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We give proofs of main results and additional simulations in the Supplementary
Material. Specifically, in Section S5, we prove Theorems [TH5], respectively. We
present the proof of Proposition [0 in Section [S6] and provide additional simulations

in Section ST

S1. Theorem [

Theorem (1| has two parts of conclusions, with mr — oo and mr is finite respectively.

We next prove the two parts in Sections [S1.1] and [S1.2] respectively. A lemma used

in Section is given and proved in Section [S1.3]
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S1.1 Proof of the part for mr — oo in Theorem

In this section, we consider mr — oo and max{p,m,r}/n — 0. We prove the
conclusion for mr — oo in Theorem [I] based on the result of Theorem [3| which is
proved in Section [S3]

When (p, m, r) are all fixed, we know that —2log L,, LN X2, asn — oo. Note that
E(x2,) = mr, var(x2,) = 2mr, and when mr — oo, (x2,. — mr)/v2mr 2 N(0,1).

It follows that P(x2,. > V2mrz, +mr) — « and
2, (@) = V2mr x {zq + o(1)} + mr, (S1.1)

where z, denotes the upper a-quantile of N'(0,1).
We define the asymptotic regime R4 = {(p,m,m,n) :n>p+m, p>r, mr —
oo, and max{p,m,r}/n — 0 as n — oo}. Under the asymptotic regime R4,

Theorem 3] shows that (—21og Ly, + j1n)/(no,) = N'(0,1). Note that

—2log Lo+ ptn _ X (@) + un}
no, no, '

P{=2log L, > 2, ()} = P{

Thus when n — oo, P{—2log L,, > x?2,.(a)} — «a is equivalent to

2
Xinr (@) F f1n — 2, AS N — 00. (S1.2)
noy,



When mr — oo, by (S1.1), we know (S1.2)) is equivalent to

V2mr X {zq +o(1)} + mr + p,

no,

— Za, AS TN — 00. (S1.3)

(S1.3) holds for any significance level « if and only if no,, = v2mr{l + o(1)} and
(ptn + mr) /v 2mr = o(1).
Next we will prove that under R4, no, = v2mr{l+o(1)} in the first step, derive

the form of p,, in the second step, and obtain the conclusion in the third step.

Step 1. Note that

By the Taylor expansion, log(1 —a) = —a —a*/2 —a®/3+ O(a) for a = o(1). Under

R4, we know that p/n,m/n,r/n — 0 and r/(n — p —m) — 0. Then we have

n+r—p—m
log
n—p—m
:log(1+ r )
n—p—m
2 3 4
I S 1l r (l) (S1.4)
n—p—m 2(n—-p—m)? 3(n—p-—m)? n?
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and similarly,

n—p n—p
r 1 7 1 rt
S - - O(—). SL5
np ot 3n—pp  Clat) B

Since for any numbers a and b, a®* —b* = (a—b)(a+b) and a®*—b* = (a—b)(a*+b*+ab),

we then know

T3 + 613

- r o __{ r? o }

n—p-m n—-p 2l (n—p—m)2 (n—p)?
1 3 3 rd
+§{(n—p—m)3_ (n—p)3}+0<ﬁ)

(S1.6)

We next examine the first two terms in (S1.6). Note that for a = o(1) and
b=o0(1),1/(1—a)=14a+O(a*) and 1/{(1 —a)(1 —=0)} =1+ a+ b+ O(a® + b?).

Then for the first term in (S1.6|), we have

(n—p—m)(n—p) - n2{1 — (p+m)/n}t(1 — p/n) (S1.7)

2 2 2
= @{Mr p+m+0(p +2m)}.
n n n
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In addition, note that for a = o(1) and b = o(1), 1/{(1 —a)*(1 —b)*} = 1 +2a+2b+
O(a® + b*). Then for the second term in ([S1.6)), we have
1, m(2n — 2p — m)

2 G w7 o

27 1 2 2 2 2
_ _nmﬂ{l_m}_{l+w+_p+0<p )
n n? n n n?
2 3 3 2 2 2
_ {1+ p+3m/ +O(p +m )}
n3 n n?

Combining (S1.7) and (S1.8), we obtain

3
(ST.6) = (SL7) + (SL.Y) + O{T(ﬂ;—jm}

rm rm{2p+m—r}+O{mr(m2+r2+p2)}. (S1.9)

n? n? n4

We then know that ¢2 = 2 x (S1.6) = (2mr/n?) x {1 + o(1)}, and thus no, =

Vv2mr{l + o(1)}.
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Step 2. In this step, we derive the form of p,. Under the asymptotic region R 4,

we know that by Lemma (1| and Taylor expansion,

. 2 2
o = —mr{14 220 o(221))
n n

1
1 w{l +O(w>} +o(1)mr x EEMET
2 n n n
2—1r/2
PEMZZ1/2 Ly EEET
n n

= —mr —mr

Step 3. As discussed, under R4, (S1.3) holds for any level «, if and only if no, =
V2mr{l +o(1)} and (p, +mr)/v/2mr = o(1). In the first step, we have shown that
no, = vV2mr{l + o(1)} under R4. In the second step, we obtain the form of .

Thus we have

fo+ W<p+m/2—7"/2> x {1+ o0(1)},

n

2mr \/5

which converges to 0, if and only if lim,, o, /mr(p +m/2 —r/2)n~t = 0.



S1.2 Proof of the part for finite mr in Theorem

By Muirhead (2009), the characteristic function of —2log L,, is ¢1(t) = E{exp(—2itlog L,)}

and

log ¢y (t) = —% log(1 — 2it) + f:q{(l —2it)7t — 1}, (S1.10)

=1

where

Hl{i{ﬁm{ 1;/; D2} Biaill ?:/;)T_ )/2}}]’

and By y1(-) is the Bernoulli polynomials which takes the form B, ;(2) = ZlUHO Cp2”.

We next estimate the order of ¢; with respect to n. We note that for any z; and z,,

]Bl+1(21) — BZ_H(ZQ) (8111)
+1 +1 v v
D IEEE IR W Sl (TSI
v=0 v=1 w=1 w
+1 v v
:(Zl — ZQ) Z Z Cy (w) (Zl — Z2)w_125—w‘
v=1 w=1

Let 21 = (1 —k—p)/2 and 2o = (1 — k+r —p)/2. Then we have z; — 2o = (—7r)/2.
When m and r are finite, the order of ¢ with respect to n is O{(p/n)'}. When

p/n — 0, by the expansion (SI.10]), we have ¢ (t) = (1 — 2it)™™"/2{1 + o(1)}. Then
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—2log L, N X2, as n — oo. When p/n is bounded from 0 below, (S1.10) does

not converge to —2 'mrlog(1 — 2it) generally for all . Then the approximation

—2log L, LN X2, Tails.

S1.3 Lemma used in Section

Lemma 1. Under the asymptotic regime R 4,

~ mmr dnmr(mtr)  nmr(m?/34+mr/2+1%/3)
fn = n+r—p 2(Mn+r—p)? (n+r—p)3
3, .3
+0(1)% + O(mr/n).

Proof. By the definition of p, in Theorem [3]

(n+r—p—m)(n—p) (n+r—p—m)
Uy = nn—m—p—1/2)log + nrlog
( Py )+ =) =)
(n—p)
log ————.
nm Og(n+r—p)
Note that

log (T —p—m)(n—p)
(n—p—m)(n+r—p)
= 10gn+r—p—m+log—n—p —log—n_p_m
n+r—p n+r—p n+r—p

~ og (1= ——) 1og (1 - ——) —og (1- 211,
n+r—p n+r—p n+r—p



It follows that

pn = nn—m—p+r—1/2)log (1—#7%) (S1.12)
tn(n—p—1/2)log (1 - m) (S1.13)
—n(n—m ~p~1/2)log (1 - %) (S1.14)

which gives p, = (S1.12)) + (S1.13]) + (S1.14)). We next analyze (S1.12))/n, (S1.13)/n

and (S1.14) /n respectively.

By the Taylor expansion, we have

10g<1—#_p> _ _g%<#_p>k,
(1= ) = i)
o (1) = -2
Then
e L = D )
k k+1
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=1 r k 1 r k
SL13)/n = — - —(—) 1/2 —(—)
‘ )/n (n+r p);k n+r—p +(r+ /);k n+r—mp
1 1 ok — 1 k)2
e — 7’ - ! +Z_ r/ ]
— k(n+r—p — k(n+r—p ~k(n+r—pht
and
1/ m+r \k — 1/ m+r \k
S1.14)/n = - —(—) - 1/2 —(—)
( ) /n (n+r p);k mp— (m+r+ /);k ntr—p
il (m+nr)* 1 (m+r)ktt _il m+r)k/2
B “~k(n+r—ph! “k(n+r—p)F kil/{:(n—l—r—p)k'

io: l (m 4 T)k o mk o rk i 1 (m + T’)k‘H . mk—i—l . rk+1 (Sl 15)

— ko (n4r—p)kt — k (n+r—p)k ’ ’
L= 1(m+r)F—mk—oF

_§ZE CEE—r ) (S1.16)
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As (m+r)t —=m!' —r! =0, we know

o 1 .k o 1 k+1 k+1
(ST15) = Zg(ﬂl%—?“) —mF—r Eerr i -
k=92 (n—i_,r_ 1 n+T—p)
i < 1 1) (m + 7))+t — gkl  phtl
B ~\k+1 k (n+r—p)k

1 2mr
L(m+r)3—m3—r3

R e— (S1.18)
1L (m+r)t—m*—rt (51.19)
12 (n+r—p)3 ’
00 1 (m )R bt ke

_ S1.20
;k(k+1) mir—pF (51.20)

which gives (S1.15) = (S1.17) + (S1.18) + (S1.19)) + (S1.20). We have n x (S1.17) =

—nmr(n+r —p)~t, nx (SL.18) = —27'nmr(m +r)(n +r — p)~2, and n x (S1.19) =

—nmr(m?/3 4+ mr/2+1r%*/3) x (n+r —p)~3. In addition,

g (g Yttt

Zk(k—i—l) (n4+r—pk
28+ (max{m, r})*~
n+r—p Zk’ n+7’—p)k—1

_ mr p0{<max{m,r}>3} _ O(l)mr(m3 +7“3)7

n+r— n+r—p nt

IN

where in the last two equations, we use the property of Taylor expansion and the

condition that max{p, m,r} = o(n). Therefore, n x (S1.20) = mr x O{(m? + r®)/n3}.



12 Y. HE, T. JIANG, J. WEN, AND G. XU

Moreover,

o0 k_ o
BTT0) — Z%(m—i—r) mt —r

=2
mr 1 2%(max{m,r})F2

< _

- (n+r—p)2kz:;k:x (n+r — p)k-2

= O(mr/n?),

where in the last equation we use the fact that

il " Qk(max{m,ri)’;_g 94 Z 1 " 2F (max{m, r})*—2
—~k (n+r—p)k- k

= 2+4log[l — {2max{m,r}/(n+r —p)}].

