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Abstract: Conditional quantile estimations are an essential ingredient in mod-

ern risk management, and many other applications, where the conditional het-

eroscedastic structure is usually assumed to capture the volatility in financial time

series. This study examines linear quantile regression models with GARCH-X er-

rors. These models include the most popular generalized autoregressive conditional

heteroscedasticity (GARCH) as a special case, and incorporate additional covariates

into the conditional variance. Three conditional quantile estimators are proposed,

and their asymptotic properties are established under mild conditions. A boot-

strap procedure is developed to approximate their asymptotic distributions. The

finite-sample performance of the proposed estimators is examined using simulation

experiments. An empirical application illustrates the usefulness of the proposed

methodology.
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quantile regression, two-step procedure, value-at-risk.

1. Introduction

Linear models are powerful tools used to explore the relationship between

response and predictive variables (Kutner et al. (2005)). For example, one may

aim to predict stock returns based on related economic variables, such as crude

oil and gold prices; see Chernozhukov and Umantsev (2001) and Gay (2016).

In economics and finance, considerable attention has been devoted to regres-

sion models with autoregressive errors for time series data; see Durbin (1960),

Wang, Li and Tsai (2007), and the references therein. Stylized facts indicate that

volatility clustering is a common feature for financial time series such as daily

stock returns and foreign exchange rates (Ryden, Terasvirta and Asbrink (1998);

Taylor (2008); Tsay (2010)). As a result, it is necessary to consider conditional

heteroscedasticity when a linear model is fitted to financial time series data.

Since the appearance of the autoregressive conditional heteroscedastic
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(ARCH) and generalized autoregressive conditional heteroscedastic (GARCH)

models (Engle (1982); Bollerslev (1986)), time series models with ARCH-type

errors have become common in empirical studies (Li, Ling and McAleer (2002)).

Motivated by these stylized facts and the success of GARCH-X models in inter-

preting the volatility for financial data, this study focuses on the following linear

model:

Yt = φ′Xt−1 + ut,

where Yt ∈ R is the response, Xt−1 = (x1,t−1, . . . , xm,t−1)
′ ∈ Rm consists of m

covariates that can be endogenous or exogenous, and φ = (φ1, . . . , φm)′ ∈ Rm

is a vector of linear coefficients. The regression error ut follows the GARCH-X

model (Apergis (1998)),

ut = σ∗t ε
∗
t , σ∗2t = ω∗ +

q∑
i=1

α∗i u
2
t−i +

p∑
j=1

β∗j σ
∗2
t−j + π∗′Vt−1, (1.1)

where ω∗ > 0; α∗i ≥ 0, for i = 1, . . . , q; β∗j ≥ 0, for j = 1, . . . , p; Vt−1 =

(υ21,t−1, . . . , υ
2
d,t−1)

′ ∈ Rd includes d exogenous covariates; π∗ = (π∗1, . . . , π
∗
d)
′ ∈ Rd

is the coefficient vector, with π∗k ≥ 0, for 1 ≤ k ≤ d; and the innovations {ε∗t }
are independent and identically distributed (i.i.d.) random variables with mean

zero and unit variance. Model (1.1) is very general, and includes the ARCH and

GARCH models as special cases. It reduces to the GARCH-X model studied

by Han and Kristensen (2014) when p = q = d = 1, to Bollerslev’s GARCH

model when d = 0, and to Engle’s ARCH model when p = d = 0. In practice,

Vt may comprise realized volatility measures (Engle and Gallo (2006); Hwang

and Satchell (2005), or economic and financial indicators (Glosten, Jagannathan

and Runkle (1993)). Model (1.1) has become increasingly popular for modeling

economic and financial series; see Shephard and Sheppard (2010), Hossain and

Ghahramani (2016), and Medeiros and Mendes (2016).

As a widely used measure of market risk, value-at-risk (VaR) plays an es-

sential role in risk management and capital regulation in the financial industry

(Duffie and Pan (1997); Taylor (2019)). Because VaR is a tail quantile of the

conditional return distribution, its evaluation is explicitly a conditional quan-

tile estimation problem; see Wu and Xiao (2002), Kuester, Mittnik and Paolella

(2006), Francq and Zakoian (2015), Wang and Zhao (2016), and Martins-Filho,

Yao and Torero (2018). Several methods have been proposed to estimate and

forecast VaR: the parametric approach, using a specific parametric model with a

known innovation distribution; the semiparametric approach, using a filtered his-

torical simulation or quantile regression; and the nonparametric approach, using
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the conditional autoregressive VaR-method or a kernel density estimation; see,

for example, Engle and Manganelli (2004), Wang and Zhao (2016), and Taylor

(2019) for further detail. Specifically, a quantile regression (Koenker and Bassett

(1978)) is suitable when modeling the VaR based on a specific parametric model,

without assuming a distribution form on the innovations. Moreover, it is robust

to extreme values and facilitates a distribution-free inference. This motivates

us to focus on the conditional quantile estimation and VaR prediction for the

linear model with GARCH-X errors. Many studies have examined quantile re-

gressions for conditional heteroscedastic models. For example, Koenker and Zhao

(1996) and Xiao and Koenker (2009) considered a quantile regression for the lin-

ear (G)ARCH models proposed by Taylor (2008); Lee and Noh (2013) and Zheng

et al. (2018) investigated a quantile regression for Bollerslev’s GARCH models;

and Noh and Lee (2016) studied a quantile regression for ARMA models with

asymmetric GARCH errors. However, few works have examined quantile estima-

tions for linear models with GARCH-X errors. This study aims to fill this gap;

the main contributions are summarized below. Section 2 contains the methods

and theoretical results.

(a) Section 2.1 proposes three conditional quantile estimators: a jointly weighted

estimator, a jointly unweighted estimator, and a two-step estimator for lin-

ear models with GARCH-X errors. Specifically, the joint estimators are

obtained by simultaneously estimating the regression coefficients and the

GARCH-X parameters using a quantile regression. The two-step estimator

is a hybrid of a least squares estimator for linear coefficients and a condi-

tional quantile estimator for GARCH-X parameters. Moreover, to take into

account conditional heteroscedasticity, we introduce a set of weights into

the joint estimation to improve efficiency.

(b) Section 2.2 establishes the root-n consistency and asymptotic normality of

the proposed estimators. Owning to the quadratic GARCH-X structure and

the non-smoothness of the quantile loss function, the objective function with

respect to the parameter vector is neither differentiable nor convex, which

makes the theoretical derivation and numerical optimization intractable.

This study adopts the bracketing method (Pollard (1985)) to overcome this

difficulty. In addition, only E(Y 2
t ) < ∞ is required in order to derive the

asymptotic normality for an AR-GARCH model; thus, the proposed esti-

mating methods are suitable for heavy-tailed data.

(c) To circumvent difficulties in estimating the density function fε(bτ ) in the

asymptotic covariance matrices, Section 2.3 introduces a random-weighting
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bootstrap method that approximates the covariance matrices directly. A

theoretical justification of the bootstrap method is also provided.

Section 3 conducts simulation experiments to evaluate the finite-sample per-

formance of the three proposed estimators. Section 4 provides a real example

on VaR prediction, and Section 5 concludes the paper. Technical proofs of all

theorems and corollaries are relegated to the online Supplementary Material.

