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Abstract: We derive the properties and demonstrate the desirability of a model-

based method for estimating the spatially varying effects of covariates on a quantile

function. By modeling the quantile function as a combination of I-spline basis

functions and Pareto tail distributions, we allow for flexible parametric modeling

of the extremes, while preserving the nonparametric flexibility in the center of the

distribution. We further establish that the model guarantees the desired degree of

differentiability in the density function, and enables us to estimate nonstationary

covariance functions that are dependent on the predictors. We use a simulation

study to show that the proposed method outperforms other methods in terms of

producing efficient estimates of the effects of predictors, particularly in distributions

with heavy tails. To illustrate the utility of the model, we apply it to measurements

of benzene collected around an oil refinery to determine the effect of an emission

source within the refinery on the distribution of the fence line measurements.

Key words and phrases: Conditional density estimation, quantile regression, spa-

tially-varying coefficients.

1. Introduction

Quantile regressions offer an important alternative to the traditional mean

regression for problems where the interest lies not in the center of the distribu-

tion, but in some other aspect. A large body of literature has developed since

the first quantile regression paper was published by Koenker and Bassett (1978)

and is reviewed in Koenker (2005). Yu and Moyeed (2001) proposed a form

of Bayesian quantile regression employing the asymmetric Laplace distribution

(ASL) as the working likelihood, owing to its similarity to the check loss function

used by Koenker and Bassett (1978). Both approaches perform separate analyses

for each quantile level of interest. When quantiles are estimated separately, there

is no guarantee of a valid nondecreasing quantile function. There are several ap-

proaches to address this issue. The first is a two-stage method: in the first-stage,

the quantiles are fitted separately using one of the above methods. In the second
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stage the estimates are smoothed to ensure monotonicity. This approach has

been adopted by numerous authors, including Dette and Volgushev (2008), Neo-

cleous and Portnoy (2008), Chernozhukov, Fernandez-Val and Galichon (2009),

Rodrigues and Fan (2017), and Reich, Fuentes and Dunson (2012), who used it

as a more computationally efficient Bayesian spatial method. Bondell, Reich and

Wang (2010) embed a constraint that ensures monotonicity into the minimiza-

tion problem, and Cai and Jiang (2015) use prior specifications to ensure the

constraints in the Bayesian framework.

The final approach, which we adopt and extend, is to model the entire quan-

tile function jointly using basis functions. This is the approach taken by Reich,

Fuentes and Dunson (2012), among others (Reich (2012); Smith et al. (2015)),

and is more naturally implemented using a Bayesian framework. Regardless of

the approach taken, ensuring monotonicity requires either some form of distribu-

tional assumption, or constraints on the quantile regression coefficients and the

parameter space of the predictors. Cai and Jiang (2015) demonstrated that when

predictors are constrained to be positive, the quantile function is monotonic for

every possible predictor value if and only if the basis functions are monotonic.

This is the approach taken by Zhou, Fuentes and Davis (2011) and Zhou, Chang

and Fuentes (2012), who first proposed the I-spline quantile regression model, the

properties of which we derive in this study.

We show how the I-spline model must be constrained in order to guarantee

that the resulting density function has a desired number of continuous deriva-

tives. In our numerical studies and in the application to benzene data, we show

that this is important to avoid overfitting. We also derive the expectations and

covariance of the model, showing that the spatial covariances are nonstationary

and depend on the coviarates. The primary difficulty in ensuring differentiability

is that, while the center of the distribution is modeled by I-splines, the model has

tails that follow a generalized Pareto distribution (GPD). The GPD is used to

model the tails because it has been shown to be a natural choice for exceedances

over a threshold (Davison and Smith (1990)). Furthermore it provides flexibility

owing to the shape parameter, which controls the boundedness and the existence

of moments. Zhou, Chang and Fuentes (2012) proposed a two-stage method for

estimating parameters. The first stage estimates the GPD shape parameters,

which are then fixed in the second stage, which estimates the quantile regres-

sion parameters. Here, we assign priors to all parameters and estimate them

simultaneously in a Bayesian framework.

As in a mean regression, one way of incorporating a spatial correlation into

a quantile regression is to model spatially varying parameters using Gaussian



SPATIAL QUANTILE REGRESSION 1169

process priors. Lum and Gelfand (2012) use the ASL for the likelihood, and

incorporate a spatial correlation by modeling the error as a function of a Gaussian

process and an independent and identically distributed (i.i.d) exponential random

variable. For large data sets they propose an asymmetric Laplace predictive

process, extending the method introduced by Banerjee et al. (2008). However, the

use of the ASL does not allow for a valid posterior inference, because it does not

represent the true likelihood of the observations. Yang and He (2015) combined

spatial priors with their Bayesian empirical likelihood approach to model the

conditional quantiles in the presence of both predictors and spatial correlation.