In summary,

i = (S1.12) + (ST.13) + (SL.14)

= nx {(SL.I5) + (ST.16)}

nmr Lnmr(m+7r)  nmr(m?/3+mr/2+1r%/3)
n+r—p 2(Mn+r—p)? (n+r—p)3

mr(m3 + r3
o))

+ O(mr/n).
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S2. Theorem [2

Similarly to Section [SI} we prove Theorem [2] when mr — oo and mr is finite in

Sections and respectively.

S2.1 Proof of the part for mr — co in Theorem

When (p,m,r) are all fixed, by Bartlett correction, we know that with p = 1 —
(p—r/24+m/2+1/2)/n, —2plog L, EEN X2, as n — oo. Note that under R4 =
{(p,m,r,n) :n >p+m, p>r, mr— oo, and max{p,m,r}/n — 0 as n — oo},
p =1+ o0(1). Then similarly to the proof of Theorem [I| in Section , we know
that under R4, P{—2plog L, > x2,.(a)} = « holds for any given significance level
a if and only if no, = v2mr{1 4 o(1)} and (u, +mr/p)/v/2mr = o(1).

Following the same argument as in Section we know that under Ry, no,, =
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V2mr{l+ o(1)}. In addition, by the Taylor expansion,

@ . mr
p 1—(p+m/2—7r/2+1/2)/n
nmr 1
B n—p~|—r—(m+r)/2+mr0<ﬁ>

_ ﬂi{m_ﬂ}umro(l)
n—p+ris 2(n—p+r) n
nmr nmr(m+r)  nmr(m+r)?
n—p+r 2n+r—p? 4n—p+r)

+mr X O(m?’n—{; 7«3) +mr0<%),

where in the last equation, we use the fact that > 2 .[(m + 7)/{2(n — p + r)}]F =

O{(m® + %) /n®} as max{p, m,r} = o(n). It follows that under R4, by Lemmal/l]

o= orj) 5201
_ 1 {_ nmr  nmr(m4r) nmr(m?/34+mr/2 4+ 1%/3)
2mr n+r—p 2n+r—p)? (n+r—p)3
nmr nmr(m+r)  nmr(m+r)?
+n—p+r 2(n+r—p)? 4(n—p+r)3}
+vimr x o™ n?" ) +O(mr/n)
vmr 1 n(m? +r?) m3 + r?
_ﬂﬁ(n—l—r—p)?’—i_mxo( 3 ) +OW/mr/n)
_ mr(m? +r?) . Vvmr(m? + r?) i
= ) o < YD L o),

where in the last equation, we use the fact that max{p, m,r} = o(n). We thus know
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that (S52.21) = 0 if and only if /mr(m? 4+ r?)/n* — 0.

S2.2 Proof of the part for finite mr in Theorem

By Muirhead| (2009), for the LRT with Bartlett correction, the characteristic function

of —2plog L, is ¢o(t) = E{exp(—2itplog L,)}. Moreover, we have

log pa(t) = —% log(1 — 2it) + > G{(1 - 2it)™ — 1},
=1

where

l+1

N
||

o1 (s~ G 1)

k=1

Zki=1—-pn/2+(1—k—p)/2and Zo = (1 —p)n/2+ (1 — k+r —p)/2. Since

p=1—(p—r/2+m/2+1/2)/n,

Zki=(p—1r/24+m/2+1/2))24+(1—-k—p)/2=(3—1+m)/4,

Zho=(p—71/24m/2+1/2)/2+ (1 —k+7—p)/2=B+7r+m)/4

In addition, pn =n— (p—7r/2+m/2+1/2). Therefore, by the expansion in (S1.11)),
when m and r are fixed and n — p — oo, we have log ¢o(t) = =27 mrlog(1 — 2it) +

O{(n — p)™'} and ¢o(t) = (1 — 2it)™™/2[1 + O{(n — p)~'}]. It follows that when
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m and r are fixed and n — p — oo, —2plog L, 2, x2,.. On the other hand, when
n — p is fixed, by the expansion in (S1.11]), we know ¢ is of constant order in n, and
thus >, G{(1 — 2:t)~" — 1} is not ignorable generally for all {. We then know the

approximation —2plog L, LN X2, fails.

S3. Theorem [3

In this section, we give the proof of Theorem [3| where the main proof is in Section

and some lemmas used are provided and proved in Section [S3.2]

S3.1 Proof of Theorem [3l

Proof. To prove the central limit theorem that H, := {—2log L, + tn}/(no,) 2

N(0,1), it is sufficient to show

lOg Ln - /1%/2

Eexp { now /2

s} — exp{s?/2}, (S3.22)

as n — oo and |s| < 1, where 02 and p,, are defined in Theorem [3} Equivalently, it
suffices to show that for any subsequence {n;}, there is a further subsequence {ny; }
such that anj converges to N (0, 1) in distribution as j — co. In the following, the
further subsequence is selected in a way such that the subsequential limits of some

bounded quantities (to be specified in the proof below) exist, which is guaranteed
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by Bolzano-Weierstrass Theorem. Therefore, we only need to verify the theorems by
assuming that the limits for these bounded quantities exist. In the following, we give

the proof by discussing two settings » > m and m > r separately.

Case 1. When r > m and r — co. By Lemma [3| under the null hypothesis, the
distribution of L, can be reexpressed as the distribution of a product of indepen-
dent beta random variables. Let h = 2s/(no,), by Lemma [2| then under the null

hypothesis, L,,’s hth moment can be written as

(93.23)

logLy \  pone Dwddn(l+h) = Ipi0n{i(n+r—p)}
e { ) B ~ T b B

where I';,(a), a € C and Re(a) > (m — 1)/2, is the multivariate Gamma function

defined to be
Iy (a) = / ¢~ dot AS-0MHD/2(4), ($3.24)
A>0

The above integration is taken over the space of positive definite m x m matrices, i.e.,
{Amsm : A > 0}; and tr(A) is the trace of A. Note that when m = 1, I';;,(a) becomes

the usual definition of Gamma function. By Lemma [ I';,(a) can be written as a
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product of ordinary Gamma functions as

[y (a) = 7mm=b/4 H I{a—(j—1)/2}.

Note that n > m +p and r > 1. Thus the limits of m/(n+r —p) and m/(n — p)
are in [0, 1] for all n. Applying the subsequence argument above, for any subsequence
{ni}, we take a further subsequence ny, such that my, /(ng, +ri, —p,) and my, /(ng, —
Pr,;) converge to some constants in [0, 1]. Thus without loss of generality, we consider
the cases when m/(n +r — p) and m/(n — p) converge to some constants in [0, 1].

Next we give the proof by discussing different cases below.

Case 1.1 If m/(n+r —p) — v > 0, this implies that m — oo as n — oo. And
as r > m and n > p 4+ m, we know m/(n+r —p) < 1/2, then v € (0,1/2]. Since
1>m/(n—p)>m/(n+r—p), then m/(n—p) =+ € (0,1].

Ify' € (0,1), nhx[—log{1—m/(n—p)}]"/? = O(1), which satisfies the assumption

of Lemma 5.4 in Jiang and Yang (2013). If 4/ =1, as

0% = 2log (1 _ n+mﬂ> —2log (1 - n”jp), (S3.25)

and m/(n+r—p) = v € (0,1/2], we know o2 has leading order log{1 —m/(n —p)}.

Then as nho,, = O(1) by definition, we also know nh x [—1log{l —m/(n — p)}]'/? =



19

O(1), which satisfies the assumption of Lemma 5.4 in |Jiang and Yang| (2013)). Fol-

lowing the lemma, we have

o T30+ 1) 49k T {(n—p) + k)
Tw{3(n —p)} Ld3(n—p)}
n’h®>  nh 1 m
g g) pres (1- )
m;h{log(n —p) — log2e} + o(1), (93.26)

and similarly, we can obtain

g Dnl3ntr—p} o Tufintr—p))
m{z ( )+2(T—p)} Fm{z(n"i_r_ )+2nh}
g om0 T
mnh

— —{log(n +7r —p) —log2e} + o(1). (S3.27)

Combining ([S3.23)), (S3.26)) and (S3.27]), we have

log Ly, n?h? . (n+r—p-—m)(n—p)
log £ = 1 1
©8 eXp{nan/Qs} 4 Og(n—p—m)(n+7‘—p)+ 2 +o(l)
2 h
=2+ 224 o01),

2 " 9

)
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where

(n4+r—p—m)
(n+r—p)

(n+r—p—m)(n—p)
(n—p—m)(n+r—p)

tn =n(n—m—p—1/2)log + nrlog

(n—p)

Therefore, log F exp {%s} = s?/2 + o(1) is proved.

Case 1.2 We discuss the case when m/(n+r —p) — 0 and m/(n — p) — 0 below.

By Lemma [7, we know that when n — p — oo and r — oo,

Fm{%n(l +h)— %p}
Tw{3(n —p)}

:—{Qm—l—(n—p_m_%>10g(1_nn_1p)}%h

m m n?h?
i e (1-755))
n—p n—p 4

+m{(n—p+nh)l (n—p+nh) (n—p)

log

(n —p)
2

— log

; og > } Fo(l),  (S3.28)
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and

Lo{3(n+r—p)}

log To{in(1+h) + 1(r—p)}

o (o= ) 1 2
_n%xn+4“;p+nh)bg01+r—;m+nm__0%+;—p)bg0r+;—p)}
{m +log (1 n+T_p>}n1h2 +o(l). (S3.29)

By Taylor expansion of the log function, we have

ol = 210g(1—L>—210g<1— m )
n—+r—p n—op

2mr
= o ek (53.30)

where the second order terms of Taylor expansion of the log functions is ignorable as

m = o(n — p). Also, as r — o0,

[ _5\/2(n—1?)(n+7”_p){1+o(1)}%0. ($3.31)

Cono,/2 ny/mr
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Therefore, combining ((S3.23)), (53.28)) and (S3.29), we obtain

log L,,
log E exp { 08 }

nan/2s
n?h? l (n+r—p—m)(n—p) n2h? m m
= (0] —
1 ®m—p-—m)mtr—p 4 \ntr—p n-p
nh (n+r—p—m)(n—p)
M —m—p—1/2)1
+2(n mer /)Og(n—p—m)(n—l—r—p)
o h _

—|—n—hrlog(n+r D m>—|—n—mlog n—p+nh
2 (n+7—0p) 2 n+r—p+nh
+m(n—l—r—p)lo n+r—p

2 n+r—p+nh

- —p+nh
+m(n2 ) logn np_+n +o(1).

We then analyze the terms in (S3.32)) separately. By (S3.31]),

n2h? m m
4 n+r—p n-—p

~ _S=pntr—p mr )
B 2mr x (n—p)(n+r—p){1+ ()}
= —% + o(1).

In addition, as nh/(n — p) — 0 and nh/(n +r —p) — 0, we have

m(n+r—p)lo n+r—p
2 gn+r—p—|—nh

+r— h 2h2
_ _m(n+r—p) n B n R L
2 n+r—p 2(n+r—p)?