Throughout this paper, we denote by ‖ ·‖ the norm of a matrix or column vector,

defined as ‖A‖ =
√

tr(AA′) =
√∑

i,j a
2
ij .

2. Model, Methodology, and Asymptotic Results

2.1. Quantile regression estimation

Consider a linear model with GARCH-X errors,

Yt = φ′Xt−1 + ut, (2.1)

and

ut = σtεt, σ2t = 1 +

q∑
i=1

αiu
2
t−i +

p∑
j=1

βjσ
2
t−j + π′Vt−1, (2.2)

where φ = (φ1, . . . , φm)′ is an m-dimensional coefficient vector of the covari-

ates Xt−1 = (x1,t−1, . . . , xm,t−1)
′ in the regression model, ut is a regression er-

ror, π = (π1, . . . , πd)
′ is a d-dimensional coefficient vector of covariates Vt−1 =

(υ21,t−1, . . . , υ
2
d,t−1)

′ in the volatility model, αi ≥ 0 for 1 ≤ i ≤ q, βj ≥ 0 for

1 ≤ j ≤ p, πk ≥ 0 for 1 ≤ k ≤ d, and εt is an i.i.d. random variable with mean

zero and finite variance. In practice, Xt−1 may include lagged values of Yt.

Let Ft be the σ-field generated by {Xt,Xt−1, . . . ;Vt,Vt−1, . . . ; εt, εt−1, . . .},
and let bτ be the τth quantile of εt. Assume that εt is independent of Ft−1; then

the τth quantile of Yt, conditional on Ft−1, has the form of

QYt
(τ |Ft−1) = φ′Xt−1 + bτσt, (2.3)

where σt is defined in (2.2). Let ω∗ = var(εt), ε
∗
t = εt/

√
ω∗, σ∗t = σt

√
ω∗,

α∗i = ω∗αi, β
∗
j = βj , and π∗ = ω∗π. The GARCH-X error in (2.2) then has

the standard form of (1.1). Note that the GARCH-X model extends Bollerslev’s

GARCH model by including additional predictors. Because model (1.1) suffers

from an identifiability problem in the quantile estimation (Xiao and Koenker

(2009); Lee and Noh (2013); Noh and Lee (2016)), we use the GARCH-X form

given in (2.2).
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Denote the parameter vector of models (2.1) and (2.2) by λ = (γ ′,φ′)′, where

γ = (α1, . . . , αq, β1, . . . , βp, π1, . . . , πd)
′. Define functions ut(φ) = Yt − φ′Xt−1

and σ2t (λ) = 1 +
∑q

i=1 αiu
2
t−i(φ) +

∑p
j=1 βjσ

2
t−j(λ) +π′Vt−1. Note that function

σ2t (λ) is defined recursively and, thus, depends on infinite past observations.

Therefore, initial values are required, in practice. Here, we set ut(φ) = 0 and

σ2t (λ) = 1, for t ≤ 0, and denote the resulting function of σt(λ) as σ̃t(λ); see

also Lee and Noh (2013). To estimate QYt
(τ |Ft−1) at (2.3), it is natural to

simultaneously estimate the regression coefficients and the GARCH-X parameters

using a quantile regression. Then, a joint conditional quantile estimator can be

defined as

θ̃τn = (̃bτn, λ̃
′
n)′ = argmin

b,λ

n∑
t=1

ρτ{Yt − φ′Xt−1 − bσ̃t(λ)}, (2.4)

where ρτ (x) = x[τ − I(x < 0)] is the check function. However, θ̃τn may suffer

an efficiency loss due to the presence of conditional heteroscedasticity in the

regression errors. Therefore, we consider a jointly weighted conditional quantile

estimator,

θ̂τn = (̂bτn, λ̂
′
n)′ = argmin

b,λ

n∑
t=1

σ̂−1t ρτ{Yt − φ′Xt−1 − bσ̃t(λ)}, (2.5)

where the weight σ̂−1t = σ̃−1t (λ̂intn ), and λ̂intn is an appropriate estimator of λ0.

The objective functions in (2.4) and (2.5) are both non-convex with respect to θ =

(b,λ)′, even if models (2.1) and (2.2) are reduced to the ARCH(1) models, where

θ = (b, α1)
′. This makes the theoretical derivation and numerical optimization

challenging.

As in Koenker and Zhao (1996), a two-step procedure can be applied to

models (2.1) and (2.2). Specifically, the first step uses a least squares estimation

to obtain an estimator φ̌n for model (2.1), and then computes the regression

residuals using ǔt = ut(φ̌n). The second step performs the conditional quantile

estimation for model (2.2),

γ̌τn = (b̌τn, γ̌
′
n)′ = argmin

b,γ

n∑
t=1

ρτ {ǔt − bσ̌t(γ)} ,

where σ̌2t (γ) is calculated recursively using σ̌2t (γ) = 1+
∑q

i=1 αiǔ
2
t−i+

∑p
j=1 βj σ̌

2
t−j

(γ) + π′Vt−1, given the initial values ǔt = 0 and σ̌2t (γ) = 1, for t ≤ 0. It can

be shown that the preliminary estimator φ̌n is involved in the Bahadur represen-
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tation of γ̌τn; see Corollary 2 in Section 2.2. Denote θ̌τn = (γ̌ ′τn, φ̌
′
n)′. We call

θ̂τn, θ̃τn, and θ̌τn the jointly weighted estimator, jointly unweighted estimator,

and two-step estimator, respectively. We can verify that the initial values of ǔt,

ut(φ), σ̌2t (γ), and σ2t (λ) have no effect on the asymptotic distributions of the

three proposed estimators.

For the jointly weighted estimator θ̂τn, we next define a Bayesian information

criterion (BIC) to select the orders of m, d, p, and q in model (2.3):

BICτ (m, d, p, q) = 2n log σ̂τn + (1 +m+ d+ p+ q) log n, (2.6)

where σ̂τn = n−1
∑n

t=1 σ̂
−1
t ρτ{Yt−qt(θ̂τn)}, with σ̂t = σ̃t(λ̂

int
n ) and θ̂τn defined by

(2.5); see Zhu, Zheng and Li (2018). Let (m̂, d̂, p̂, q̂) = argminm,d,p,qBICτ (m, d, p,

q), where 1 ≤ m ≤ mmax, 1 ≤ d ≤ dmax, 1 ≤ p ≤ pmax, 1 ≤ q ≤ qmax, and

mmax, dmax, pmax, and qmax are predetermined integers. Using a method similar

to that in the proof of Theorem 5 in Zhu, Zheng and Li (2018), we can show that

the proposed BIC in (2.6) is consistent when the true orders satisfy m0 ≤ mmax,

d0 ≤ dmax, p0 ≤ pmax, and q0 ≤ qmax. We can define the BIC for the jointly

unweighted estimator θ̃τn and verify its consistency in a similar manner.

Note that the estimating procedure should be repeated mmax×dmax×pmax×
qmax times to search for the orders of m, d, p, and q, which is time-consuming

when mmax, dmax, pmax, and qmax are large. Alternatively, we may fix some

orders in advance and search for the others using the BIC. For example, we may

select orders based on the background of the data and using other quantitative

tools, such as the autocorrelation function (ACF) and the partial autocorrelation

function (PACF).