However, their method only allows for effects to be estimated at a small, fixed

number of quantile levels. Several other methods of modeling a spatially varying

conditional quantile function using basis functions have been proposed (Reich,

Fuentes and Dunson (2012); Reich (2012)).

A full description of the I-spline quantile regression model for both indepen-

dent and spatially correlated data is given in Section 2. Here, we formulate the

conditions under which the resulting density has the desired degree of differen-

tiability, and derive the marginal expectations and spatial covariances, which can

be nonstationary (Section 3). Our simulation studies demonstrate that ensuring

a smooth density can lead to more accurate effect estimates and predictive distri-

butions, as compared with methods that do not ensure differentiability (Section

4). We apply the method to benzene measurements from a petrochemical facility

to determine the effects of emission sources on concentrations (Section 5). The

final section concludes the paper.

2. Model and Estimation Methods

2.1. Proposed model

We model the quantile function of the stochastic process Y (s) as a linear

combination of the predictors:

Q(τ |s,x(s)) = β0(τ, s) +

P∑
p=1

xp(s)βp(τ, s), (2.1)

where x(s) = (x1(s), . . . , xp(s)) ∈ Rp+ is the vector of predictors observed at

location s, β0(τ, s) is the quantile function at location s when all predictors are

zero, and βp(τ, s) is the effect of predictor p on quantile level τ at location s.

We follow the approach of Zhou, Fuentes and Davis (2011), and model β(τ, s) as

a linear combination of I-spline basis functions in the center of the distribution.
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We denote the mth I-spline basis function evaluated at τ as Im(τ), and define the

constant basis function I0(τ) = 1, for all τ . Although I-splines allow for a large

degree of flexibility in the center of the distribution, unbounded distributions

cannot be estimated using I-splines with a finite number of knots. To solve this

issue, we use the quantile function of the GPD to model the relationship between

the covariate(s) and the process in the tails of the distribution. The model for

βp(τ, s) can then be expressed as

βp(τ, s) =


θ0,p(s)− σL,p(s)

αL(s)

[(
τ
τL

)−αL(s)
− 1

]
τ < τL∑M

m=0 θm,p(s)Im(τ) τL ≤ τ ≤ τU[∑M
m=0 θm,p(s)

]
+ σU,p(s)

αU (s)

[(
1−τ
1−τU

)−αU (s)
− 1

]
τ > τU ,

(2.2)

where τL and τU are the thresholds between the tails and the center of the distri-

bution, θ0,p is the location parameter at the lower tail, and θm,p(s) represents the

coefficient of the mth I-spline basis function and the pth predictor at location s.

I-splines are monotonic polynomials formed by integrating normalized B-splines

(Fig. 1) (Ramsay (1988)). They are defined on a sequence of knots {τL =

τ0 = · · · = τk < · · · < τM+1 = · · · = τM+1+k = τU}, where k represents the

degree of the polynomial, and M is the number of nonconstant basis functions.

In both the simulation study and the application, we space the knots evenly be-

tween zero and one to maximize the number of observations available to estimate

the quantile function between each set of knots.

The GPD has three parameters: the shape parameter α, the scale parameter

σ, and a location parameter µ. In our parameterization, the location parameter

of the lower tail is equal to θ0,p(s), and the location parameter of the upper tail

is equal to
∑M

m=0 θm,p(s). These ensure that the quantile function is continuous.

We denote the shape parameters of the lower and upper tails as αL(s) and αU (s),

respectively, and the scale parameters as σL,p(s) and σU,p(s), respectively. We

require the shape parameter to be constant across predictors in order to ensure

that the density in the tails follows a parametric distribution. The scale param-

eters vary by both predictor and location, and allow the predictors to affect the

tails differently. When α < 0, the support of the GPD is also bounded above;

otherwise, the domain is unbounded above. The case when α = 0 is interpreted as

the limit when α → 0; that is, (σU,p/αU ) [((1− τ)/(1− τU ))−αU − 1] is replaced

with −σU,p log((1− τ)/(1− τU )). The expectation exists if α is less than one, and

the variance exists if α is less than 1/2.
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Figure 1. Example set of normalized B-spline (left) and corresponding I-spline (right)
basis functions. Dotted vertical lines indicate knot locations.

This model formulation ensures a quantile function that is continuous and

differentiable at all but a finite number of points. We can thus exploit the result of

Tokdar and Kadane (2012) who demonstrated that a differentiable and invertible

quantile function corresponds to the density

f(y) =
1

Q′(Q−1(y))
. (2.3)

To ensure the quantile function is monotonic; we introduce latent parameters

with Gaussian process priors, θ∗m,p ∼ GP(µ∗m,p,Σ
∗
m,p), and define θ0,p(s) = θ∗0,p(s)

and θm,p(s) = exp(θ∗m,p(s)), for m > 0. Using this formulation, the resulting

θm,p(s) is modeled as a log Gaussian process. No constraints are placed on θ0,p,

which allows predictors to have a negative effect on the response.