)

(S3.32)

(S3.33)

(S3.34)
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and

1 S3.35
T — (53.35)
m(n —p)( nh n?h?
- 2 {n—p 2(n—p)2+R”’2}’
where the remainder terms
=1 (nh)* 1 (nh)*
Roi=> —(—D)Ff'—— _ R,o=)Y —(=1)"'—2_ (S3.36
1 ;/{3( ) (n+r—p)"3 2 ;kﬁ( ) (n—p)k ( )
Then we have
(1S3.34)) + ((S3.35))
_ mn’h®  mn’h®  m(n+r—p) Ros+ m(n — p) R
4in+r—p) 4n—p) 2 2
2
= 2 4o0), (93.37)

2

where in the last equation, we use (S3.33|) and Lemma . Furthermore, by nh/(n +
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r —p) — 0 and (S3.31)), we have

nh | n—p+nh

—m

2 gn—l—r—p—irnh

nh { n—op nhr }
= —mlog +

2 n+r—p (n+r—p)n+r—p+nh)

nh n—op nmhn+r—p nhr
= —mlog +

2 n+r—p 2 n—p (n+r—p(n+r—p+nh)

nh —-p 2
= — 1

5 Mlog + 5“4+ 0o(1)

Combining (S3.32), (S3.33)), (S3.37) and (S3.38]), we obtain log E exp {M

non /2

s2/2 4 o(1).

+o(1)

Case 1.3 When m/(n+r —p) — 0 and m/(n —p) — v € (0, 1], we know ([S3.26])

still holds following similar analysis to Case 1.1. And ([S3.29)) also holds following

similar analysis to Case 1.2. To establish (53.22)), we next show that under this case,
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the difference between the result of (S3.27) and ([S3.29) is ignorable.

(53:29) — (S3.27)

nh  mnh n%h? m
— ot M g —p) —log?2
m + 5 {log(n +r —p) —log2e} + 1 Xn—i—r—p
_m(n+r—p)10gn+r—p+nh_mnhlogn~|—r—p+nh+0(1)
2 n+r—p 2 2
mnh n+r—p n?h? m
SN LLN UESES S
i 2 {og 2 }+ 4 Xn+r—p
m(n+r—p) nh mnh n+r—p nh
-1 1 — 1 — 1).
2 Og( +n+r—p) 2 %% ;— t) Tl

(S3.39)

We then analyze the terms in (S3.39)) separately.
Since m/(n —p) — v € (0, 1], similarly to (S3.25)), we know that nh = 2s/0,, =
O(s). Asm/(n+r—p) — 0, it follows that n?h?m/(n+r —p) — 0. Applying Taylor

expansion, we then have

mnh1 n+r—p+nh
O [
9 8 2 2

mnh n+r—mp nh
— Pl e (2 F o
2 {Og< 2 )+O(n—|—r—p>}
_ mnh n+r—mp mn?h?
T2 10g< 2 )+O(n—|—r—p)

= m;zh log (n +; — p) + o(1). (S3.40)




26 Y. HE, T. JIANG, J. WEN, AND G. XU

Similarly, by nh = O(s), m/(n +r — p) — 0, and Taylor expansion, we have

m(n—i—;—p) log (1+ nh )

n+r—p
~m(n+r—p) nh n?h?
B 2 {n+r—p+0((n+r—p)2)
:fzgﬁ-+cm1y (93.41)

In summary, combining (S3.40) and (S3.41)), we have (S3.39) = (S3.29) — (S3.27) =

0(1). Then by the results in Case 1.1, we get the same conclusion as in Case 1.1.

Case 2. When m > r, m — oo. According to Lemma [3| we can make the

following substitution

m-—r, r—-m, n—p—n+r—p—m.

Then the substituted mean and variance are

(n—p)
(n+r—p)

(n—p)(n—p+r—m)
(n—p—m)(n+r—p)

fn =n(n—p—m—1/2)log + nmlog

(n—p+r—m)
(n+7r—p)

+ nrlog

?
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and

which take the same forms as those in the setting when r > m. And the theorem

can be proved following similar analysis when m — oo, n — p+r —m — oo. O
S3.2 Lemmas in the proof of Theorem
Lemma 2 (Corollary 10.5.2 in Muirhead, (2009)). Under the null hypothesis, Ly, ’s

h-th moment can be written as

Fm{%n(l +h) — %p}rm{%<n +r—p)}

E<Ln) = Fm{%(n _p)}Fm{%n(l + h) + %(T —p)}.

Lemma 3 (Theorem 10.5.3 in [Muirhead| (2009))). Under the null hypothesis, when
n—p>mandr > m, %log L, has the same distribution as Yy .-, logV;, where
Vi’s are independent random variables and V; ~ beta(5(n —p — i + 1), 4r); when
n—p>m>r, %log L,, has the same distribution as Y ._ log Vi, where V;’s are

independent and V; ~ beta(%(n +r—p—m—i+1), %m)

Lemma 4 (Theorem 2.1.12 in Muirhead (2009)). The multivariate Gamma function

defined in (S3.24)) can be written as

Lo(a) = 7" DA T(a - (- 1)/2).

j=1
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Lemma 5. Consider m is fived and a — co. We have

m

ail;i_—lz' - {%<"3_ﬁ>}{1+0(1/a)}, (S3.42)
i{log(a—l)—bg(a—i)} = —ua+0<7:—22), (S3.43)

where p1, = —(m —a+ 3/2)log{l —m/(a — 1)} + (a — 1)m/a and ¢ = —2[m/(a —

1) +log{l—m/(a—1)}].

Proof. We first prove (S3.42). As m is fixed and a — oo, we have

o2 = —2[-"= tlog (1- )] = (%)2{1 +0(m/a)},

a—1 a—1

e

and

m

1 i—1 1 i1 m(m — 1)
a—lga—i—a—lza—l—i_ea_ 2(a —1)2 e

= =

where |e,| < 2(a—1)733" (i — 1)® < 3(m/a)®. Therefore,

i=1

m

Tl = et o(d)

- [5{e2- a0 owal
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where in the last equation, we use the fact that O(m/a) = O(1/a) as m is fixed.

Then (S3.42)) is proved.

We then prove (S3.43)). Recall Stirling formula, (see, e.g., p. 368 Gamelin, |2001)

1
logT'(z) = (x — 1/2)logx — x + log V27 + 157 +O0(z7?)
T

as x — oo. Therefore,

logT'(a—1) —logl'(a —m — 1)
= (a—3/2)log(a —1) — (a —m —3/2)log(a —m —1) —m

+1( ! ! )+0(

2% -1 a-m-1

= (a—3/2)log(a—1) — (a —m —3/2)1log(a —m — 1) — m + O(ma™?).
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Since for integers k > 1, T'(k) = (k — 1)! = II*_ 4. Then we have

Z{log(a —1) —log(a —1)}
= mlog(a—1) —{logT'(a — 1) —logT'(a — m — 1)} + log (1 — a%)

= mlog(a—1)— (a —3/2)log(a —1) + (a —m — 3/2)log(a —m — 1)

+m + log (1 - 1) + O(ma™?)

a —

= —(m —a+3/2)10g<1—L1>

+0(%)
= —(m—a+3/2)10g(1—aT1>+a m+0<—2>

2

- —nro(Z)

where in the last two equations, we use the fact that & —m = Tlm +O0(ma™?). O

Lemma 6. Consider m is fized and a — oo. Define

)= (540 ) s (55 0) - (S5 o) (50

for1<i<mand x> —(a—m)/2. Let p, and o, be as in Lemma[3 If t = o(a)

and mt?/a® = o(1), we have that as a — oo,

Z{gz (0)} = pat + 2“t2 +o(1).
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Proof. We know for 1 <i <m,

a a—1
gi(x) = log(—— + ) — log( 5 + z),
p 1 1 el
gz (l’) = a—1i T a = a—1 2 a— ’
(3) 1 1
1 T - = —1 + a—
R e
i1 :

By Taylor expansion,

2

3
Gilt) = 9i0) = GO}t + S/ (0) + =o(e)

i — 1 3
d 2+ =—g?(&).

= {log(a—1i) —log(a — 1)}t + (a—Dla—1) "6

For 1 <i <m, fixed m and 0 < ¢§; <t = o(a), we have sup, < 1<i<m |gl(3)(§z)| <
ca™3, where ¢ denotes an universal constant. Therefore, as ¢ = o(a), [t3¢\”(&)| <
ct3a3 = o(1). In addition, by Lemma[5] and the fact that mt?/(a — 1)? = o(1), we

have as a — oo,

2 m

S - a0 = it [5( )E o)

0_2
= [t + 7"752 +o(1).
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Lemma 7. Consider n —p — oo, r — oo, m/(n —p) — 0 and m/(n —p+r) — 0.

Fort=nh/2, a=n—p+r ora=n—p, we have

R )
—1

- = Ut + Uat? + 7a(t) + o(1),
Fm(T)

log
where

Vo = —[2m + (a —m = 3/2)log{l —m/(a = 1)}]; Yo = —[m/(a — 1) +log{l —m/(a - 1)};

=B (5 ) -2 e ()

Proof. By Lemma [4, we know

(S3.44)
To prove the lemma, we expand each summed term in (S3.44), log{I'(%*+1)/T(%%)},
by Lemma A.1. in Jiang and Qi (2015). To apply the lemma, we first need to check
the condition that for each 1 < i < m, t € [-d(a —1)/2,0(a — i)/2] for any given
d € (0,1).

Recall that we previously define nh = 2s/0,, in Section [S3.1} Then t = nh/2 =
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so'. Note that when m/(n —p) and m/(n —p+1r) — 0,

S pmrr—pt T
Thus we have
- 0(3)\/(” - p>(:w_ ptr) (S3.45)

Fora=n—p+rora=n—p, and 1 <i <m, by (53.45)), we then have

L t :O<S)\/(n—p)(n—p+7’)

a—i T~ n—p—m mr(n —p—m)?

O(S)\/ 1+T’/<n—p)

mr{l —m/(n —p)}*

— 0(3)\/{i + ;}{1 +o(1)} = o(1),

mr  m(n —p)

where the last two equations follow from the condition that m/(n — p) — 0,7 — oo
and n —p — oo. Then we know that for each 1 <i <m, t € [-d(a—1)/2,0(a —1)/2]

for any given § € (0,1).

Therefore, the condition of Lemma A.1. in Jiang and Qi (2015) is satisfied. By
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that lemma, we know when a — oo, for uniformly 1 <1 < m,

| D% +t) (a_i—l—t)l (a—i+t> a—il a—1
og——————— = 0 R —_ o
& (et 2 S\ 2 %9

at—i+o(2_22>'

Write &= = £ + L x —_ Then similarly to Lemma , we have

S i) ol (M (ssag

a—1 a 2a(a — 1)

For a =n — p, by (S3.45), m/(n —p) — 0 and m < r,

tm(m+1) ) (n—p)(n—p+r) m?
ala—1) o )\/ mr (n—p)?
m(n—p+r) m
o) r(n—p) n-—p

_ 0(3)\/ m ™ _ 1),

min{n —p,r}n—p

For a = n — p + r, similar conclusion, tm(m + 1)/{a(a — 1)} = o(1), holds by

substituting n — p with n — p + r. In addition, fora =n —pora=n—p+r, by
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(S3.45),

IN

SHES

mr(n —p)

S
|
=3

t O(S)\/max{n—p,r}

_ 0(3)\/ ! — o(1). (83.47)

m x min{n —p,r}

Then based on ([S3.46)) and (S3.47)), we obtain

Zm:{—f—a_l+0(t2/a2)}:—mt—%t+o(1>.