2.2. Asymptotic properties

Let θ = (b,λ′)′ be the parameter vector of model (2.3), and let θτ0 =

(bτ ,λ
′
0)
′ = (bτ ,γ

′
0,φ

′
0)
′ be its true value, where φ0 = (φ10, . . . , φm0)

′ and γ0 =

(α10, . . . , αq0, β10, . . . , βp0, π10, . . . , πd0)
′. Denote by qt(θ) = φ′Xt−1 + bσt(λ)

and q̃t(θ) = φ′Xt−1 + bσ̃t(λ) the conditional quantile functions of Yt with-

out and with initial values, respectively. Suppose that the parameter space

Θ ⊂ R× Rp+q+d+ × Rm is a compact set satisfying

b ≤ |b| ≤ b,
p∑
j=1

βj ≤ ρ0, w ≤ min(α1, . . . , αq, β1, . . . , βp, π1, . . . , πd)

≤ max(α1, . . . , αq, β1, . . . , βp, π1, . . . , πd) ≤ w,
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where R+ = (0,+∞), 0 < b < b, 0 < w < w, 0 < ρ0 < 1, and pw < ρ0. We

further assume that θτ0 is an interior point of Θ. Moreover, denote by Fε(·) and

fε(·) the distribution and density functions of εt, respectively.

We first discuss the asymptotic properties for the jointly weighted estimator

θ̂τn. Because the objective function in (2.5) is non-convex and non-differentiable,

the convexity lemma of Pollard (1991) cannot be applied directly. Instead, we

derive the asymptotic properties by verifying the stochastic differentiability con-

dition defined by Pollard (1985). As a result, we first prove the consistency of

θ̂τn in Theorem 1, and then establish its asymptotic normality in Theorem 2.

Assumption 1. (i) {Xt}, {Vt}, and {ut} are strictly stationary and ergodic,

with E(‖Xt‖2) < ∞ and E(‖Vt‖) < ∞; (ii) The polynomials α(x) =
∑q

i=1 αix
i

and β(x) = 1−
∑p

j=1 βjx
j have no common root.

Assumption 2. εt has a continuous density function fε(·) at a neighborhood of

bτ .

We focus on the model with stationary covariates; hence, Assumption 1(i)

assumes that {Xt} and {Vt} are strictly stationary. Assumption 1(ii) is the

identifiability condition for the GARCH-X model (2.2). Moreover, for the model

identification, the intercept should not be included in the regression model; that

is, Xt−1 does not incorporate an intercept.

Theorem 1. Under Assumptions 1 and 2, if λ̂intn −λ0 = op(1) and E(u2t ) <∞,

then θ̂τn → θτ0 in probability as n→∞.

Denote Σi(τ) = E[σ−it ∂qt(θτ0)/∂θ∂qt(θτ0)/∂θ
′], for i = 0, 1 and 2, where

∂qt(θτ0)

∂θ
=

(
σt,

bτ
2σt

∂σ2t (λ0)

∂γ ′
,X ′t−1 +

bτ
2σt

∂σ2t (λ0)

∂φ′

)′
.

To study the asymptotic normality of θ̂τn, the following assumptions are required.

Assumption 3. E(‖Xt‖4+δ) <∞, for some δ > 0. The matrices E(XtX
′
t) and

Σ0(τ) are positive definite.

Assumption 4. The density function fε(·) is positive and differentiable almost

everywhere on R, with fε(·) satisfying supx∈R fε(x) <∞, and its derivative ḟε(·)
satisfying supx∈R |ḟε(x)| <∞.

Assumption 3 is required to verify the root-n consistency and asymptotic

normality of θ̂τn. Assumption 4 is made to simplify the technical proofs, although

it suffices to restrict the boundedness of fε(·) and |ḟε(·)| in a small, but fixed

neighborhood of bτ . Moreover, Assumption 4 implies Assumption 2.
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Theorem 2. Suppose that
√
n(λ̂intn − λ0) = Op(1) and E(u2t ) <∞. If Assump-

tions 1, 3, and 4 hold, then

(i)
√
n(θ̂τn − θτ0) = Op(1); and

(ii)
√
n(θ̂τn − θτ0) → N (0,Ξ1) in distribution as n → ∞, where Ξ1 = τ(1 −

τ)f−2ε (bτ )Σ−12 (τ).

To prove Theorem 2, we apply the bracketing method to verify the stochas-

tic differentiability condition (Pollard (1985)). This, together with the standard

arguments for conditional quantile estimators, implies the root-n consistency of

θ̂τn. Then, the asymptotic normality follows. Moreover, in contrast to the con-

dition on λ̂intn in Theorem 1, Theorem 2 requires that λ̂intn is a root-n consistent

estimator of λ0.

Let Wt = (σt, 0.5σ
−1
t bτ∂σ

2
t (λ0)/∂γ

′)′ and Mt = Xt−1 + 0.5σ−1t bτ∂σ
2
t (λ0)

/∂φ′. It is clear that ∂qt(θτ0)/∂θ = (W ′
t ,M

′
t)
′. Define matrices Di = E(σitXt−1

X ′t−1) for i = 0 and 2, Ωi = E(σ−it WtW
′
t ) for i = 0 and 1, Γ1 = E(σ−1t WtM

′
t),

and Γ2 = E(σtWtX
′
t−1). Let ω∗ = var(εt) and κ = E[εtI(εt < bτ )]. Define the

matrices

Ξ2 =
τ(1− τ)

f2ε (bτ )
Σ−11 (τ)Σ0(τ)Σ−11 (τ) and Ξ3 =

(
Σ11(τ) Σ12(τ)

Σ′12(τ) Σ22

)
,

where Σ12(τ) = κf−1ε (bτ )Ω−11 Γ2D
−1
0 − Ω−11 Γ1Σ22, Σ22 = ω∗D−10 D2D

−1
0 , and

Σ11(τ) = Ω−11

[
τ(1− τ)

f2ε (bτ )
Ω0 +

κ

fε(bτ )
(Γ2D

−1
0 Γ′1 + Γ1D

−1
0 Γ′2) + Γ1Σ22Γ

′
1

]
Ω−11 .

Using the same technique as that in Theorem 2, we derive the asymptotic prop-

erties for the jointly unweighted estimator θ̃τn and the two-step estimator θ̌τn
below.

Corollary 1. Suppose that E(|ut|2+δ) < ∞, for some δ > 0. If Assumptions 1,

3, and 4 hold, then

(i)
√
n(θ̃τn − θτ0) = Op(1); and

(ii)
√
n(θ̃τn − θτ0)→ N (0,Ξ2) in distribution as n→∞.