The model formulation has many advantages, including the ability to allow

the effect of each predictor to vary by quantile level and by spatial location,

while guaranteeing a valid quantile function. It can also accommodate a variety

of tail distributions, including both bounded and unbounded tails. Furthermore,

we show in Section 3 that we can guarantee the degree of differentiability of the

corresponding density function.

Reich (2012) proposed a similar model by constructing the quantile function

using parametric Gaussian basis functions. Although these functions allow for

straightforward evaluation of the density, they do not guarantee a differentiable

quantile function, which results in a noncontinuous density function (Fig. 2). Our

simulation and applied data analysis show that constraining the density to be

continuous and differentiable can result in better parameter estimates and out-

of-sample scores.
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Figure 2. Examples of quantile functions (top row) and the corresponding density func-
tions (bottom row), constructed using different bases.

2.2. Estimation details

We estimate the parameters using MCMC sampling and the R programming

language. We calculate the likelihood by inverting the quantile function. Our

formulation of the likelihood can be inverted analytically when τ is less than τL
or greater than τU . When τL < τ < τU , the quantile function is a polynomial

in τ , and can be inverted either by finding the roots of the cubic polynomial

(for I-splines of order three) or by using Halley’s root finding algorithm (Hansen

and Patrick (1976)). Then the likelihood is calculated using Equation (3.2), as

described in the next Section.

To ensure that the degree of smoothness at the thresholds matches the degree

of smoothness at the internal knots, we sample θ1,p, θM,p, αL, and αU , and define

θ2,p, θM−1,p, σL,p, and σU,p in accordance with Proposition 1 and Theorem 1

(see Section 3). The latent parameters θ∗m,p are given Gaussian process priors

with mean µ∗m,p and spatial variance η2m,p, and the nugget variance is fixed to

λ2m,p = 0.01(η2m,p). The prior parameters are updated using a Gibbs update from

the full conditionals. The latent parameters are updated using the Metropolis–

Hastings method with the step size tuned to have an acceptance rate between 0.3

and 0.7.

Latent parameters are also used to sample the tail shape parameters, with

α = log(α∗ − 0.4) − log(0.4 − α∗) and α∗ ∼ GP(µα, η
2
α). This ensures that

the range of α is constrained to (−0.4, 0.4). The upper bound prevents invalid
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quantile functions, and the lower bound helps ensure convergence. Conjugate

hyperpriors are used in both the simulation study and the application, with

µα ∼ N(0, 1) and η−2α ∼ Gamma(2, 0.1). The prior parameters are updated

using a Gibbs sampling step. Theorem 1 is used to update the corresponding θ

to ensure the differentiability of the quantile functions. The tail scale parameters,

σp, are updated using Proposition 1. The knots for the I-splines are evenly spaced

between zero and one.

3. Model Properties

3.1. Validity of the quantile function

Assuming an I-spline order k > 1, the proposed quantile function is continu-

ous everywhere and is differentiable for all values of τ ∈ (0, 1), except τL and τU .

Thus, a necessary and sufficient constraint to ensure a valid quantile function is

Q′(τ) ≥ 0, for all τ at which the derivative exists. For all values of τ such that

τL < τ < τU , Q′(τ) =
∑M

m=1Bm(τ)
∑P

p=1 θm,pxp. By definition, B0(τ) = 0 for

all τ , and Bm(τ) ≥ 0 for all m and τ . Without loss of generality, we hence-

forth assume that the predictors are all nonnegative; that is, x ∈ RP+. Therefore

a sufficient constraint to ensure a valid quantile function is θm,p ≥ 0, for all p

and m > 0. If σL,p > 0 for any p and τ ≤ τL, Q′(τ) = σL,pxpτ
−αL−1ταL

L > 0.

Similarly, if σU,p > 0 for any p, Q′(τ) > 0 when τ ≥ τU .

3.2. Continuity and differentiability

In many cases, such as the application described below, it is desirable to

ensure that the density is continuous and smooth. Proposition 1 establishes the

conditions for the continuity of the density function.

Proposition 1. Let Y have a quantile function as defined in (2.1) and (2.2), with

σL,p > 0 for at least one p. Then the density of Y is continuous at Q(τL|x,Θ),

for any x ∈ RP+, if and only if

θ1,p =
σL,p

τLI ′1(τL)
, (3.1)

for all p. Similarly, given σU,p > 0 for at least one p, the density of Y is contin-

uous at Q(τU |x,Θ) if and only if

θM,p =
σU,p

(1− τU )I ′M (τU )
. (3.2)

Having clarified the conditions for a continuous density, which can be viewed
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as the zeroth-order differentiability, Theorem 1 proceeds to establish the condi-

tions for qth-order differentiability of the density function of Y .