=1

Therefore, from ((S3.44)), we have

Fm( 5 )

(—l)m
- {5

=1

(93.48)

)log(T+t) a;iloga;i}~l—o(l).

log

For 1 <17 < m, define the function

0= (15 ) () - (5 (U5 )

and z > —(a—m)/2. We then know that the summation term “Y " in (53.48) equals
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to
a—1 a—1 a— 1
o () - S 0 a0, (8
m[( 5 —l—t) g +t 5 Z{g (0)}.  (S3.49)
We then examine the function > " {g;(t) — ¢:(0)} in (S3.49). Note that by
(S3.47), we know t = o(a), mt*/a* = o(1) and mt/a = O(1) as m < n — p and

m < r. Thus the conditions of Lemma [6] and Lemma A.3. in Jiang and Qi (2015)
are satisfied when m is fixed and m — oo respectively. When m is fixed, we apply
Lemma |§|; when m — oo, we apply Lemma A.3. in |Jiang and Qi (2015). Then we

obtain

1
Z{gz (0)} = ptat + 202152 + o(1),

where

a—1

fa = (m —a+3/2)10g<1—%)—m —

2 _ _2[l 1 <1_l>]_
%a a 1+0g a—1
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Therefore, the proposition can be proved by noticing

1
Vg = _latm + pa; Vg =022
a

S (L M |

Lemma 8. Under Case 1 in Section R,1 and R, 5 defined in (53.36) satisfy

_m(n+r —p)Rm1 N m(n —p)Rn2 — o(1)
2 2
Proof. Note that
_'_ J— i
_m(n 2r p) Roy+ m(n2 p) Ro»

— %[;%(—nh)k{(n+rl_p)k—l T (n —129)'“_1”

- 31 > () 2=t () —p)™ -}

(n+r —p)k~1(n—p)k-t

PRGSO e

n—p
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Ifr/(n—p) =1,

|m] < mnhZ( 2nh )k_l = O{mnh(ﬂ}’

n+r—p n+r—p)?

where
mnh x n%h? _ O{m\/(n—p)(n+7°—p) y (n—p)(n—i—r—p)}
(n+7—p)? vmr mr(n+r—p)*
- o ) =)
as r — 0oQ.

Ifr/(n—p) > 1,as {nh/(ntr—p)}x{r/(n—p)} = O{s/r/\/m(n —p)(n+r —p)} =
o(1),

!m\<mnhz< Tp)k_IZO{mnh< 2nh p)z< , >2}

n+nr—mp n — n—+r—
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where

mnh<n+nrh—p>2 nip>2
—p)x(n p)(n—l—r—p)x r? }
o R T
V(n—p)(n+r—p) r
O{ N e e

- 0{ L } = o(1),

Vmr(n+r—p)(n—p)

asn+r—p>randn—p— oo.

Ifr/(n—p) <1,

|m|<mnhz<n+r p)kl( I :o{mnh (nh)” X — }

n—p) (n+r—p? (n—p)

where

I (nh)? r
(n+r— p)2 (n—p)
B m\/n p)n+r—p) (n—p)n+r—p) r
B vmr e+ —p)? X(n—P>}
_ o{ VAL }20(1).

\/mr(n +7r—0p)
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S4. Theorem [4]

We give the main proof of Theorem [] in Section [S4.1], where we use some concepts
of hypergeometric function, which is introduced in Section [S4.2] and the lemmas we

use are given and proved in Section

S4.1 Proof of Theorem [4]

As p/n = p,, r/n = p,, m/n = p,, with p,, pr, pm € (0,1) and p, + p,, < 1, we know

that o2 in Theorem [3| satisfies

2 Pm Pm 7!
an:2log{<1——><1— ) }
L+ pr = pp L —pp

which is a positive constant, and we write the constant as 2. Then T} = {—2log L, +
tn}/(no), and we examine the moment generating function E{2slog L,,/(no)}. Let

h =2s/(no). By Lemma [9] we have

E{2slog L, /(no)} = E{exp(hlog L,)}

ho1 ho1
— EL"=EyL" 1&(%; Sttr—p)+ %; —59), (S4.51)

where EgL" is the moment generating function of log L,, under Hy, and | F} is the

hypergeometric function, which depends on €2 only through its eigenvalues symmet-
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rically.

As 1 F; only depends on 2 via its eigenvalues symmetrically, without loss of gener-
ality, we consider the alternative with 2 = diag(wy, -+ ,w,,) and wy > -+ > w,, > 0.
Let & =nh/2, & = (n+r—p+nh)/2 and Q = —Q/2 = diag(—w1 /2, -+ , —wy,/2),
then we write 1 F1(nh/2,(n +r —p+nh)/2;—Q/2) as 1F1(£,;&; Q). Note that we

assume that 2 has fixed rank mg in Theorem , then wy > ... > wy, > 0 are my

nonzero eigenvalues of Q. Further define Q = diag(—w1/2, ..., —wm,/2). By Lemma

, we know 1 F1(&,; & Q) = 1F1(&4; & Q). Then to evaluate 1 F(€y; &; @) when @
has fixed rank, without loss of generality, we consider | F} (£,;&; Q).

Let W = log1Fi(£4:&: Q) and Q = —nA/2 with A = diag(dy,...,0pm,). From
Lemma , we know that W(A) is the unique solution of each of the mg partial

differential equations

1 nh 1 Iex & 10W
[—(n+r—p—mo+1)+—+§n5j+§z }

2 2 oy d; — 0,1 09;
W  (OWN\'] 1<X & OW _ nh
12 () | -2 _ 452
+5J[35§+(35j)] 5245, —6, 00 2 ™ (54.52)
i#]
for j = 1,...,my, subject to the conditions that W(A) is (a) a symmetric function

of 01,...,0my, and (b) analytic at A = 0,y xmy With W(0pmyxm,) = 0. As r/n = p,
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p/n = pp, Mg is a fixed number and nh = 2s/0, we can write (S4.52)) into

2 24§, — 5,1 95;

O*W oW\ 2 18% 5. OW s
%oz T\as ) 172 : = ——xn. 4.
+J[86]2,+(a5j>] 2%;51—@8& oxn (54.53)

1 1 1 lex 6 10W
—(1+p —pp)n+ =(2s/0 —mg+ 1) + =nd; + Z ] }
2 2 i#]

Similarly to Theorem 10.5.6 in Muirhead (2009), we write W(A) = Py(A)+Py(A) /n+

.... Note that nh = 2s/0. Matching n on both sides of (S4.53)), we obtain

1 ]GPO sn
85j N g '

1
5(1 + pr = pp)n + §n6j

Solving this subject to conditions (a) and (b), we obtain

~ 2s o 5]‘ >
L+ pr—pp '

Then we have W (A) = Py(A) + O(n~"). From (S451), we know

EL! = BgL! x €811 = Fyenarz el +W. (S4.54)

Write Wa = 37" log[1+0;(1+ p, — p,) '] and A, = 2/0. (S3.22)) and (S4.54)) show
that {log L,, — 11,,/2}/(no,/2) N N (=AW, 1), and thus {—2log L, + i, }/(no) TN

N(A;Wa,1). Then the power P(Ty > z,) — ®(z4 — A Wa).
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S4.2 Brief review of hypergeometric function

We rephrase some related definitions and results about hypergeometric function,
where the details can be found in Chapter 7 in [Muirhead| (2009).

Let k be a positive integer; a partition  of k is written as k = (kq, ko, . ..), where
Zt k; = k and ky > ko > ... are non-negative integers. In addition, let M be an
m X m symmetric matrix with eigenvalues ly,...,l,,, and let kK = (ki,ky...) be a
partition of £ into no more than m nonzero parts. We write the zonal polynomial of
M corresponding to x as C(M). Then by the definition, we know the hypergeometric

function 1 F1(&,; &; Q) satisfies

- (fa)ﬁ CK;(Q)
F1(&a; 60, Q) = E ; 4.
111(€a 63 Q) L ia(g), K (S4.55)
where ), represents the summation over the partitions k = (ki,...,kpn), k1 >

. >k >0, 0of k, Cl(Q) is the zonal polynomial of @ corresponding to k, and the

generalized hypergeometric coefficient (€), is given by (€). = [T_,(€ — (i — 1)/2)s,

with (a)g, =ala+1)...(a+k; — 1) and (a)y = 1.
We then characterize the zonal polynomials Cy(M). For given partition k =

kv ke

11 (I

(K1, k2, . ..) of k, define the monomial symmetric functions N (M) = 3" .y
where t is the number of nonzero parts in the partition x, and the summation is over

the distinct permutations (iy, . .., ;) of ¢ different integers from 1, ..., m. For another
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partition A = (Aq, Ao, ...), we write k > X if k; > \; for the first index i for which the
parts in £ and A are unequal. Then we have C,(M) = >, cx ANA(M), where ¢,
are constants.

S4.3 Lemmas in the proof of Theorem

Lemma 9. EL" = EqL" x (Fy(nh/2; (n+ 17 —p+nh)/2; —Q/2).

Proof. The result follows from Theorem 10.5.1 in Muirhead, (2009)). O
Lemma 10. Suppose matriz M of size m x m has m eigenvalues ly, . .., L, but only
has my positive eigenvalues ly, ... 1, and M = diag(ly, ..., lm,). Then for given

partition k, the zonal polynomial functions satisfy N.(M) = N,{(]\Zf).

k1 ke _
..... it} lil R lit -

..........

mutations (71, ...,%;) of ¢ different integers from 1,...,mq. It follows that Ny(M) =

NA(M), where M = diag(ly, ..., Ly,)- O

Lemma 11. Suppose Q) has fized rank myg, then 1F1(&a; &p; Q) = 1F1(&a; &p; Q).

Proof. As @ has rank my, it only has my nonzero eigenvalues. To prove the lemma,
we note that the hypergeometric function can be expressed as the linear combination
of the zonal polynomials of a matrix. We then state two properties of the zonal

polynomial functions C,(Q). First, by Corollary 7.2.4 in Muirhead| (2009)), we know
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that when « is a partition of k into more than mg nonzero parts, C\(Q) = 0. Second,

when £ is a partition of k into fewer than mg nonzero parts, C,(Q) = C.(Q). To see

this, we note that C\(Q) = Z/\gn cxxINA(Q) and the constants ¢,y do not depend on
the eigenvalues of Q. Then by Lemma |10, we know that Co(M) = C,{(M ). Finally,
by the definition in (S4.55)), we have 1 Fy (&, &: Q) = 1F1(E4; 63 Q). O

Lemma 12. W = log 1 Fy(&,;&; Q) with Q = —nA/2 discussed in Section is

the unique solution of each of the mq partial differential equations

1 nh 1 Iex & 10W
b(n%—r—p—m(ﬁ—l)—i—?—i—§n6j+§;5j_5ja—5j
A e B I S T

71952 99 2026, —06,00, 2

for g =1,...,mg, subject to the conditions that W(A) is (a) a symmetric function

0f 01, ... Oy, and (b) analytic at A = 0y xmy With W (0 wme) = 0.