Corollary 2. Suppose that matrices Ω0 and Ω1 are positive definite and

E(|ut|2+δ) <∞, for some δ > 0. If Assumptions 1, 3, and 4 hold, then

(i)
√
n(γ̌τn − γτ0) = Op(1), where γτ0 = (bτ ,γ

′
0)
′; and
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(ii) γ̌τn has the following Bahadur representation:

√
n(γ̌τn−γτ0) =

Ω−11

fε(bτ )

1√
n

n∑
t=1

Wtψτ (εt−bτ )−Ω−11 Γ1

√
n(φ̌n−φ0)+op(1),

where ψτ (x) = τ − I(x < 0) and

√
n(φ̌n − φ0) =

(
1

n

n∑
t=1

Xt−1X
′
t−1

)−1
1√
n

n∑
t=1

Xt−1σtεt.

Moreover, it holds that
√
n(θ̌τn−θτ0)→ N(0,Ξ3) in distribution as n→∞.

Note that Corollaries 1 and 2 require a stronger moment condition on ut
than that in Theorem 2. Corollary 2 provides a theoretical justification that√
n(λ̌n−λ0) = Op(1), where λ̌n = (γ̌ ′n, φ̌

′
n)′. Hence, λ̌n can be used to construct

the weights {σ̂−1t } in (2.5) for the jointly weighted estimation. Specifically, we set

σ̂t =
√

1 + γ̌ ′nžt, where žt = (ǔ2t−1, . . . , ǔ
2
t−q, σ̌

2
t−1(γ̌n), . . . , σ̌2t−p(γ̌n), υ21,t−1, . . . ,

υ2d,t−1)
′.

A general theoretical comparison of the three proposed estimators is compli-

cated, owning to the iterative form of σt. However, given τ , the true parameter

vector θτ0, and the density function fε(·), we can obtain theoretical values for

bτ , fε(bτ ), ω∗, and κ, and estimate all matrices in Ξi (i = 1, 2, 3) using sample

averages based on a large generated sequence. Then, we can compute the asymp-

totic relative efficiency (ARE) of θ̂τn to θ̃τn and θ̌τn, defined as ARE(θ̂τn, θ̃τn) =

(|Ξ2|/|Ξ1|)1/(p+q+d+1) and ARE(θ̂τn, θ̌τn) = (|Ξ3|/|Ξ1|)1/(p+q+d+1), respectively,

where | · | is the determinant of a matrix; see Serfling (2009). The simulation

results in Section 3 indicate that the jointly weighted estimator θ̂τn is asymptot-

ically more efficient than the jointly unweighted estimator θ̃τn. In contrast, the

relative performance of θ̂τn versus that of the two-step estimator θ̌τn is mixed in

terms of asymptotic efficiency; see Section 3.2.

Based on θ̂τn, θ̃τn, and θ̌τn, the conditional quantile of Yt, given Ft−1, can

be estimated using qt(θ̂τn), qt(θ̃τn), and qt(θ̌τn), respectively. Note that θ̂τn =

(γ̂ ′τn, φ̂
′
n)′ and θ̃τn = (γ̃ ′τn, φ̃

′
n)′, where γ̂τn = (̂bτn, γ̂

′
n)′ and γ̃τn = (̃bτn, γ̃

′
n)′.

The following corollary provides the theoretical results for the τth conditional

quantile of Yn+1 based on the three approaches.

Corollary 3. If the conditions of Theorem 2 and Corollaries 1–2 hold, then,

conditional on Fn,

√
n[qn+1(θ̂τn)− qn+1(θτ0)] =W ′

n+1

√
n(γ̂τn − γτ0) +M ′

n+1

√
n(φ̂n − φ0) + op(1),
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√
n[qn+1(θ̃τn)− qn+1(θτ0)] =W ′

n+1

√
n(γ̃τn − γτ0) +M ′

n+1

√
n(φ̃n − φ0) + op(1),

and
√
n[qn+1(θ̌τn)− qn+1(θτ0)] =W ′

n+1

√
n(γ̌τn − γτ0) +M ′

n+1

√
n(φ̌n − φ0) + op(1).

Theorem 2 and Corollaries 1–3 still hold when model (2.2) reduces to an

ARCH model or a GARCH model. To establish Theorem 2, E(‖Xt‖4+δ) < ∞
is necessary if {Xt−1} includes exogenous variables. However, when d = 0 and

{Xt−1} contains only lagged values of Yt, that is, models (2.1) and (2.2) reduce

to AR-GARCH models or AR(m)-ARCH(q) models with m ≤ q, the moment

condition on Xt can be relaxed to E(‖Xt‖2) < ∞. Moreover, for Corollaries

1–2, the moment condition on Xt can be reduced to E(‖Xt‖2+δ) < ∞ for the

AR-GARCH models and AR(m)-ARCH(q) models with m ≤ q. In addition,

when the GARCH-X errors reduce to ARCH errors, we can show that Ξ2−Ξ1 is

nonnegative definite; that is, θ̂τn is asymptotically more efficient than θ̃τn.

2.3. Bootstrapping approximation

To circumvent difficulties in estimating the density function fε(bτ ), we pro-

pose using a bootstrapping procedure to directly approximate the asymptotic

distributions of θ̂τn, θ̃τn, and θ̌τn.

For the joint estimators θ̂τn and θ̃τn, we define the corresponding randomly

weighted bootstrapping estimators, as follows:

θ̂∗τn = (̂b∗τn, λ̂
∗′
n )′ = argmin

b,λ

n∑
t=1

ωtσ̂
−1
t ρτ{Yt − φ′Xt−1 − bσ̃t(λ)} (2.7)

and

θ̃∗τn = (̃b∗τn, λ̃
∗′
n )′ = argmin

b,λ

n∑
t=1

ωtρτ{Yt − φ′Xt−1 − bσ̃t(λ)}, (2.8)

where {ωt} are i.i.d. nonnegative random weights, with mean and variance both

equal to one; see also Zheng et al. (2018) and Zhu, Zeng and Li (2020).

For the two-step estimator θ̌τn, the randomly weighted bootstrapping is in-

volved in both steps. In the first step, a randomly weighted least squares es-

timator is obtained using φ̌∗n =
(∑n

t=1 ωtXt−1X
′
t−1
)−1∑n

t=1 ωtXt−1Yt, and the

bootstrapped residuals are computed using ǔ∗t = ut(φ̌
∗
n). Then, a randomly
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weighted quantile estimation is performed:

γ̌∗τn = (b̌∗τn, γ̌
∗′
n )′ = argmin

b,γ

n∑
t=1

ωtρτ {ǔ∗t − bσ̌∗t (γ)} , (2.9)

where, given the initial values ǔ∗t = 0 and σ̌∗2t (γ) = 1, for t ≤ 0, σ̌∗2t (γ) is

calculated recursively using σ̌∗2t (γ) = 1+
∑q

i=1 αiǔ
∗2
t−i+

∑p
j=1 βj σ̌

∗2
t−j(γ)+π′Vt−1.

As a result, the randomly weighted bootstrapping estimator for θ̌τn is defined as

θ̌∗τn = (γ̌∗′τn, φ̌
∗′
n )′.

Assumption 5. The random weights {ωt} are i.i.d. nonnegative random vari-

ables with mean and variance both equal to one, satisfying E|ωt|2+δ < ∞, for

some δ > 0.