Theorem 1. Let Y have a quantile function as defined in (2.1) and (2.2), with

an I-spline basis order greater than q + 1, and a density that is continuous and

(q − 1)th order differentiable at Q(τL). If αL is constrained such that Eq. (3.3)

does not result in θq+1,p < 0, then Y has a density that is qth-order differentiable

at Q(τL), for any x ∈ RP+, if and only if

θq+1,p =
1

I
(q+1)
q+1 (τL)

{
−σL,p
αLτ

q+1
L

(−αL − q)q+1 −
q∑

m=1

θm,pI
(q+1)
m (τL)

}
(3.3)

where I
(q+1)
q+1 (τL) is the (q + 1)th-order derivative of the (q + 1)th I-spline basis

function, (−αL − q)q+1 =
∏q
j=0(−αL − j).

The conditions that guarantee differentiability at τU are similar, and are given

in the Supplementary Material. Combined with the positivity constraint on θ,

these results imply that the shape parameters have an upper bound that is a func-

tion of the knot placement. Ensuring a density that is first-order differentiable

yields the possible values for αL being bounded above by −1−τL(I
(2)
1 (τL)/I ′1(τL)).

This bound is a function of I ′1(τL) and I
(2)
1 (τL), which are functions of the first

two knot locations. We can still model any tail behavior, provided the outermost

knots are placed sufficiently close.

3.3. Expectations and covariance

While our models allow for flexible nonGaussian distributions, sometimes the

first two moments are of interest (e.g., for the best linear unbiased prediction). We

now elaborate on the various types of covariance structure that can be estimated

using the proposed model. We model the covariances of the latent parameters θ∗m,p
using the covariance function C, such that Cov[θ∗m,p(s), θ

∗
m,p(s

′)] = η2m,pC(s, s′)

and V ar[θ∗m,p(s)] = η2m,p + λ2m,p. Consequently, the expectation of θm,p can be

expressed as E[θm,p] = µm,p = exp[µ∗m,p + (η2m,p +λ2m,p)/2], and the covariance of

θm,p is

Σm,p(s, s
′) = Cov[θm,p(s), θm,p(s

′)] = µ2m,p(exp[η2m,pC(s, s′)]− 1). (3.4)

In this section, we describe the covariance of the case when τL = 0 and τU = 1. We

elaborate on other cases in the Supplementary Material. Under these conditions,

the conditional expectation of Y (s)|Θ(s),x(s) is
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E[Y (s)|Θ(s),x(s)] =

∫ 1

0
QY [τ |Θ(s),x(s)]dτ =

∑
m

∑
p

θm,p(s)xp(s)Gm, (3.5)

where Gm =
∫ 1
0 Im(τ)dτ . We further marginalize over the log Gaussian processes

θm,p(s), with mean µm,p and covariance Σm,p, to obtain the expectation and

covariance of Y (s),

E[Y (s)|x(s)] =
∑
m

∑
p

µm,p(s)xp(s)Gm, (3.6)

Cov[Y (s), Y (s′)|x(s),x(s′)] =
∑
m

∑
p

G2
mxp(s)xp(s

′)[Σm,p(s, s
′)]. (3.7)

This simple case shows that the covariance is dependent on the values of the

predictors, in addition to the covariance functions of the latent parameters. This

dependence on the predictors can result in nonstationary covariances if xp varies

across space, even if C(s, s′) is stationary. Other authors have used covariates to

construct nonstationary Gaussian processes. See Risser and Calder (2015), and

the references therein, for several examples.

4. Simulation Study

Our simulation studies demonstrate the superior efficiency of the proposed I-

spline quantile regression method (IQR) using four designs from data-generating

models that are not in the proposed model class (Table 1). The designs include

cases with both light tails (D1 and D3) and heavy tails (D2 and D4), and with (D3

and D4) and without (D1 and D2) spatial correlation. The designs illustrate the

flexibility of the proposed method compared with previously established methods.

For each design, the observed response is indexed as yt(si), where t ∈ {1, . . . ,
n} indexes the observations at a given location si, with i ∈ {1, . . . , S}. The

predictor vector x1,t is generated by sampling from a uniform random variable in

D1 and D2. In D3 and D4, zt is generated by sampling from a Gaussian process

with mean zero, and an exponential covariance with range one and x1,t = Φ−1(zt),

where Φ−1(τ) is the quantile function of the standard normal. The predictor

x2,t is generated by sampling from a uniform random variable in all designs.