Proof. As my is fixed, the result follows from Theorem 7.5.6 in Muirhead| (2009) by

changing of variables. O]

S5. Theorem [5

We give the conditions of Theorem [f]in Section and the main proof Theorem
is given in Section [S5.2 while the lemmas we use in the proof are given and proved

in Section 5.3
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S5.1 Conditions of Theorem [l

To derive Theorem , we need some regularity conditions. We use Apax(+) and Apin(+)
to denote the largest and smallest eigenvalues of a matrix respectively; diag(-) denotes
the vector of diagonal elements of a matrix; max diag(-) and min diag(-) represent the
maximum and minimum value of the diagonal elements of a matrix respectively; || - ||
denotes the ¢y-norm of a vector; and e; = (0,...,0,1,0,...,0)T denotes the indicator

vector with 1 on the ¢th entry.

Condition 1. The rows of X and E independently follow multivariate Gaussian
distribution with covariance matrices ¥, and Y respectively. There exist nonnega-
tive constants t and T and positive constants (ci, ¢z, C3,Cy,C5) sSuch that Apax(X;) <
1n”, Amin(X) > con™f, min diag(X,) > ¢3, maxdiag(X) < ¢y and max diag(BT3,B) <

Cs.

Condition 2. For some constants Kk, u, cg > 0 and c¢; > 0, and fived i € M., there
exists ag; € R™ with ||ag,|| = 1 such that max{||2;1c/23aoﬁi\|, 151 2ag, ||} < cen® and

|622$Bao7,~|0;} > "%, where Ufm- is the i-th diagonal element of 3.

Condition 3. Assume m = O(n®) with0 < s < 1; t+7 < 1, where 1 = 2k+2u—+1t+s;
p > con for some constant cg > 1; logp = O(n™) for some constant m € (0,1 — 2k —

2u—1t—s); and on'~"T — 00 asn — 0o.

Remark 1. In Condition[1], we assume that X and E follow the Gaussian distribution
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for the ease of theoretical developments. We allow the eigenvalues of ¥, and 3 to
diverge or degenerate as n grows, which is similarly assumed in Fan and Ly (2008)
and |Wang and Leng (20106) etc. in studying the linear regression with univariate
response. The boundedness of the diagonal elements of ¥ and B7YX,B s satisfied
when the variances of response variables are O(1). Condition [§ implies that there
exists a combination of the response variables whose absolute covariance with the i-th
predictor is sufficiently large. In particular, suppose for each i € M,, there exists
ki € {1,...,m} such that Cov(arl,i,yljki)a‘;} > cyn~®. Then C’onditz’on is satisfied
under Condition[l. Condition[3 allows the number of predictors p grow exponentially
with n. The requirement 2u + 2k + 7+t 4+ s < 1 is satisfied when the eigenvalues of
Y., B, B and ¥ do not diverge or degenerate too fast with n, and the covariance

between x1,; and yiag; is sufficiently large.

S5.2 Proof of Theorem [5l

Before proceeding to the proof, we define some notations and provide some prelim-
inary results. Note that by the form of w;, we could assume E(X) = 0 with loss of
generality. Let Z = X2;2. We know that the entries in Z are i.i.d. N(0,1) by

Condition |1} and then with probability 1, the n x p matrix Z has full rank n. Let
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p&/ S u}/ ? be the n singular values of Z. Then Z7Z has the eigendecomposition

277 = UTdiag(py, -y fin, 0,...,0)U, (S5.56)

where U belongs to the orthogonal group O(p). We write UT = (uy,...,u,). It

follows that the Moore-Penrose generalized inverse of (55.56)) is

n

1
(Z72)" = Z —u;u].
im1 Hi
Moreover, we have the decomposition
S :=(Z2"2)"Z7Z = UTdiag(1,,0)U = U'U, (S5.57)

where U = (1,,0),x,U and (1,,,0),x, represents an n x p matrix with first n columns
being I,, and 0 in the remaining columns. Since X = ZZ}E/Q, by (55.56|), we know

that

XX = SV20 diag(uy, . . ., pn) USY2. (S5.58)
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In addition, define P = I,, — 1,,17 /n. We can then write w; equivalently as

aTYTPTPx!
W; = Mmax - —.
allal=1 \/(aTY TPTPY a){(x?)TPTPx'}

By the property of w;, we assume without loss of generality that X and F have mean

zero. Furthermore, suppose diag(X,) = diag(o,1,...,0.,) and let

aTYTPTPx!
i = max . S5.59
¢ allal=1 0, ;v/n x aTYTPTPY a ( )

Then by Lemmal[L8} we know w; = (;{1+0(1)} with probability 1—O{exp(—con/logn)}

for some constant ¢g > 0. AsY = XB + E, we have

aTBTXTPTPx' + aT ETPTPx’

; = max =& +n;, S5.60
‘ alla|l=1  ,,;\/n xal(YTPTPY)a SR ( )
where
¢ aTBTXTPTPx? aTETPTPx’
i = v M =

max max .
allall=1 g, ;1 /nat(YTPTPY)a ailall=1 g, ;1 /nat(YTPTPY)a

Moreover, we write B = [B,,...,3,,], where 3, represents the j-th column of B. We

then study &; and 7; separately.

Step 1: We first examine £ = (&1,...,§,)7.
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Step 1.1 (bounding ||&]| from above) For i =1,...,p,
16| < {nAin(YTPTPY)} V20 1| BTXTPTPX||,
where || - || represents the ¢y-norm of a vector. Then we know

€11 = 252 < {nAuin(YTPTPY )} ZU‘QHBTXTPTPX I? (S5.61)

=1 =1
By Lemma, we know that there exist constants ¢; and ¢ such that Ay, (YTPTPY) >
cin'~t with probability 1 — O{exp(—con)}. To bound [|£]| from above, we then ex-

BTXTPTPx'||?. Since minj<i<p 02, > c3 by Condltlonl

amine ZZ 1 a:z“

P m
Za | BTXTPTPX? < cglzZ(@XTPTPxi)?

1=1 k=1

= 5TXTPTP Z x'(x')TPTPXf3,. (S5.62)

k=1

As Y P x'(x")T=XXT and PTP = I, — 1,17 /n, we have

(562 = ' > IBIXT(L, — 1,17 /n) X

IA

2651 X (A&l + A£72), (8563)

where Agy = 3700, [|BIXTX|? and Agp = 3700, [|BLXT (1017 /n) X |2,
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We next examine Ag; and Ag o separately. By ((S5.58)),

Ar = D BT AT ding(n ) DTSN 0 ding s, 1) U5 B,

k=1

3

< P e (07 22T P Anax(52) Y BEEYPUTUSY By, (S5.64)

k=1

where in the last inequality, we use the fact that US,UT < Amax (22) In, and diag(p, . . .

PAmax(P 1 ZZT)1,, as ,u}/z, o ,u}/Q are the singular values of Z. We then bound
(S5.64)) from above by examining BLZ}CQUTUEi/Zﬁk. For fixed K = 1,...,m, let

Q € O(p) such that £1/°8, = ||£¥/?8,[2Qe1. By (55.57) and Lemma , we know
-~ d
BISYAOTUSY B, = S8, 1HQTSQer, e1) 2 IBY2B, % (Ser e1).  (85.65)

By Condition , HE}C/QﬁkHQ = BIX,0, < c; for some constant ¢; > 0. Then by

(S5.65)) and Lemma , we know for some positive constants ¢y and ¢y,

P(BIZ2UTUSY?B8, > ein/p) < O{exp(—con)}. (S5.66)

Combining (S5.64)), Lemma , Condition |1} and (S5.66)), we then know for some pos-
itive constants ¢y and ¢, with probability 1 — O{mexp(—con)}, A¢1 < cmp*n"n/p =

cmpnttT.

nun) j
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For Ag s, note that

Aea =Y BISYZT(1,1] /n) 25, 27 (1,1] /n) Z5)* By. (S5.67)

k=1

Similarly, considering fixed k& = 1,...,m, we let @ € O(p) such that Z;/Q,Bk =

15528, ||Qer. Then

BIxY2ZT(1,17 /n) 2%, 2T (1,17 /n) ZXL/2 3,

1= BillPe] QT2 (1,1, /n) 25, Z7 (1,17 /n) ZQe,

IA

Amnax(20) [ 252 Be e Q727 (1,17 /n) ZQQT Z7 (1,17, /n) ZQex

—
=

= M (B |22 B P27 (1017 /n) Zea |, (55.68)

where in the last equality, we use the fact that ZQ @ Z. Since the entries in Z
are i.i.d. N(0,1), we have L = (Ly,...,L,)T = Z71,,/\/n ~ N (0px1, I,) with L, =
17 Ze1//n. Tt follows that || Z7(1,1]/n)Ze,||* = 30, LiL3. Since L§ ~ xi, there
exist constants ¢y and ¢; such that P(|L} — 1| > ¢in) < O{exp(—cyn)}. Moreover,
note that LJQ-’S are i.i.d. y3-distributed random variables. By Lemma , for some

positive constants ¢y and ¢y, when p > n,

P(ZL§/(p 1) >14 cl> < Ofexp(—cop)} < Ofexp(—con)}.  (S5.69)

Jj=2
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Thus there exist constants ¢ and ¢q such that with probability 1 — O{exp(—con)},

p p
1Z7(11] /n) Zey || = Y T LIL? = Li+ LY L3 < cpn.
j=1

=2

By Condition , Amax(2z) < ¢n” and ||2§3/2,6k||2 < ¢ for some constant ¢; and
co. From (S5.67) and (S5.68), we know that A¢o < cmpn™! with probability 1 —
O{mexp(—con)}.

In summary, we obtain that for some constants ¢ and c¢q, A¢; and Ag o < empn™!

with probability 1 — O{exp(—con)}. Then by (S5.61), (S5.63) and Lemma [19] we

have for some positive constants ¢; and ¢,
P{||€]]> > cxn~ M D pmn!+T} < O{mexp(—con)} = O{exp(—con)},  (S5.70)

where the last equality is from Condition

Step 1.2 (bounding |§;| for i € M, from below) Without loss of generality, we

consider B # 0,x,. For fixed i € M,,

aTBTXTPTPx’
max
allal=1 g, ;1/n x aT(YTPTPY )a
> {nxal,YTPTPYay;} 20, }|a],BTXTPTPXe,], (S5.71)

& =
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where ag; in the last inequality is specified in Condition [2 To bound [¢;| from below,
we then examine (S5.71)). By Lemma , there exist constants cy and ¢y such that

with probability 1 — O{exp(—con)},
al ,YTPTPYay; < can®*'. (S5.72)

Moreover, as PTP = I, — 1,1} /n, o, a],;BTXTPTPXe; = Agin — Agia, where
Agia = ao BTXTXe; and Ao = aOZBTXT(l 17 /n)Xe;.