Theorem 3. Suppose that Assumption 5 and the conditions in Theorem 2 and

Corollaries 1–2 hold. Then, conditional on Fn:

(i)
√
n(θ̂∗τn − θ̂τn)→d N (0,Ξ1) in probability as n→∞;

(ii)
√
n(θ̃∗τn − θ̃τn)→d N (0,Ξ2) in probability as n→∞; and

(iii)
√
n(θ̌∗τn − θ̌τn)→d N (0,Ξ3) in probability as n→∞;

where Ξi, for i = 1, 2, and 3, is defined in Theorem 2 and Corollaries 1–2.

From Theorem 3, we can approximate the covariance matrices of θ̂τn, θ̃τn,

and θ̌τn using the bootstrapped covariance matrices of
√
n(θ̂∗τn− θ̂τn),

√
n(θ̃∗τn−

θ̃τn), and
√
n(θ̌∗τn − θ̌τn), respectively. As a result, we can construct confidence

intervals (CIs) for the estimators by substituting in the approximated asymptotic

standard deviations (ASDs) calculated using the bootstrap method. Moreover,

we can conduct hypothesis tests to detect the significance of the parameters by

replacing the covariance matrices with their bootstrap approximations.

For the random weights, many distributions satisfy Assumption 5, including

the standard exponential distribution and the Rademacher distribution, which

takes the values zero or two with probability 0.5. According to the simulation

findings in Zheng et al. (2018) and Zhu, Zeng and Li (2020), the performance of

the randomly weighted bootstrapping approximation is not sensitive to the choice

of random weights. As a result, we simply use the random weights generated from

the standard exponential distribution in the following sections.



1272 ZHU, LI AND XIAO

3. Simulation Studies

3.1. Finite-sample performance of the three proposed estimators

The first experiment evaluates the finite-sample performance of the three

proposed estimators, θ̂τn, θ̃τn, and θ̌τn, and their bootstrapping approximations.

The data {Yt}nt=1 are generated from a linear model with GARCH-X errors,

Yt = 0.5Xt−1 + ut, ut = σtεt, σ2t = 1 + αu2t−1 + βσ2t−1 + 0.1υ2t−1, (3.1)

where {Xt−1} and {υt−1} are i.i.d. standard normal random variables, (α, β) =

(0.15, 0.8), and {εt} is an i.i.d. standard normal or standardized Student’s t5
random variable with variance one. Three sample sizes, n = 500, 1,000, and

2,000, are considered, and 1,000 replications are generated for each sample size.

We apply the three estimating methods in Section 2.1 to the data, and obtain

θ̂τn, θ̃τn, and θ̌τn at two quantile levels, τ = 0.05 and 0.10. The bootstrapping

procedure in Section 2.3 is conducted to approximate the covariance matrices Ξi,

for i = 1, 2, 3, where the size of each bootstrapped sample is B = 500, and the

random weights {ωt} are generated from the standard exponential distribution.

Then, the ASDs can be calculated using the bootstrapping approximation. We

can also construct CIs for each parameter based on the three estimators and

their ASDs. Specifically, given θ̂τn, the 95% CI of θτ0,j (j = 1, . . . , 5) can be

constructed using θ̂τn,j ± 1.96 × ASD(θ̂τn,j), where θτ0,j and θ̂τn,j are the jth

elements of θτ0 and θ̂τn, respectively, and ASD(θ̂τn,j) is the ASD of θ̂τn,j . The

CIs based on the other two estimation methods can be constructed in a similar

way.

Tables 1–3 report the biases, empirical standard deviations (ESDs), and

ASDs of θ̂τn, θ̃τn, and θ̌τn, respectively, as well as the empirical coverage rates

(ECR) of the 95% CIs. To save space, the simulation results for the setting with

n = 1,000 are provided in the Supplementary Material. It can be seen that, as

the sample size n increases, the biases, ESDs, and ASDs decrease, and the ESDs

and ASDs move closer to each other. In addition, as the innovations become

more heavy-tailed, the standard deviations with respect to λ become larger, in

general, whereas those related to bτ become smaller. This is expected because

the value of |bτ | is smaller for t5 distributed innovations than it is for normally

distributed innovations. Moreover, as the quantile level τ increases from 0.05 to

0.10, the performance of the three estimators improves, in general, when {εt}
follows a t5 distribution. However, when {εt} follows a normal distribution, the

performance with respect to bτ and φ improves, but that with respect to γ wors-
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Table 1. Biases, ESDs, ASDs, and ECRs of the 95% CIs for θ̂τn at τ = 0.05 and 0.10,
for normally distributed Xt−1 and υt−1. The innovations follow a normal or a Student’s
t5 distribution.

Normal t5
τ n Bias ESD ASD ECR Bias ESD ASD ECR

0.05 500 bτ -0.405 0.604 0.476 0.895 -0.282 0.523 0.420 0.911
α -0.023 0.068 0.067 0.890 -0.011 0.084 0.079 0.881
β -0.074 0.114 0.108 0.934 -0.065 0.123 0.119 0.939
π 0.148 0.326 0.256 0.933 0.157 0.346 0.291 0.932
φ -0.007 0.375 0.334 0.931 0.005 0.400 0.384 0.946

2,000 bτ -0.122 0.255 0.259 0.938 -0.110 0.261 0.249 0.941
α -0.007 0.040 0.039 0.917 -0.004 0.049 0.044 0.905
β -0.023 0.044 0.051 0.956 -0.025 0.054 0.059 0.951
π 0.066 0.171 0.161 0.922 0.070 0.205 0.181 0.924
φ -0.002 0.183 0.180 0.943 0.024 0.213 0.208 0.946

0.10 500 bτ -0.358 0.539 0.462 0.909 -0.237 0.427 0.377 0.933
α -0.025 0.070 0.069 0.883 -0.017 0.077 0.074 0.876
β -0.079 0.129 0.126 0.953 -0.066 0.129 0.130 0.949
π 0.121 0.295 0.266 0.943 0.111 0.296 0.276 0.942
φ 0.000 0.303 0.302 0.942 0.008 0.287 0.295 0.951

2,000 bτ -0.104 0.231 0.230 0.950 -0.081 0.216 0.198 0.945
α -0.008 0.041 0.040 0.915 -0.004 0.046 0.042 0.903
β -0.023 0.048 0.056 0.967 -0.023 0.056 0.059 0.961
π 0.054 0.181 0.165 0.917 0.056 0.189 0.171 0.910
φ 0.003 0.149 0.152 0.947 0.014 0.153 0.150 0.940

ens slightly as τ increases. This may be because, as τ gets closer to the center,

more observations are available, but bτ approaches zero. Finally, except for α,

the ECRs of the 95% CIs for the other parameters are close to the nominal level

of 0.95 in all settings. This may be because the true value of α is relative small,

and including υt−1 in the GARCH model may hinder an accurate estimation for

α.

For the comparison between the three estimators, we have the following find-

ings. First, as the sample size increases, the standard deviations of the jointly

weighted estimator are smaller than those of the jointly unweighted estimator.