The observed response is generated by drawing an independent random uniform

variable ut(si) and setting:

yt(si) = β0(ut(si), si) + β1(ut(si), si)x1,t(si) + β2(ut(si), si)x2,t(si). (4.1)

In all designs, we assume multiple observations are obtained for each location.
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Table 1. True parameter functions, by design, used in the simulation study. The location
is given as s = (s1, s2), Φ−1(τ) represents the quantile function of the standard normal
evaluated at τ , and QPareto represents the quantile function of the Pareto distribution
with the given parameters.

β0(τ, s) β1(τ, s) β2(τ, s)

D1 0.1Φ−1(τ) 0.3τ QPareto(τ, α = −0.2 , µ = 0 , σ = 0.1)

D2 0.1Φ−1(τ) 0.3τ QPareto(τ, α = 0.3 , µ = 0 , σ = 0.3)

D3 (0.05 + 0.2s1s2)Φ−1(τ) 0.3es2 + 0.2τ QPareto(τ, α = −0.1 , µ = 0 , σ = 0.1)

D4 (0.05 + 0.2s1s2)Φ−1(τ) 0.3es2 + 0.2τ QPareto(τ, α = 0.4s1, µ = 0.3, σ = 0.4)

For each design, we simulate B = 50 independent data sets. In D1 and D2, we

simulate 1,000 observations per data set, assuming all observations are from a

single location, and thus independent. In D3 and D4, we use S = 16 locations,

evenly spaced on a unit square, and simulate 100 observations per site, for a total

of 1,600 observations per data set. For each of the data sets we randomly assign

10% of the data to be used as validation data for the out-of-sample calculations,

and use the other 90% as training data.

We compare the estimates from the proposed model (IQR) with those from

the model using parametric Gaussian basis functions (GAUS) proposed by Reich

(2012), and with the noncrossing quantile regression estimates (NCQR) proposed

by Bondell, Reich and Wang (2010). For the IQR and GAUS methods, four basis

functions were used, and the estimates of β(τ, s) represent the means of the

corresponding posterior samples. For the NCQR method, the estimates of β(τ, s)

are obtained by minimizing the check loss function combined with the noncrossing

constraint. The GAUS model allows for spatially varying coefficients and spatial

correlation, whereas the NCQR method assumes i.i.d. samples.

For our proposed IQR method, we draw 25,000 MCMC samples, discarding

the first 5,000 as burn-in, and monitor the convergence using trace plots of the

deviance, as well as several representative parameters. The Gaussian process

prior parameters µ∗m,p and η−2m,p are given conjugate hyperpriors. Specifically,

µ∗m,p ∼ N(−3, 1) and η−2m,p ∼ Gamma(0.5, 0.005). The unconstrained parameters

µ∗0,p are given the prior N(0, 10). An exponential covariance function with fixed

range 0.5 is used.

For the GAUS method, in the simulation study, we draw 25,000 MCMC sam-

ples, discarding the first 5,000 as burn-in. A fixed range of 0.5 for the exponential

covariance was also used for this method. In both the simulation study, and the

application, all parameters are given conjugate hyperpriors, with N(0, 100) used

as the hyperprior for the means of the Gaussian processes. The hyperpriors for

the spatial precision are Gamma(0.5, 0.005).
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We index the quantile levels at which the methods are compared by j ∈
1, . . . , J . For each quantile level, τj , and simulated data set replicate, b ∈
{1, . . . , B}, the estimated coefficients β̂p(τj , si) were compared using the root

mean integrated squared error (RMISE). The RMISE for simulated data set b

was calculated for a given βp and sequence τ1, . . . , τJ :

RMISE(βp)
(b) =

√√√√ 1

S

S∑
i=1

J∑
j=1

δj

[
β̂p(τj , si)(b) − βp(τj , si)

]2
, (4.2)

where δj = τj − τj−1. The means and standard errors of the RMISEs, as well

as the coverage of the 95% confidence (NCQR) or credible (IQR and GAUS)

intervals, were then calculated for each method and design (Table 2).

The IQR and GAUS methods both produce density estimates. The NCQR

method does not estimate the entire quantile function and, therefore, cannot be

used to create a density estimate without substantial additional calculation. To

evaluate the predictive densities, we use the log score, which is the logarithm

of the predicted density evaluated at the training and validation data. This is

a strictly proper scoring rule (Gneiting and Raftery (2007)). We calculate the

log score for each observation as the log of the posterior mean of the predictive

density evaluated at the observation. The total log score for each data set is

calculated as the mean of the log scores for the individual observations. The

mean and standard error by the simulation design are calculated using the total

log score values of the 50 simulated data sets.

