present simulation results of the m-out-of-n bootstrap

method for p = 10 when different tuning parameter d is used. It can be

seen from Tables S6 and S7 that the result is pretty robust to the choice of

d ∈ [0.7, 0.9].
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Table S4: Rejection rate (%) over 500 Monte Carlo replications for the test of global null

for randomized trials (n = 200).

Corr(Xj , Xk) = 0 Corr(Xj , Xk) = 0.6

Model p NULL m̂-boot KMl GESAT NULL m̂-boot KMl GESAT

i) 10 4.0 6.6 4.0 4.2 3.8 5.0 4.4 3.4

50 4.0 7.2 3.8 2.2 4.4 6.6 5.2 6.0

100 3.6 6.8 2.8 3.0 4.0 6.8 5.8 5.2

ii) 10 90.4 88.6 81.4 78.6 94.4 91.2 92.0 90.6

50 79.8 83.2 41.6 24.2 90.8 91.8 89.2 77.0

100 71.2 76.6 29.4 7.6 90.2 89.4 89.2 69.4

iv) 10 9.2 14.2 13.2 11.6 49.0 46.8 79.8 77.0

50 9.2 21.4 20.4 14.6 92.6 94.2 100 100

100 11.2 25.0 30.2 11.8 97.6 99.2 100 100
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Table S5: Rejection rate (%) over 500 Monte Carlo replications for the global test of

treatment by covariates interactions for models i’) and iii’) (null models) in Section S5.2

(n = 200).

Corr(Xj , Xk) = 0 Corr(Xj , Xk) = 0.5

Model p m̂-DR KMl GESAT m̂-DR KMl GESAT

i’) 10 4.6 28.8 39.6 6.6 88.6 97.0

50 1.0 12.2 12.6 4.2 84.2 95.2

100 1.4 7.8 6.6 6.6 87.4 93.4

iii’) 10 4.0 97.8 3.8 6.4 98.4 6.6

50 2.4 97.6 4.0 3.6 74.4 3.0

100 4.4 97.2 0.8 4.4 64.8 5.8

press.
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Table S6: Rejection rate (%) of m̂-boot method over 500 Monte Carlo replications for

randomized trial examples with tuning parameter d = 0.9, 9.85, 0.8, 0.75 and 0.7 (n =

200, p = 10).

Corr(Xj , Xk) = 0 Corr(Xj , Xk) = 0.6

Model Step 0.9 0.85 0.8 0.75 0.7 0.9 0.85 0.8 0.75 0.7

i) 1 7.8 5.4 6.6 3.6 5.0 4.6 4.8 5.0 4.4 6.0

ii) 1 87.6 89.4 88.6 87.2 89.0 89.4 91.6 91.2 91.2 94.6

2 4.4 5.0 5.2 3.6 5.8 3.4 3.0 3.6 3.2 4.2

iii) 1 96.6 96.2 97.0 97.2 97.8 100 100 100 100 100

2 76.2 74.0 75.4 70.8 76.4 33.6 37.0 43.8 46.0 49.6

3 3.8 3.8 4.2 4.2 2.8 3.6 5.2 5.0 4.4 5.0

Table S7: Rejection rate (%) of m̂-boot-DR method over 500 Monte Carlo replications

for observational study examples with tuning parameter d = 0.9, 9.85, 0.8, 0.75 and 0.7

(n = 200, p = 10).

Corr(Xj , Xk) = 0 Corr(Xj , Xk) = 0.5

Model Step 0.9 0.85 0.8 0.75 0.7 0.9 0.85 0.8 0.75 0.7

i’) 1 3.4 4.0 4.6 4.2 4.0 7.0 6.6 6.6 5.6 6.0

ii’) 1 81.4 80.0 80.4 80.0 79.8 44.6 44.6 43.2 43.2 44.4

2 3.2 2.8 3.2 2.2 3.0 3.4 3.0 2.4 2.6 3.6

iii’) 1 2.6 3.2 4.0 3.2 3.6 4.2 4.6 6.4 4.4 6.4

iv’) 1 99.6 99.4 99.8 100 99.8 99.4 99.8 100 99.6 99.6

2 2.8 3.8 4.2 2.6 3.4 4.4 5.4 5.8 6.4 6.6
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