This is expected because the efficiency gain from the weighting procedure be-

comes more evident when the sample size is larger. Second, the two-step method

outperforms the jointly weighted method when estimating bτ and φ, but performs

a bit worse for the other parameters. Note that φ is estimated using the least

squares method in the two-step estimation, but is estimated using the conditional

quantile method in the joint estimation, which leads to more available observa-

tions for the former. Moreover, the better performance for bτ is probably the
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Table 2. Biases, ESDs, ASDs, and ECRs of the 95% CIs for θ̃τn at τ = 0.05 and 0.10,
for normally distributed Xt−1 and υt−1. The innovations follow a normal or a Student’s
t5 distribution.

Normal t5
τ n Bias ESD ASD ECR Bias ESD ASD ECR

0.05 500 bτ -0.256 0.503 0.390 0.938 -0.184 0.449 0.386 0.944
α -0.016 0.069 0.066 0.900 -0.013 0.081 0.077 0.870
β -0.048 0.103 0.096 0.951 -0.041 0.113 0.113 0.946
π 0.149 0.365 0.302 0.942 0.154 0.363 0.338 0.955
φ 0.001 0.366 0.349 0.941 0.015 0.408 0.408 0.949

2,000 bτ -0.076 0.250 0.230 0.936 -0.082 0.264 0.243 0.955
α -0.004 0.040 0.040 0.911 -0.004 0.049 0.047 0.910
β -0.015 0.045 0.047 0.950 -0.018 0.057 0.060 0.938
π 0.064 0.187 0.187 0.943 0.071 0.215 0.203 0.941
φ -0.004 0.192 0.187 0.936 0.024 0.220 0.217 0.950

0.10 500 bτ -0.223 0.423 0.382 0.947 -0.153 0.362 0.339 0.959
α -0.018 0.072 0.069 0.894 -0.014 0.078 0.073 0.878
β -0.049 0.108 0.113 0.963 -0.040 0.113 0.122 0.954
π 0.139 0.360 0.322 0.957 0.123 0.354 0.321 0.948
φ -0.001 0.307 0.309 0.938 0.009 0.290 0.305 0.961

2,000 bτ -0.070 0.233 0.218 0.952 -0.064 0.220 0.200 0.952
α -0.004 0.044 0.042 0.920 -0.003 0.048 0.045 0.912
β -0.015 0.050 0.054 0.966 -0.018 0.060 0.061 0.948
π 0.063 0.217 0.194 0.932 0.053 0.204 0.191 0.922
φ 0.006 0.154 0.158 0.944 0.016 0.159 0.155 0.945

result of the better performance for φ. Finally, in general, the accuracy of the

CIs for the three estimators is comparable.

3.2. Theoretical comparison between the three estimators

The second experiment compares the asymptotic efficiency of the jointly

weighted estimator θ̂τn with that of the jointly unweighted estimator θ̃τn and

the two-step estimator θ̌τn. We generate a sequence of sample size n = 10,000

from model (3.1), where {εt} are i.i.d. standard normal or standardized Student’s

t5 random variables with variance one. For covariates Xt−1 and υt−1, we con-

sider two cases: (1) Xt−1 = υt−1, where both are i.i.d. standard normal random

variables; and (2) Xt−1 = Yt−1 and {υt−1} are i.i.d. standard normal random

variables. We consider different values for (α, β) and conduct the estimation at

two quantile levels, τ = 0.05 and 0.10. Table 4 shows the calculated AREs,

ARE(θ̂τn, θ̃τn) and ARE(θ̂τn, θ̌τn).

The Table shows that ARE(θ̂τn, θ̃τn) > 1 for all cases; that is, the jointly

weighted estimator is asymptotically more efficient than the jointly unweighted
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Table 3. Biases, ESDs, ASDs, and ECRs of the 95% CIs for θ̌τn at τ = 0.05 and 0.10,
for normally distributed Xt−1 and υt−1. The innovations follow a normal or a Student’s
t5 distribution.

Normal t5
τ n Bias ESD ASD ECR Bias ESD ASD ECR

0.05 500 bτ -0.229 0.437 0.383 0.951 -0.170 0.423 0.376 0.948
α -0.017 0.067 0.066 0.901 -0.013 0.080 0.076 0.875
β -0.041 0.096 0.095 0.953 -0.037 0.111 0.111 0.947
π 0.142 0.333 0.312 0.958 0.148 0.379 0.353 0.962
φ 0.005 0.204 0.208 0.953 0.009 0.208 0.203 0.953

2,000 bτ -0.070 0.241 0.224 0.944 -0.080 0.257 0.237 0.952
α -0.004 0.040 0.040 0.918 -0.005 0.048 0.046 0.911
β -0.014 0.044 0.047 0.952 -0.017 0.056 0.059 0.940
π 0.067 0.193 0.187 0.940 0.066 0.214 0.202 0.935
φ 0.003 0.106 0.104 0.947 0.009 0.109 0.103 0.947

0.10 500 bτ -0.214 0.420 0.374 0.943 -0.146 0.346 0.331 0.960
α -0.018 0.071 0.068 0.889 -0.015 0.077 0.072 0.877
β -0.046 0.105 0.111 0.967 -0.038 0.111 0.120 0.957
π 0.129 0.336 0.331 0.963 0.128 0.362 0.334 0.960
φ 0.005 0.204 0.208 0.953 0.009 0.208 0.203 0.953

2,000 bτ -0.068 0.227 0.215 0.955 -0.062 0.213 0.197 0.955
α -0.005 0.043 0.042 0.922 -0.003 0.047 0.045 0.920
β -0.015 0.049 0.053 0.962 -0.018 0.058 0.060 0.942
π 0.065 0.209 0.196 0.943 0.055 0.206 0.191 0.922
φ 0.003 0.106 0.104 0.947 0.009 0.109 0.103 0.947

estimator. However, the observations are mixed for the AREs of the estimator

θ̂τn and the two-step estimator θ̌τn. First, the jointly weighted estimator becomes

more efficient as the coefficient α or the quantile level τ increases. This is expected

because larger α results in greater volatility, and more data become available as τ

increases, leading to better performance by the weighting procedure. Moreover,

the efficiency gain from the jointly weighted estimator is more evident when

Xt−1 is endogenous, although it becomes smaller as the innovations become more

heavy-tailed. Based on these simulation findings, we focus on the jointly weighted

and two-step estimating methods in the next section.

4. Empirical Analysis

This section analyzes the daily log returns of the Occidental Petroleum se-

curity (NYSE:OXY). The data on daily closing prices, denoted as pt, cover the

period January 2, 2008, to December 29, 2017, with 2,470 observations in total.

A time plot of centered log returns (as percentages), that is, Yt = rt−n−1
∑n

t=1 rt
with rt = 100(ln pt − ln pt−1), provides clear evidence of volatility clustering; see
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Table 4. ARE(θ̂τn, θ̃τn) and ARE(θ̂τn, θ̌τn) for the regression model with GARCH(1, 1)-
X errors of different values for (α, β). The innovations {εt} follow the standard normal
and Student’s t5 distributions, and τ = 0.05 or 0.10, based on a generated sequence of
n = 10,000. ARE1 and ARE2 represent ARE(θ̂τn, θ̃τn) and ARE(θ̂τn, θ̌τn), respectively.