We compare all three methods using τ = {0.05, 0.06, . . . , 0.94, 0.95}. Four

nonconstant basis functions per predictor were used in both the IQR and GAUS

methods. The results given in Table 2 show that, although the three methods

perform similarly for D1 (independent, light tails), the IQR method performs

substantially better than the GAUS method does in the heavy-tailed designs (D2

and D4), and substantially better than the NCQR method does in the spatially

varying designs (D3 and D4). Compared with the nominal coverage rate of 0.95,

the IQR method has good coverage for all of the designs, with the lowest coverage

being 0.88 for β1 in D1. The GAUS method shows poor coverage for D2, and the

NCQR method exhibits poor coverage for D3 and D4.

Unlike the NCQR method, both our method and the GAUS method assume

parametric forms for the tails, and so can be used to estimate parameter effects on

extreme quantiles. We compare the parameter estimates for these two methods

evaluated at τ = {0.950, 0.951, . . . , 0.994, 0.995} in Table 3. Our method outper-

forms the other methods in all cases, except D1 β1, which is a linear function of
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Table 2. Comparison of fitted β(τ) functions τ = (0.05, 0.06, . . . , 0.94, 0.95). COV repre-
sents the coverage of the 95% credible interval (IQR and GAUS) or confidence interval
(NCQR).

β0 β1 β2
RMISE SE COV RMISE SE COV RMISE SE COV

D1

IQR 0.014 0.001 0.92 0.027 0.001 0.89 0.022 0.002 0.91

GAUS 0.016 0.001 0.92 0.022 0.002 0.93 0.025 0.002 0.93

NCQR 0.017 0.001 0.96 0.025 0.001 0.97 0.026 0.001 0.97

D2

IQR 0.019 0.001 0.93 0.035 0.002 0.91 0.047 0.002 0.90

GAUS 0.038 0.005 0.83 0.065 0.009 0.83 0.113 0.007 0.76

NCQR 0.025 0.001 0.98 0.045 0.002 0.97 0.051 0.002 0.97

D3

IQR 0.029 0.001 0.95 0.050 0.002 0.95 0.027 0.001 0.99

GAUS 0.027 0.001 0.97 0.046 0.001 0.97 0.032 0.001 0.98

NCQR 0.050 0.000 0.64 0.201 0.001 0.16 0.026 0.002 0.92

D4

IQR 0.038 0.001 0.94 0.062 0.002 0.96 0.094 0.004 0.94

GAUS 0.094 0.047 0.94 0.104 0.034 0.95 0.182 0.027 0.93

NCQR 0.054 0.001 0.75 0.197 0.001 0.24 0.112 0.002 0.84

Table 3. Comparison of fitted β(τ) functions τ = (0.950, 0.951, . . . , 0.994, 0.995). COV
represents the coverage of the 95% credible interval (IQR and GAUS) or confidence
interval (NCQR).

β0 β1 β2
RMISE SE COV RMISE SE COV RMISE SE COV

D1

IQR 0.0047 0.0004 0.96 0.0095 0.0010 0.89 0.0072 0.0007 0.94

GAUS 0.0051 0.0005 0.98 0.0089 0.0009 0.90 0.0077 0.0006 0.98

D2

IQR 0.0139 0.0014 0.95 0.0377 0.0022 0.85 0.0810 0.0051 0.76

GAUS 0.0266 0.0054 0.78 0.0469 0.0109 0.75 0.0913 0.0045 0.57

D3

IQR 0.0094 0.0003 0.97 0.0124 0.0004 0.95 0.0089 0.0005 0.99

GAUS 0.0119 0.0004 0.95 0.0139 0.0005 0.99 0.0132 0.0005 0.99

D4

IQR 0.0196 0.0012 0.96 0.0286 0.0027 0.93 0.1424 0.0048 0.90

GAUS 0.0802 0.0476 0.94 0.0666 0.0314 0.97 0.2007 0.0271 0.81
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Table 4. Comparison of mean estimated log scores.

In-sample Out-of-sample
Mean SE Mean SE

D1
IQR 0.339 0.003 0.315 0.008
GAUS 0.356 0.003 0.322 0.008

D2
IQR −0.223 0.004 −0.254 0.017
GAUS −0.219 0.005 −0.288 0.022

D3
IQR 0.476 0.003 0.418 0.010
GAUS 0.536 0.003 0.419 0.009

D4
IQR −0.191 0.004 −0.238 0.012
GAUS −0.126 0.006 −0.287 0.022

τ .

The results of the log score comparisons are consistent with the parameter

estimates (Table 4). However, the GAUS method consistently produces higher

log scores in-sample than the IQR method does. Because the likelihood is not

constrained to be continuous in the GAUS method, very large likelihood values

can be obtained for the in-sample observations (Fig. 2). In the heavy-tailed des-

igns, the IQR method results in higher out-of-sample log scores.