We first consider A ;. From (S5.58),
oial BTX T Xe; = o, a] ,BTS,/*UTdiag (1, . . ., 1ta) USY ?e;. (S5.73)

Note that for fixed i = 1,...,p, ||Zi/261| 25-2 = 1. Then there exists Q € O(p) such

that Eiﬁel = Qel, and

S./?Bay; — (3)/*Bay;, %)/ %e;0,1) 5y *ei0, 1

(1532 Bag,||* — (S4/*Bag;, £ ?ei0, 1))/ Qes. (S5.74)
By Condition , there exists constant ¢ such that HE}C/ Bag ;|| < en®. Thus

S/2Bag; = (L)/?Bay,;, 51/ %e;0, ) Qer + O(n*)Qes. (S5.75)
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Let T),1 = Utdiag(py, . . ., pin)UQey. As Qeq = Y %e,071 it follows that

(S5.73) = (1/*Bag,, £ ?ei0, el QT 1 + O(n*)el QT (S5.76)

Since the uniform distribution on the orthogonal group O(p) is invariant under itself,

U@ @) U. Then as (1, -, )T is independent of U by Lemma , we know that

QTT,M @ R, where R = (Ry,...,R,)T = UTdiag(p, ..., u.)Ue;. By (S5.76), we

then have

©5.73) @ 6 + oo (S5.77)

where &1 = (3/°Bag,, %2/ %0, ) Ry and &5 = O(n*) Ry,
We next examine &; 1 and &; o separately. For & 1, as i1, ..., ftn > pAmin(p ' Z27),

and by (S5.57)), we have
Rl Z peIUvT/\min(pilzZT)InUel - p>\rnin<pilzZT)<Sel7 €1>-

Thus, by Condition [I, Lemmas [15] and [16, and Bonferroni inequality, we have for

some positive constants ¢; and ¢,

P(Ry < c1p x n/p) < O{exp(—con)}. (S5.78)
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This, along with Condition [2 show that for some positive constants ¢; and co,

P(|¢:1] < ein'™") < O{exp(—con)}. (S5.79)

We then consider &2 = O(n")Ry. By Lemma , we know that there exist positive
constants ¢; and ¢y such that P(|Ry| > c;n'/?|W1|) < O{exp(—con}, where W is an
independent N (0, 1)-distributed random variable. It follows that for some positive

constants ¢; and ¢y, we have

P(|¢2] > cln“+1/2|W1|) < Ofexp(—con)}. (S5.80)
For some constant ¢, > 0, let x, = 202711_”_“/ vlogn. Then by the classical

Gaussian tail bound, we have

exp{—con!=2"72%/logn}

2cont/2=r=u [\ /logn

P \W| > x,) < \/2/n

< O{exp(—02n1_2“_2“/ logn)},

which, along with inequality (S5.80)), show that for some positive constants ¢; and

Co,

P(|& 2| > ein®zxy) < O[exp{—conl_%_%/log n}l, (S5.81)
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where nz,, = /2con' =" /1/log n.

We then consider 1215,1-,2. Similarly, we take Qe O(p) satisfying E}/ Qeia;} = Qe

and (S5.74). As ZQ @ Z and by (|S5.75), similarly to (S5.77)), we have

'BTEQI/QZT(lnlL/”)ZQQ @ gi,l + gm;

A AT
Agio = A,

where &, = <Ei/2Ba0ﬂ-, Eglg/ZeiU;%)eIZTlnllLZel/n and &5 = O(n")el 271,17 Ze, /n.
Note that 1T Ze; /y/n ~ N(0,1) and 1T Zey/v/n ~ N (0, 1) independently. Then for

some positive constants c; and cg,

P(le] 271,11 Zey /n| > ein* ™% /logn) < Olexp{—con'™""*/logn}],

P(|e}ZT1,1T Zey /n| > ein' "% /logn) < Olexp{—con'™"*/logn}].

These, combined with (S5.78)), show that there exist some constants ¢; and ¢y such
that

P(|&ia| > aléaln ™ /logn) < P(|&.1] > ci(SY?Bag,;, 20,1 )n' ="/ logn)

3

"‘P(Rl < cln)

IN

O{exp(—conl_”_“/ logn)},

P(|&2] > ein'™"/logn) < Ofexp(—con'™"/logn)}. (S5.82)
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In summary, by Bonferroni’s inequality, combining (S5.71)), (S5.72)), (S5.77)),

(S5.79), (S5.81) and (S5.82)), we have for some positive constants ¢; and c,

P(|&] < er(n x n2 ) ~Y2p178) < Olexp{—con' ™22/ logn}], i€ M,.(S5.83)

Step 2 We next examine = (11, ...,n,)7 defined in (S5.60).

Step 2.1 (bounding |92 from above) By Condition [1]

aTETPTPx’
n; =

= ma < A (YTPTPY )V 267 ETPTPx|(S5.84
a:r\r\}ill}:{l o.iVn xalYTPTPYa — {n ( )} el x'[|( )

Let € denote the j-th column of E, then E = [e!,...,€™]. As PTP = I, — 1,17 /n,
we have ||[ETPTPx'||? = 377" {(¢/)™x" — (¢/)T1,1]x'/n}?. Note that Y7, x'(x')T =

X XT. Then by (55.84),

P m

an < G {nAmin(YTPTPY)}™ 1222 x [{(e)Tx"}? + {(¢/)1,17x" /n}?|

i=1 j=1

= 2¢3 {nAuin(YTPTPY)} !

Z {(eNT ZX + ()1 1TZX NT1,1T€ /n*}
=1

= 265" {nAun(YTPTPY )} {(¢)TXXTe + (¢/)T1,1] X XT1,1] € /n’}
j=1
< 26 {nAuin (YTPTPY )} N (D) D (A jir + Apj), (S5.85)

Jj=1
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where A, ;1 = (€/)7ZZ7€’ and A, ;2 = (¢/)71,11 ZZ71,17 €’ /n?.
Note that Ay ;1 < pAmax(p™'ZZ7)||€7||>. Suppose diag(X) = (02,,...,02,,)"

Then by Condition [I] and Lemma [13] we know for some positive constants ¢ and co,
P(||€']]3 > eno?;/logn) < exp(—con/logn). (S5.86)

In addition, A, 2 < pPAnax(p™1ZZ7) x (17€’)?/n. Similarly to (S5.86), by Condition|[l]
and the tail bound of the Chi-squared distribution, there exist some positive constants

c and ¢,
P{(17€)?/n > cno?;/logn} < Ofexp(—con/logn)}. (S5.87)

Combining ((S5.86)) and (S5.87]), we know that for some constants c;, co and ¢y, with

probability 1 — O{m exp(—con/logn)},

Apji+ Ay jo < clpnz crij/logn < copnm/ logn, (S5.88)

i=1

where the last inequality is from diag(X) < ¢4 for some constant ¢4 > 0 by Condition

@

Combining (S5.8F)), (S5.88)), Lemma [19 and Conditions [I] and [3] we know for
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some positive constants ¢, ¢ and ¢,

P(HnH2 > c{n x nlft}’lpnl”m/ logn) < O{mexp(—con/logn)}

= O{exp(—con/logn)}. (S5.89)

Step 2.2 (bounding |7;| from above) From Step 2.1, we know

m

7 < AnAun(YTPTPY)} 102 ) (el PTPX)2. (S5.90)

T,
i=1

Then conditioning on X, o, ;€] PTPx' ~ N(0,02,(x')TPTPx's,7). Let & be the

T, "] %

event {var(o, ;€] PTPx'|X) < ¢;n} for some constant ¢; > 0. Note that

var(el ,PTPx'o 1| X) = ol {(x')Tx' — (x")"111,x" /n}o,} < 02 ;(x')"X'0, 2.

Using the same argument as in Step 1.1, we can show that, there exist some positive

constants ¢; and ¢,

P& < P{O'ij(Xi)TXiU;? > cn} < O{exp(—con)}, (S5.91)
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where & represents the complement of the event & . On the event &, for any a > 0,

by Condition [I, we have
P(le€]PTPx'|o,; > alX, &) < P{/ein|W| > a}, (S5.92)

where W is an independent N (0, 1)-distributed random variable. Thus, combining

(55.91) and (S5.92), we have
P(le]PTPx'|o,; > a) < Ofexp(—con)} + P{y/cin|W| > a}. (S5.93)

Let 2/, = /2cocin'~"~4/2=3/2=v |\ /logn. Invoking the classical Gaussian tail bound,

we have
P{\/ein|W| > 2!} = O{exp(—con' """ /logn)}.
By (55.90) and Lemma , we then have

P(|mi| > (™) 2 /m) <) P(lefPTPX| > af)

j=1

+P{Auin(YTPTPY) < cin* ™'Y,

where (n'*17)7122" \/m = \/2cocimn /274 /\/Togn < cyn"%/y/logn for some
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constant ¢ > 0 by Condition [3] In summary, we have

Plmax |n;| > con™"""/+/logn|
1<i<p
< O[pexp{—Cin_Q“_t_s_zu/logn}]

= Olexp{—con' 2" ""7572"/logn}|, (S5.94)

where the last equality is from Condition

Step 3. We combine the results in Steps 1 and 2. By Bonferroni’s inequlaity, it

follows from (S5.70)), (55.83)), (55.89) and (S5.94) that, for some positive constants

61, 52 and é,

P{zlenj%/I(l G| < E1(n x n® )20 8 or |I€)1? > Ea(n x 0t ) et T pm)

< O[|M.|exp{—én'~22“"t5 [logn}]. (S5.95)

By Lemma |18 and ([S5.95)), we know that there exist some positive constants ¢y, ¢y

and c,

P{zgl/gl jwil < er(n x n®F) 721 or [w|® > ea(n x nTh) T In T pm}

< O[[M.|expf—cn' 221 /log n}],
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which is Olexp{—con'=2*7247t=5 /log n}| for some constant ¢y > 0 by Condition [3|and
| M., | < p. This shows that with overIwhelming probability 1—O[exp{—con!=2*"24"t=% /log n}],
2u+1)71/2n17/<

the magnitudes of w;,i € M, are uniformly at least of order ¢;(n x n

and for some positive constants ¢; and ¢y,

(Tl % n2u+1) % pmnl-‘rT
n X nl=t x (nl=+)2

s+2u+2k+7+t—1
< copn )

#FL<E<p:|wl > min |lwil} < e
1€ *

where the last inequality is from Condition [3] Thus, if the proportion ¢ of features

1-2k—2u—71—t—s s+T+t+2k+2u—1

selected satisfies on — 00, then dp > copn when ¢ is suf-
ficiently large, and we know with probability 1 — Olexp{—con!=2*724=7=t=5 /1ogn}],

M, C Ms.

S5.3 Lemmas in the proof of Theorem

Lemma 13 (Lemma 3 in [Fan and Lv| (2008)). Let 9;, i = 1,2,...,n be i.i.d. x3-
distributed random variables. Then for any € > 0, we have P(n™' 1" | ¥; > 14¢€) <
exp(—Aen), where A. = [e —log(1 +¢€)]/2 > 0; for any € € (0,1), P(n 'Y, ¥; <

1 —¢€) < exp(—Bn),where B. = [—e — log(1 —¢€)]/2 > 0.