β 0.15 0.30 0.80
τ α 0.40 0.60 0.80 0.40 0.60 0.15

Xt−1 and υt−1 are normal distributed
ARE1 0.05 Normal 1.076 1.201 1.599 1.099 1.311 1.089

t5 1.087 1.171 1.376 1.111 1.281 1.115
0.10 Normal 1.075 1.200 1.596 1.098 1.310 1.089

t5 1.086 1.169 1.373 1.110 1.279 1.115
ARE2 0.05 Normal 0.813 1.017 1.684 0.845 1.194 0.817

t5 0.736 0.873 1.202 0.766 1.022 0.759
0.10 Normal 0.895 1.107 1.810 0.930 1.298 0.905

t5 0.850 0.996 1.357 0.884 1.164 0.884
Xt−1 = Yt−1 and υt−1 is normal distributed

ARE1 0.05 Normal 1.095 1.285 1.998 1.125 1.459 1.100
t5 1.118 1.243 1.550 1.151 1.403 1.142

0.10 Normal 1.095 1.284 1.992 1.124 1.458 1.100
t5 1.117 1.242 1.553 1.150 1.402 1.141

ARE2 0.05 Normal 0.930 1.638 4.172 0.992 2.242 0.856
t5 0.865 1.168 1.963 0.912 1.495 0.841

0.10 Normal 1.019 1.756 4.150 1.085 2.388 0.946
t5 0.991 1.315 2.172 1.046 1.682 0.979

Table 5. Summary statistics for centered log returns in percentage of NYSE:OXY stock.

Min Max Mean Median Std. Dev. Skewness Kurtosis
-20.436 16.656 0.000 0.027 2.271 -0.259 11.025

Figure 1. The summary statistics for {Yt} are provided in Table 5. The nega-

tive sample skewness and the kurtosis greater than three imply that the data are

skewed and heavy-tailed.

The Occidental Petroleum Corporation is an oil and gas producer; therefore,

its stock returns are likely to be affected by lagged values of Yt and the oil

price (Chernozhukov and Umantsev (2001)). Moreover, studies have indicated

that gold can be a hedge against stock returns (Baur and McDermott (2010);

Iqbal (2017)). This study focuses on the effects of {Yt−1}, the lagged crude oil

returns and gold returns on {Yt}. We use the WTI Crude Oil price and the Gold

Fixing Price at 10:30 A.M. in the London Bullion Market as the price series.

The data cover the period January 2, 2008, to December 29, 2017, and can

be downloaded from the website of the Federal Reserve Economic Data (FRED,

https://fred.stlouisfed.org/). Figure 2 shows time plots of their log returns

https://fred.stlouisfed.org/
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Figure 1. Time plot for centered daily log returns in percentage (solid line) of NYSE:OXY
stock from January 3, 2008, to December 29, 2017, with one-day negative VaR forecasts
at levels of 1% (dotted line) and 5% (dashed line) from February 3, 2012, to December
29, 2017.

2008 2010 2012 2014 2016 2018

−1
0

− 5
0

5
10

15

Crude Oil

2008 2010 2012 2014 2016 2018

−5
0

5
10

Gold

2008 2010 2012 2014 2016 2018

0
10

20
30

40
50

Realized variance

Figure 2. Time plots for daily log returns (percentage) of WTI Crude Oil prices (left)
and LBMA Gold prices (middle), and the realized variance (×1002) of the S&P 500 Index
(right) from January 3, 2008, to December 29, 2017.

as percentages, denoted as Oilt and Goldt, respectively. We first regress Yt on

the lagged returns Yt−1, Oilt−1, and Goldt−1. The linear model is fitted using

the least squares method, and the regression residuals are calculated using ǔt =

Yt − φ̌′nXt−1, where Xt−1 = (Yt−1,Oilt−1,Goldt−1)
′ and φ̌n is the least squares

estimate. The ACF and PACF plots of {ǔ2t } show strong ARCH effects, implying

that a linear model with ARCH-type errors can be applied to {Yt}. To further

capture the possible influence of market volatility on {Yt}, we include the realized

kernel variance (×1002) of the S&P 500 Index, denoted by {υ2t }, as the covariate

in the GARCH model. The realized variance series can be downloaded from the
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Oxford-Man Institute’s realized library (http://realized.oxford-man.ox.ac.

uk/); see the time plot of {υ2t } in Figure 2. Hansen and Lunde (2005) show that

the GARCH(1, 1) model performs satisfactorily in most practical applications.

Finally, we consider a linear model with GARCH(1,1)-X errors for {Yt}, where

the regressors are Yt−1, Oilt−1, and Goldt−1, and the covariate in the GARCH-X

model is {υ2t−1}.
We aim to estimate the VaR for {Yt}. Because a 5% VaR is often of interest

to practitioners, we focus on the conditional quantile of Yt at τ = 0.05, that is, the

negative 5% VaR. We first apply the two-step method, and obtain the following

conditional quantile:

Q̌Yt
(0.05|Ft−1) = −0.0710.044Yt−1 − 0.0290.034Oilt−1 + 0.0740.063Goldt−1

−0.7660.202σ̌t,

σ̌2t = 1 + 0.2030.311ǔ
2
t−1 + 0.7650.100σ̌

2
t−1 + 2.9890.710υ

2
t−1, (4.1)

where the standard errors are shown as subscripts, and are calculated using the

bootstrap method in Section 2.3. The estimates of bτ and γ are significant at the

5% level, but the regressors in the linear model are nonsignificant. Based on the

weights calculated from model (4.1), we employ the jointly weighted estimation,

and obtain the following fitted model:

Q̂Yt
(0.05|Ft−1) = −0.0500.072Yt−1 + 0.0290.051Oilt−1 − 0.2130.070Goldt−1

−0.6860.163σ̂t,

σ̂2t = 1 + 0.3670.144û
2
t−1 + 0.7660.097σ̂

2
t−1 + 3.4550.131υ

2
t−1, (4.2)

where the standard errors in subscripts are computed using the bootstrapping

procedure. Compared with model (4.1), the estimate of Goldt−1 in model (4.2)

is significantly negative at the 5% level, implying that gold can be a safe haven

in a bearish market (lower quantiles). Note that the regression coefficients of

models (4.1) and (4.2) are quite different, in both magnitude and sign. This is

expected because they are estimated using different methods. Furthermore, con-

ditional heteroscedasticity is taken into account when performing the estimation

in model (4.2), but is ignored in model (4.1). Moreover, because we include mar-

ket volatility in the GARCH models, the estimates of the GARCH parameter β in

models (4.1) and (4.2) are smaller than the usual estimates provided by GARCH

models without exogenous variables. A similar finding was documented in Hwang

and Satchell (2005), who concluded that the long persistency frequently found in

volatility processes may be due to missing time-varying components. In addition,

http://realized.oxford-man.ox.ac.uk/
http://realized.oxford-man.ox.ac.uk/
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the estimate of the top Lyapunov component for model (4.2) is -0.194; hence, the

process defined by model (4.2) is stationary.

We next evaluate the forecasting performance of the jointly weighted (JW)

and two-step (TS) estimating methods using a rolling procedure for the condi-

tional quantile forecasts at τ = 0.01 and τ = 0.05, which are the negative 1% VaR

and 5% VaR, respectively. A fixed moving window of size 1,000 is used for the

rolling forecasting procedure. Specifically, we conduct the conditional quantile

estimation using the linear model with GARCH(1, 1)-X errors for each moving

window, and compute the one-step-ahead conditional quantile forecast for the

next trading day, that is, the forecast of QYn+1
(τ |Fn). The model estimates are

updated by moving the window forward until we reach the end of the data set.