5. Application

5.1. Data

An amendment to the U.S. National Emission Standards for Hazardous Air

Pollutants for petroleum refineries requires the use of two-week time-integrated

passive samplers at specified intervals around the facility fence line to establish

the levels of benzene in the air (EPA (EPA(2014)). The utility of fence line mea-

surements as a method of controlling emissions is contingent on their distributions

being dependent on nearby sources within the facility. To evaluate the efficacy of

passive samplers in monitoring benzene emissions from petroleum refineries, re-

searchers from the US EPA Office of Research and Development conducted a year-

long field study in collaboration with Flint Hills Resources in Corpus, Christi,

TX (Thoma et al. (2011)). Preliminary analyses found that under consistent

wind conditions, downwind concentrations were statistically higher than upwind

concentrations (Thoma et al. (2011)). More sophisticated modeling should re-

veal the contributions of individual sources to the concentrations observed at the
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fence line. Modeling these concentrations requires an extra level of complexity,

because near-source air pollutant measurements typically exhibit strong spatial

correlation, along with nonstationary and nonGaussian distributions, even after

a transformation. Both the spatial covariance and the distribution of the pollu-

tant concentrations can vary as a function of wind and emission source location.

Accurately modeling the entire distribution and spatial structure of the pollutant

concentrations should improve the quality of inferences related to the strengths

of the known sources. Additionally, owing to the stochastic nature of the disper-

sion and variation in the background pollutant concentration levels, the effect of

a specific source on the pollutant distribution might not be detected by a mean

regression. Of particular concern, both for exposure and compliance evaluation,

are the source effects on the upper tail of the distribution, particularly the 95th

percentile.

The measurements used in this study were collected between December 3,

2008, and December 2, 2009 around the Flint Hills West Refinery (Thoma et al.

(2011)). The samplers were attached to the boundary fence around the facility,

approximately 1.5 m above the ground at 15 locations (Fig. 3). In addition, one

sampler (633) was deployed at a nearby Texas Commission on Environmental

Quality (TCEQ) continuous air monitoring station (CAMS). A total of 406 two-

week time-integrated benzene concentration measurements were collected over

the course of the year, and were used in the analysis. Hourly temperature, wind

speed, and direction were also measured at TCEQ CAMS 633.

The concentrations exhibited both spatial and temporal trends (Fig. 3). In

particular, the variance increased dramatically during the summer months. The

highest concentrations were observed on the northern edge of the refinery (sites

360, 20, and 50), while the lowest concentrations were observed on the southern

edge (sites 250, 633, and 270). The increase in variance can partly be explained

by meteorology (Fig. 4). During the summer, the wind blows consistently from

the southeast, while during the rest of the year, the wind direction is more evenly

distributed.

A visual analysis of the concentrations and wind roses for the hourly mea-

surements at each time period suggests that the concentrations are correlated

with a source within the refinery. Two probable emission source locations, e1,

and e2, were selected using the reported emission inventory. To determine the

effect of the emission sources on the distribution of the benzene concentration,

we denote the tth observed value of the benzene concentration at site si as yt(si),

where i = 1, . . . , 16 and t = 1, . . . , 26. Then we model the quantile function of

Y using equation (2.1) and (2.2). Our full model includes an intercept and three
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Figure 3. Benzene measurements by time and location. Source locations, e1 and e2, are
labeled one and two. Points have been jittered slightly to improve visibility.
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Figure 4. Wind roses for different seasons.

predictors: transport from source 1, transport from source 2, and temperature.

The predictors that represent transport from a source are calculated from

the observed hourly wind vectors and relative spatial locations of the source and

measurement. The tth observed value of the transport from source 1 to location

si is defined as

x1,t(si) =

336∑
h=1

{
max

(
wt,h · (e1 − si)

||(e1 − si)||
, 0

)}
, (5.1)

where e1 is the location of emission source 1, and si is the measurement location.

Each hourly wind vector, wt,h, for the two-week period, with h = 1, . . . , 336, was

transformed into the same coordinate system and projected onto the vector from
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the source to the measurement (e1 − si). Assuming a constant emission source,

the resulting scalar quantity represents the amount of pollutant transported from

e1 to si, ignoring the effects of vertical dispersion. When the wind is blowing

from si toward e1, transport from e1 is negative. However, owing to finite, small

background concentrations, the integrated benzene concentration remains the

same rather than decreasing under these conditions. Therefore, the maximum of

the transport from e1 and zero was taken before taking the sum over h in period

t (5.1). The transport from source 2 was calculated similarly.