Lemma 14 (Lemma 1 in Fan and Lv| (2008)). For U and (u1, ..., )7 in (S5.56),
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and O uniformly distributed on the orthogonal group O(p), we know that

(In? O)nXPU @ ([na 0)n><p0~7 (8596)

and (p1, . .., p1n)7 ts independent of (1, 0),x,U.

Proof. As ,ui/ 2, . ,,u}/ > aren singular values of Z, we know that Z has the singular
value decomposition Z = Vi DU, where V; € O(n), U € O(p) is given in (S5.56]),
and D is an n X p diagonal matrix whose diagonal elements are u}/ 2, cee ,u}/ ?. Since
the entries in Z are i.i.d. N(0,1), for any O € O(p), ZO 9 7. Thus, conditional
on V; and (p, ..., t,)7, the conditional distribution of (1, 0),,U is invariant under

O(p). This shows that (S5.96|) holds for O uniformly distributed on the orthogonal

group O(p), and (1, ..., tt,)7 is independent of (1,,,0),,x,U. O

Lemma 15 (Lemma 4 in [Fan and Lv| (2008)). S defined in (S5.57) is uniformly
distributed on the Grassmann manifold G,,. For any constant co > 0, there are

constants ¢; and ¢y with 0 < ¢ < 1 < ¢y such that

P((Se1,e1) < cin/p or > con/p) < dexp(—con).

Lemma 16. The matriz Z is of size n X p and the matriz Z is of size n X m with

C’ondition@ satisfied. The entries in Z and Z are i.i.d. N'(0,1). For some constants
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C1,Co > 0,

P{max (™' ZZ7) > ¢1 or Auin(n ' Z77Z) < 1/c1} < exp(—con). (S5.97)

There exist some constants ¢c; > 1, ¢ > 0 and cqg > 0, when n > c,

PAmax{n Y(PZ)TPZ} > ¢, or Ain{n Y(PZ)TPZ} < 1/¢1] < exp(—con/ log (95.98)

Proof. As the entries in Z are i.i.d. A(0,1), by Appendix A.7 in[Fan and Lv| (2008)),
we know that (S5.97) holds. For Z, since its entries are also i.i.d. N(0,1) and
n > cym for some ¢; > 1, symmetrically, we know there exist constants ¢; > 1 and

Co > 0 such that

P{\max(N Y Z7Z) > & or Auin(n 1 27Z) < 1/&} < exp(—égn). (S5.99)

Since (PZ)TPZ —TPZ =717 — ZTlanTLZ/n, by Weyl’s inequality, we have

Anax{(PZ)TPZ} < A Z72) + A (— 271,11 Z /),

Aein{ (PZ)TPZ} > Aain(Z72) + Ain(— 271,112 /). (85.100)

Let Ay = Z1,11Z/n. As rank(Ay) = 1 and tr(Az) > 0, we know Apax(—Az) =
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Amin(Az) =0 and Apin(—Az) = —Amax(Az) = —tr(Az) = 112271, /n.

We then examine 17 ZZ71,,/n. For z;~N(0,1) independently,

m n

112771, /n = Z (Zzij/\/ﬁ>2 ~ X2

j=1 =1

By Lemma we know for the random variable W ~ X2, and any constant ¢y > 0,

there exists constant c3 > 0 such that
P{W/m — 1| > ¢an/(mlogn)} < exp{—csm x n/(mlogn)}, (S5.101)

This implies that with probability 1—O{exp(—csn/logn)}, Amax(Az/n) = 11 ZZ71,, /n* <
c2/ logn for some constant c; > 0, as m = O(n®) with s € [0, 1).

When n is sufficiently large, there exists constant ¢; such that 1 > ¢; > ¢; and

1/c14¢y/logn < 1/¢. Thus by (S5.100]) and (S5.101f), we know there exists constant

co > 0 such that with probability 1 — exp(—con/logn),

Dmin(n Y (PZ)PZ) <1/c1} € {Dain(n1Z7Z) < 1/c1 + 3/ logn}
C {)\min(n_IZTZ) < 1/61},

Dnax(m™Y(PZ)YPZ) > 1} € {Amax(n™'272) > 1}

By (S5.99), (S5.98)) is then proved.
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Lemma 17. For R = (Ry,...,R,)T = UTdiag(,ul, - ,un)ﬁel, there exist positive
constants ¢, and co such that P(|Ry| > cin'/?|W1|) < O{exp(—con}, where |Wy| is

an independent N (0, 1)-distributed random variable.

Proof. Let R = (R,, ..., R,)T. We first show that R is invariant under the orthogonal

group O(p —1). For any Q € O(p — 1), let Q = diag(1,Q) € O(p). By Lemma ,

we know that U is independent of diag(y, ..., ) and QU 9D 7. Thus

QTR = QTUTdiag(ulv s nu/n)UQQT€1 @ UTdiag(ula s 7#71)0617

where we use the fact that QTe; = e;. This implies that R is invariant under
the orthogonal group O(p — 1). It follows that R @ IR[|[W/|W]l2, where W =
(Wi,...,W,_1)T ~ N(0,I,_,), independent of ||R]|.

In particular, we have R @ IR||[W:/||W]||o. Note that |R|| < ||R| and ||R|]?> =

eTUTdiag(12, ..., 1u2)Uey. Since ju, ..., fin < PAmax(pZZ7),

IRI? < Dunax(p™ 220 Y] UTUer={ Anax (™' ZZ7) }*p* (Ser, 1)

By Lemmas |14 and [16] we then know for some positive constants ¢; and ¢, P(||R| >

c14/pn) < O{exp(—con)}. Moreover, by Lemma , we know for some constants ¢
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and cg, P{||W]|]? < ci(p — 1)} < exp(—con) when p > n. Thus we obtain that for
some constants ¢; and ¢y, P(|Ry| > c;|[Wi|n'/?) < O{exp(—con)}, where Wi is an

independent A/ (0, 1)-distributed random variable. O

Lemma 18. For some constant co > 0, w; = {1 + o(1)} with probability 1 —

O{exp(—con/logn)}.

Proof. By the definitions of w; and (; and PTP = P, we know

alYTPx'(y/no,; — /(x))TPx") Vnog; —+/ (x1)TPx?

wi — G < max A . = Gi A —,
& 0z:/n((x))TPx7)(aTYTPY a) (x')TPx’
Gi—w < max aTYTPsz'< ' (Xi)T‘PXi _ \/ﬁ%,i) ¢ (Xi)-rp)éi _ \/.ﬁ%,i'
8 0giy/n((x)TPx)(aTY TPY a) (x")TPx!
Thus
(x)TPX! — \/no,.; : '
|wi — Gl < ¢ : : = G|l — ou/n/{(x)TPx}|.
(x*)TPx!
Let ' = >, @;/n, which is the mean of the entries in x'. It follows that

(x")TPx' =30 (zpi — ) = > _p_, o, — n(Z')?. Then with ¢, = ¢;/2

P(|(x")TPx'/(no2;) — 1| > ¢1/logn) (S5.102)

< P{#)/02, > &1 /logn} + P{) ixi#(nai» - 1] > 61/logn}.
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By Condition , (vnz')? /o2 ; ~ x7. Then by the tail of x? distribution, for some con-
stant ¢o > 0, P{(z")?*/02,; > ¢1/logn} < O{exp(—con/logn)}. In addition, 23 ;/02 ;,

k=1,...,n are ii.d. yi-distributed random variables. By Lemma , there exists

some constant cq > 0,

P{‘ zn:xil/(nozl) — 1‘ > ¢1/log n} < O{exp(con/logn)}.

k=1

In summary, we know for any constant c¢; > 0, there exists constant ¢y > 0 such that
(S5.102) < O{exp(—con/logn)}. Thus, fori =1,...,p, w; = {1+ O(1//logn)} =
Gi(1 4+ o(1)) with probability 1 — O{pexp(—con/logn)} =1 — O{exp(—con/logn)},

where the last equality is from Condition O

Lemma 19. Consider n > ¢ for ¢ in Lemma[I6. There exist constants ¢y, ca and ¢,

with probability 1 — O{exp(—con/logn)},
Amin(YTPTPY) > ein' ™,
and for ag; in Condition 3,
al ,YTPTPYay; < can®™*'. (S5.103)

Proof. Since X and E follow independent Gaussian distributions by Condition [T
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the rows of Y are independent multivariate Gaussian with mean zero and covariance
Yy = BT, B +¥. Define 7 = YZ;I/Q. Then Z is of size n x m and the entries in Z
are i.i.d. N(0,1). Thus the concentration inequality (S5.98]) in Lemma [16| holds. It

follows that there exist constants ¢; and cg, with probability 1 — O{exp(—con)},

YTPTPY =%.?ZTPTPZ%)/?

=18 Ain (N ZTPTPZ) 1,52 = ein,.

By Weyl’s inequality and Condition [1, we then know

)\min(YTPTPY) 2 cln/\min(Ey) Z cm)\mm(E) Z clnlft. (85104)

Similarly we know for some constant ¢, with probability 1 — O{exp(—con)},

al YTPTPYa,; = a],X}/?ZTPTPZY! ay;
S CQnagﬂ-EyaO,i
= cgnagvi(BTZzB + Y)ag,

6277,2““ ’

IN

where the last inequality is from Condition [2] O
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S6. Proposition [6] (Meinshausen et all, 2009, Theorem 3.2)

The proof of Proposition [f] directly follows the proof in [Meinshausen et al| (2009).

For z € (0, 1), define

Y(z) = i 1{pW) < 2}. (S6.105)

~l =

Note that {Q(v) < a} and {¢(ay) > v} are equivalent. For a random variable U

taking values in [0, 1],

0 U>a
1 1/ < @ )4
sup —{ ;i =

a/U  avpn < U < o
’YE(’Ymirn]-) ,y / fy

\ ]-/’Ymin U < QYmin-

Thus when U has a uniform distribution on [0, 1],

1 U < QYmin @
E sup {;a,y}] - / rYr;ulndx +/ ogxildx = Oé(l - log 7min>‘
0 @

’YE('Yminal) /y

Ymin
Hence, define the event B(;) as M, C M for the jth split, then

1

E[ sup 1{p(j)§a,y}/ﬁy} < E{E[ sup 1{p(j)§04’y}/’y‘8(j)]}+ P{B(j)}

’YG(VIninﬂl) 0iS (’Vminvl)

< a1 —logYmin) + O[exp{—conl_‘/ logn},

min
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where the constant ¢ is given in Theorem [5] Averaging over .J splits yields

J
11 -
E[ sup Z 1{pW /vy < a}} < a1 = 10g Yimin) + Olexp{—con'~*/logn}].