Finally, we obtain 1,469 one-day-ahead 1% (or 5%) VaRs. For illustration, the

rolling forecasts at τ = 1% and 5% for {Yt} are displayed in Figure 1; these

forecasts are obtained using the jointly weighted approach. The magnitudes of

the VaRs clearly increase as the volatility of the data increases. In addition, Yt
occasionally falls below its one-day negative 5% VaR, and, even more rarely, falls

below its one-day negative 1% VaR.

To compare the forecasting performance of the proposed methods with that

of the existing conditional quantile estimation, we perform the rolling forecasting

procedure using the fully parametric (PAR) method, filtered historical simulation

(FHS) method (Kuester, Mittnik and Paolella (2006)), and conditional autore-

gressive VaR-method, called CAViaR (Engle and Manganelli (2004)). For the

PAR and FHS, a linear model with GARCH(1,1)-X errors defined by (2.1) and

(1.1) is fitted to the data, and the parameters are estimated using the maximum

likelihood estimation, with the innovations {ε∗t } following a skewed Student’s t

distribution. Figure 3 gives the QQ plot of the residuals {ε̆∗t } against the fitted

skewed Student’s t distribution, as well as their density plots. The figure shows

that they are very close to each other; thus, we may argue that the PAR and

FHS methods reach almost their maximum power. The 100τ% negative VaR for

the PAR is computed using φ̆′nXt−1 + Q̆τ σ̆
∗
t , where φ̆n and σ̆∗t = σ∗t (λ̆n) are

the maximum likelihood estimates, and Q̆τ is the τth quantile of the estimated

skewed Student’s t distribution. The 100τ% negative VaR for the FHS is cal-

culated by replacing Q̆τ with the sample τth quantile of the filtered residuals.

CAViaR refers to the indirect GARCH(1,1)-based CAViaR method in Engle and

Manganelli (2004).

To evaluate the forecasting performance of aforementioned five VaR estimat-

ing methods, we calculate the ECR, and perform VaR backtests for the VaR

forecasts. Specifically, the ECR is calculated as the proportion of observations
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Figure 3. Density plots (left) of the model residuals ε̆t (dashed line) and the fitted skewed
t distribution (solid line), and a QQ plot (right) for the model residuals ε̆t against the
fitted skewed t distribution.

that fall below the corresponding conditional quantile forecast for the last 1469

data points. We use two VaR backtests, the likelihood ratio test for correct con-

ditional coverage (CC) in Christoffersen (1998), and the dynamic quantile (DQ)

test in Engle and Manganelli (2004). Denote a hit by Ht = I(Yt < QYt
(τ |Ft−1)).

The null hypothesis of the CC test is that, conditional on Ft−1, {Ht} are i.i.d.

Bernoulli random variables with success probability τ . For the DQ test, following

Engle and Manganelli (2004), we regress Ht on regressors that include a constant,

four lagged hits Ht−i, for i = 1, 2, 3, 4, and the contemporaneous VaR forecast.

The null hypothesis of the DQ test is that all regression coefficients are zero and

the intercept is equal to the quantile level τ .

Table 6 reports the ECRs and p-values of two VaR backtests for the five

estimating methods at the upper and lower 1% and 5% conditional quantiles.

None of the five methods perform well at the lower 5% quantile, with p-values

smaller than 0.05; however, they are adequate at the other three quantiles. In

terms of the backtests, the JW and TS methods are comparable with the other

three methods. With respect to the ECRs, we find that those of the JW and TS

methods are closest to the nominal quantile level τ . We conclude that, overall,

the proposed JW and TS methods outperform the three competitors in terms

of forecasting VaRs for Occidental Petroleum returns. Moreover, our estimating

methods, especially the JW method, use information at one quantile level only.

Given that the corresponding estimator of the parameter vector λ can be much

less efficient when the quantile level is near to zero or one (Zou and Yuan (2008)),

this further demonstrates the usefulness of two proposed methods.
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Table 6. Empirical coverage rate (ECR) (%) and p-values of two VaR backtests of five
estimation methods at the 1%, 5%, 95%, and 99% conditional quantiles. JW, TS, PAR,
FHS, and CAV represent the jointly weighted method, two-step method, parametric
method, filtered historical simulation method, and CAViaR method, respectively.

τ = 1% τ = 5% τ = 95% τ = 99%

ECR CC DQ ECR CC DQ ECR CC DQ ECR CC DQ

JW 0.95 0.86 0.70 4.77 0.65 0.01 94.96 0.92 0.76 98.64 0.32 0.69

TS 0.95 0.86 0.36 4.97 0.77 0.02 95.23 0.65 0.77 98.91 0.79 0.84

PAR 0.88 0.80 0.98 4.56 0.64 0.01 95.64 0.03 0.38 98.77 0.56 0.81

FHS 1.16 0.69 0.37 4.56 0.64 0.03 95.23 0.65 0.78 98.84 0.69 0.96

CAV 1.23 0.56 0.25 4.70 0.55 0.01 96.19 0.01 0.28 99.18 0.69 0.99

5. Conclusion

This study examines a conditional quantile estimation for linear models with

GARCH-X errors. As such, we propose three conditional quantile estimators,

a jointly weighted estimator, a jointly unweighted estimator, and a two-step es-

timator. The root-n consistency and asymptotic normality are established for

the three proposed estimators. Here, we use the bracketing method (Pollard

(1985)) to overcome the theoretical difficulties due to the non-convex and non-

differentiable objective functions. Simulation results indicate that, in general,

the jointly weighted approach outperforms its unweighted counterpart when the

sample size is large. Compared with the two-step estimating method, the jointly

weighted method is preferred when the data exhibit greater volatility. This effi-

ciency gain is especially evident when the linear regressors are endogenous and

the quantile level is not too far from the center. Better VaR forecasting perfor-

mance can be achieved using the proposed methods, as confirmed by our empirical

evidence.

It is also of interest to consider the linear model with conditional heteroscedas-

ticity of unknown form, Yt = φ′Xt−1 + σ(Xt−1)εt, where σ(·) is an unknown

function; see Zhao (2001). Then, conditional on Ft−1, the τth quantile of Yt is

given by QYt
(τ |Ft−1) = φ′Xt−1 + bτσ(Xt−1). As a result, an adaptive weighted

conditional quantile estimation (WCQE) can be constructed, as follows:

(φ̂′n, b̂τn, σ̂(·)) = argmin
φ,b,σ(·)

n∑
t=1

ŵtρτ{Yt − φ′Xt−1 − bσ(Xt−1)},

where the weights {ŵt} are the initial estimators of {σ−1(Xt−1)}. Here, non-

parametric methods, such as the k-nearest neighbors and kernel smoothing ap-

proaches, may be used to fit the unknown function σ(·). We leave this topic for
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future research.

Supplementary Material

The online Supplementary Material provides proofs for all theorems and

corollaries, together with additional simulation results for Section 3.1.
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