We use 10-fold cross-validation to determine the most appropriate model

for the benzene concentrations. Using each fold as a validation data set, the in-

sample and out-of-sample log scores were calculated using both the proposed IQR

method and the GAUS method proposed by Reich (2012) for each combination of

predictors (Table 5). Four basis functions were used for both methods. The priors

are the same as those in the simulation study, except that η−2m,p ∼ Gamma(0.1, 0.1)

was used for both methods. An exponential covariance function and range of 0.5

were used for both methods. The predictors were transformed to be between

zero and one before the models were fitted. The IQR method was run for 25,000

samples, discarding the first 5,000. The GAUS method converged more slowly,

and so 35,000 samples were drawn, discarding the first 15,000.

For both methods, the in-sample log score tends to increase with the number

of predictors included in the model. All of the models with predictors have higher

in-sample and out-of-sample log scores than those of the intercept-only model.

Of the models with predictors, the one that included all three produced the

largest out-of-sample log score for the IQR method, but the lowest out-of-sample

log score for the GAUS method, indicating that adding additional predictors

exacerbates the probability of over-fitting using the GAUS method. In all cases,

the out-of-sample performance of our method is substantially better than that of

the GAUS method.

The model was fit to the entire data set to determine the effects of the two

sources and the temperature on the distribution of benzene at the fence line.

We plot the coefficients by quantile level and location in Figure 5. We can see

that the base distribution does not vary as much by location as the effects of the

sources and the temperature do. The effects of the sources on the quantiles of the

concentrations range from positive to negative, with the majority of the source

effects being positive. The negative effects could be due to these sources not being

constant over the course of the year. If wind from a given source corresponded

to time points when the source was not emitting, this could result in a negative

effect on the concentrations. As can be seen in Figure 6, the effect of source 1 on
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Table 5. Estimated log scores for training and validation data by method.

In-sample Out-of-sample

Predictors IQR GAUS IQR GAUS

Mean SE Mean SE Mean SE Mean SE

None −0.29 0.01 −0.16 0.01 −0.42 0.07 −0.45 0.09

Source 1 0.04 0.01 0.49 0.01 −0.13 0.07 −0.18 0.07

Source 2 0.04 0.01 0.47 0.01 −0.14 0.08 −0.21 0.08

Temperature 0.10 0.01 0.57 0.02 −0.07 0.08 −0.25 0.08

Source 1 + Source 2 0.21 0.01 0.81 0.02 −0.02 0.08 −0.22 0.06

Source 1 + Temp 0.30 0.01 1.00 0.03 0.08 0.08 −0.19 0.09

Source 2 + Temp 0.27 0.01 0.88 0.02 0.06 0.08 −0.24 0.09

All 0.39 0.01 0.95 0.04 0.13 0.09 −0.39 0.08

Intercept Source 1 Source 2 Temperature
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Figure 5. Estimated predictor effect by quantile and location.

the 95th quantile is large and positive for the sites on the northern edge of the

refinery, as well as some sites along the southern edge of the refinery. The northern

sites were also the locations where the highest concentrations were observed. The

effect of source 2 on the 95th quantile was smaller overall, and varied by site, with

positive effects observed on the background site and sites on the northern edge of

the refinery (Fig. 6). Temperature had a strong positive effect on concentrations

on the northern edge of the refinery, indicating the possibility of another emission

source during the summer near the northern edge of the refinery that was not

accounted for.
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Figure 6. Spatial variation in the effect of the predictors on the 95th quantile of fence-line
benzene measurements.

6. Conclusion

We have derived the properties and demonstrated the utility of a spatial

quantile regression method that allows for spatially varying coefficients and flex-

ible tail distributions. By modeling the entire quantile function, we exploit the

flexibility of the nonparametric basis functions in the center of the distribution,

and the constraints of the parametric tails where the data are sparse. We have

shown the conditions under which the model guarantees a smooth density func-

tion, with the desired degrees of differentiability, and enables the estimation of a

nonstationary covariance that is dependent on the predictors. Using both simu-

lations and an application to fence line benzene concentrations, we have demon-

strated the utility of ensuring a smooth density function with parametric tails,

as well as the flexibility and accuracy of the method compared with previous

methods.

Although the model does not currently account for temporal correlation in

the response variable, a nonlinear function of time could easily be incorporated

as a predictor using the current framework. Additionally, temporal correlation

could be accounted for by adjusting the priors of the coefficients or incorporating a

copula. A multivariate extension for modeling multiple pollutants simultaneously

could also be developed using multivariate spatial priors. Recently, Yang and

Tokdar (2017) provided a characterization for noncrossing quantile regressions

over convex predictor spaces. It would be interesting to explore extensions of

their method to the spatial or spatial-temporal case.
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Supplementary Material

The online Supplementary Material provides proofs of Proposition 1 and

Theorem 1, as well as various computations.
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