'YE('Yminvl) f'}/ j=1

From Markov inequality and (S6.105), Efsup.c,,.. 1) 1{#’(ay) > 7}] < a(1-10g Yimin )+
Olexp{—con'=/logn}]. Since {Q(7) < a} and {¢(ay) > 7} are equivalent, it fol-
lows that Plinf,e(,,...1) Q@) < a] < a1 —10g Ymin) + Olexp{—con'~*/log n}], which
implies that Plinf.e(y,... 1) Q(7)(1 —10g Ymin) < o] < a+ Olexp{—con'~*/logn}]. By

definition of p;, limsup,, . Plp: < o] < « is obtained.

S7. Supplementary Simulations

S7.1 Supplementary simulations when n > p+m
Estimated type I errors

We provide additional simulations under Hy following the same set-up as in Figure [4]
In Figure [S1], we present the estimated type I errors of the x? approximation and the
normal approximations of 77 and T3 with varying m and r respectively. It exhibits
similar pattern as in Figure , which shows that as (p,m,r) become larger, the x?
approximation performs poorly, while the normal approximations for 77 and T3 still

control the type I error well.
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Estimated type | error

Estimated type | error
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(b) Estimated type I error versus r

Figure S1: Estimated type I error

Additional simulations under alternative hypotheses

In this section, we generate data from the multivariate regression model Y = X B+ F,

where the rows of X and E are independent multivariate Gaussian with covariance

matrices ¥, = (pli=7),,, and ¥ = (pli=7),.,, respectively. We consider a sparse

scenario when only the (1, 1)-entry of B is nonzero with a value v,. We also consider

a dense scenario when all the entries of B are independently generated from N (0, c3).
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For each scenario, we estimate the test powers for different v, or o2 values, which are
referred to as the signal sizes in the following. We take n = 100, m = 20,p = 50,r =
30 and conduct 10,000 simulations for two different C' matrices. In the first case, we
take C' = [I,, 0,5 (p—r)], where I, is an identity matrix of dimension r x 7, 0,5 (p—p) is
an all zero matrix of dimension r x (p — r). Then Hy : CB = 0,,, examines the
relationship between Y and the first r predictors of X. In the second case, we take
C = [I,,0,x(p—r-1), —1,], where 1, is an all 1 vector of length r, and 0, (—,—1) is
an all zero matrix of dimension r x (p —r — 1). Then Hy : CB = 0,4, tests the
equivalence of effects of the first r predictors and the last predictor. For two types
of B and two types of C' matrices, we plot the estimated powers of T3, T, T3 versus
signal sizes with p = 0.7, p = 0.5 and p = 0 in Figures [S2 [S3] and [S4] respectively,
where similar results are observed.

Figures show that under the dense B scenario, T is more powerful than
T5; but under the sparse B scenario, T is more powerful than 7;. In addition,
the combined statistic T3 still maintains high power under both scenarios. These
results demonstrate the good performance of the proposed statistic T5. Note that the
patterns we observe in Figures are similar to that in Figure [5] which indicates
that the conclusion we obtain under the canonical form can be instructive when

considering the linear form.
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Robustness with other distributions

We further conduct some simulations considering other distributions, which exhibit

similar patterns as in Figure [S2| and imply the robustness of the proposed methods.

(a) X and Y follow multinomial distributions For i = 1,...,n and j =
1,...,p, we generate the entry z;; in X independently and identically in the fol-
lowing way. In particular, we first generate z; ; N (0,1), and set the value of z; ;

as below:

-3 Zi 5 < —1,

—2 Zij € [—17 —04),
—1 Zi,j € [—04, 0),
xi,j =

1 Zi.j S [0,04),

2 Zi,j € [04, 1),

3 Zij > 1.

Given B and X, we generate W = X B+ E, where the entries of E are i.i.d. N(0,1).

Fort=1,...,nand j = 1,...,p, let w;; and y;; denote the entries of W and YV
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respectively. We then set

-3 w5 < -1,

—2 Wy € [—1, —04),
—1 W; 5 S [—0.4,0),
Yij = 3
1w, €[0,0.4),

2 Ws 5 S [04, 1),

3 W5 > 1.

We present the results in Figure [S5| where “B sparse” and “B dense” represent
two different types of B matrix, which are generated following the same method as in
Section [S7.1] Similarly, we also take C' = [I,., 0, (p—r)] and C = [I,., 0, (p—r—1), —1;]

respectively. We can observe similar patterns to that in Figure [S2

(b) Errors follow ¢ distribution In this part, we examine the case when the
errors in matrix E independently and identically follows ¢ distribution. In particular,
we first generate the entries in X as ii.d. N'(0,1). Then we generate the entries in F
as i.i.d. tg with df € {3,5}. The results are summarized in Figure [SE, where similar

patterns are observed as in Figure [S2]
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S7.2 Supplementary simulations when n < p+m
Supplementary simulations with normal distribution

Under the similar set-up to that of Figure[6] we present additional results with r,, =5

in Figure [S7| where similar patterns are observed as in Figure [6]
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Figure S7: Estimated powers versus signal sizes when n < m + p

In addition, under the similar set-up to that of Figure [f], we conduct simulations
when p = 0 and 7, € {1,5}. The results are presented in Figure [S8 where similar

patterns are observed as in Figure [6]
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Robustness with other distributions

To examine the robustness of the two-step procedure, we generate X and Y follow-
ing Section with n = 100, m = 20, p = 120. We then generate B and apply
the testing procedure similarly as in Section with 7, € {1,5}. The results are
presented in Figure , where part (a) gives the results when X and Y follow multi-
nomial distribution, and parts (b) and (c) give the results when the error terms in £
are i.i.d. t3 or t5. We note that similar patterns are observed as in Figure [6] This

shows that the proposed two-step procedure is robust to the normal assumption.

S7.3 Simulations on P{y(ay) > v}

We conduct a simulation study to illustrate how the value of P{¢(ay) > v} depends
on the correlations of the p-values. We consider an “ideal” case with equal correlated
p-values. Specifically we generate p) = 1 — ®(V;;) for j = 1,...,J, where V; =
Vit o, Vig)T ~N(0,%,) with ¥; = (1 — p)I,;+ p171,. Note that larger p value
implies larger correlations between pi)’s. We take J = 200 and use 10 Monte Carlo
repetitions to estimate P{¢(a7y) > «}. Figure gives the simulation results for
p € {0,0.2,0.4,0.6,0.8,0.9,0.95,1}, and v € (0,1) and (0,0.01) respectively. When
p is small, the largest value of P{¢(ay) > 7} is attained at 5 x 1073 = J~!; when
p = 1, the largest value is attained at v = 1. These observations are consistent with

the above theoretical argument.
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Figure S9: Estimated powers of two-step procedure with other distributions
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Figure S10: Estimated P{¢)(a~y) > 7} versus v under different correlation levels

S7.4 Simulations compared with screening using lasso

In this paper, we propose the two-stage testing procedure using the screening with
canonical correlations. Note that the proposed method aggregates the joint infor-
mation of the response variables, and thus could be better than simply applying
the marginal screening with respect to each response variable. To further study the
effect of highly correlated predictors, we compare our method to using lasso with
cross-validation, which is expected to account for the dependence in the predictors
while not for the dependence in the responses.

In particular, for the screening with canonical correlations, 20% predictors are se-
lected as in Section ; for the screening with lasso, we select the predictors (< 20%
of all predictors) that minimize the MSE in 10-fold cross-validation. In the simula-
tions, we take C' = [I,, 0,4 (,—r)], and generate the rows of X and E as independent

multivariate Gaussian with covariance matrices Y, = (pli*ﬂ)pxp and ¥ = (pl" ), m
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respectively. For each setting considered, we choose p € {0.7,0.9}, which are the

cases when the predictors are of large correlations.
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Figure S11: Screening Comparison: B is diagonal

We next consider two simulation settings, whose results are provided in the fol-

lowing Figures and respectively. In the first setting, we choose B to be a

p x m diagonal matrix with o, in the first r, diagonal entries, where o, represents the

signal size that varies in simulations. We take n = 100,p = 120, m = 5,r = 5 and

rr = 5. In the second setting, we generate B with a nonzero submatrix of size r, X m

in the upper left corner, where the entries are randomly generated from A/(0,0?).
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We take n = 100,p = 120,m = 5,7 = 120 and r, = 5. In both Figures and

[S12] we provide the estimated powers versus signal sizes in the left column, where

J represents the number of splits similarly as in Figure [6 In addition, we provide

the corresponding proportion of simulations that cover the true active set (correct

covering proportion) versus signal sizes in the right column.
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Figure S12: Screening Comparison: B has a nonzero submatrix

0.2

By the simulation results, we find that under the considered simulation settings,

even though the correlations among predictors are large, using the canonical corre-

lation in screening performs better than using lasso with cross-validation, in terms

of both test power and correct covering proportion. The results suggest that the
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correlation-based procedure can still account for the dependence among predictors
reasonably under certain settings with correlated predictors. In addition, comparing
the test power and corresponding correct covering proportion in Figures and [S12]
we find that the under selection of the true active set generally leads to loss of power
in testing. To further improve the test power, it is still of interest to develop a screen-
ing approach that could fit a wider range of scenarios and is also computationally
efficient. Besides the two screening approaches compared here, we can also gener-
alize other screening methods to the multivariate regression setting, as discussed in

Remark [3| on Page We will further study this in the follow-up research.

S8. Supplementary Results of Real Data Analysis

In this section, we present the analysis results of the regressions of GEPs on CNVs
for the same dataset in Section [6] Then the m-variate response is the GEPs data and
the p-variate predictor is the CNVs data, where now the dimension parameters are
(p,m) = (138,673), (87,1161), (18,516) for the three chromosomes correspondingly.
Similarly to Section [0, we apply the proposed procedure with ng = 26, ny = 63 and
J = 2000. As m values are large in this case, we choose different fixed numbers of
principal components when applying PCA on the response Y. The chosen number
of principal components and predictors are denoted as mqy and pg respectively, which

are generally chosen as large as possible considering the sample size given. We next
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Chromosome pair
(mo,po) | 8 =8 17— 17 2222 |8 =17 17T—22 8 —22
(10,45) X X X X X v
(15,45) X X X X X v
(15,40) X X X X X v
(20,40) X X X X X v
(20,35) X X X X X v

Table S1: Decision results
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Figure S13: Boxplot of p values for regressions on different chromosome pairs

provide the decision results in Table |51} where the notations follow the same meaning
as in Table[l] In addition, to further illustrate the results, we also report the boxplots
of the p-values with respect to different chromosome pairs in Figure [S13| where
(mo, po) = (15, 40).

From the results, we can see that the p-values presented in Figure [SI3|support the

test results in Table [SI] Particularly, in the boxplots of the regressions on the same
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chromosome pairs (the first three boxplots), the obtained p-values are significantly
smaller than 0.05. For the regressions of the 17th on the 8th chromosomes and the
22nd on the 17th chromosomes (the 4th and 5th boxplots), the medians of the p-
values are smaller 0.05. These observations are consistent with the rejections of the
corresponding null hypotheses. Moreover, for the regression of the 22nd on the 8th
chromosomes (the 6th boxplot), most of the p-values are greater than 0.05, which

supports the decision that we accept the corresponding null hypothesis.
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