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HYPOTHESIS TESTING IN

LARGE-SCALE FUNCTIONAL LINEAR REGRESSION

Kaijie Xue and Fang Yao

Nankai University and Peking University

Abstract: We explore large-scale functional linear regression in which the scalar

response is associated with a potentially ultrahigh number of functional predictors,

leading to a more challenging model framework than the classical case. We estab-

lish a rigorous procedure for testing a general hypothesis on an arbitrary subset of

regression coefficient functions. Specifically, we exploit the techniques developed

for post-regularization inferences, and propose a new test for the aforementioned

regression based on a decorrelated score function that separates the primary and

nuisance parameters in functional spaces. We also devise the corresponding decor-

related Wald and likelihood ratio tests, and establish the exact equivalence among

these three tests for the model under consideration. The proposed test is shown to

be uniformly convergent to the prescribed significance. We show its finite-sample

performance using simulation studies and a data set from the Human Connectome

Project that identifies brain regions associated with emotional tasks.

Key words and phrases: Decorrelated score, functional data, functional linear re-

gression, high dimensions, multiplier bootstrap.

1. Introduction

The classical functional linear regression (FLR) is widely used to model the

linear relationship between a scalar response Y and a functional predictor, which

is often assumed to be sampled from an L2(T ) random process X(t) defined on

a compact interval T ⊆ R. Specifically, given n independent and identically

distributed (i.i.d.) pairs {Yi, Xi(·)}, the classical FLR is formulated as

Yi =

∫
T
Xi(t)β(t)dt+ εi, i = 1, . . . , n, (1.1)

where both Yi and Xi are centered, without loss of generality, that is, EYi = 0

and EXi(t) = 0, for t ∈ T ; the unknown regression parameter function β(t)

is square-integrable, that is, β ∈ L2(T ); and the i.i.d. regression error εi is
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independent of Xi with mean zero and finite variance σ2 < ∞. This model has

been studied extensively in relation to functional data analyses (Ramsay and

Dalzell (1991); Cardot, Ferraty and Sarda (1999); Fan and Zhang (2000); Yuan

and Cai (2010, among others)), including its theoretical considerations (Hall and

Horowitz (2007); Cai and Yuan (2012)) and statistical inference (Cardot et al.

(2003); Lei (2014); Hilgert, Mas and Verzelen (2013); Shang and Cheng (2015));

see Ramsay and Silverman (2005) for an overview and examples. Numerous

works have extended the classical FLR. These extensions include the functional

response (Faraway (1997); Cuevas, Febrero and Fraiman (2002); Yao, Müller

and Wang (2005)), generalized FLR (Escabias, Aguilera and Valderrama (2004);

Müller and Stadtmüller (2005); Shang and Cheng (2015)), partially FLR (Lian

(2011); Kong et al. (2016)), and additive regression (Müller and Yao (2008); Zhu,

Yao and Zhang (2014); Fan, James and Radchenko (2015)), among others.

In modern scientific experiments, the response Y is potentially associated

with multiple, or even a large number of functional predictors. For example,

Lian (2013) proposed an FLR involving a fixed number of functional predictors.

Kong et al. (2016) considered a regularized estimation and variable selection

for a partially FLR that contains high-dimensional scalar covariates and a finite

number of functional predictors. However, when applying an FLR to large-scale

data, the number of potential functional predictors pn can be much larger than

the sample size n, even though the significant predictors of size qn are usually

assumed to be sparse or at a fraction polynomial order of n. Examples can

be found in neuroimaging analyses that focus on the relationship between a

disease marker and a number of brain regions of interest (ROI) over time. This

consideration motivates the following large-scale FLR model:

Yi =

pn∑
j=1

∫
T
Xij(t)βj(t)dt+ εi, i = 1, . . . , n, (1.2)

where pn is allowed to grow exponentially with the sample size n, (without loss

of generality) the first qn important parameter functions {βj : j = 1 . . . , qn} are

assumed to be nonzero, with the rest zero, and the i.i.d. error εi is independent of

{Xij : j = 1, . . . , pn} with mean zero and variance σ2. It is common to use a set

of pre-fixed (i.e., B-splines, wavelets) or data-driven (i.e., eigenfunctions) bases

to represent the underlying process Xj of each predictor {Xij : i = 1, . . . , n}.
The data-driven bases, such as eigenfunctions, are efficient for representation,

but necessarily for regression. However, they have to be estimated from pn
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separate functional principal component analysis (FPCA) procedures, which is

computationally intensive, especially when pn � n. For instance, a singular

value decomposition (SVD)-based method usually demands computation of order

O{pn(nm2+n2m)}, which can be much higher if pre-smoothing is needed. Thus,

we adopt a common pre-fixed basis {bk : k ≥ 1} that is complete and orthonormal

in L2(T ) for all processes Xj , for j = 1, . . . , pn. As such, we do not further

pursue other complicated basis-seeking procedures, such as the functional partial

least squares method (Reiss and Ogden (2007)). The proposed method requires

computation of order O(pnnm) and automatically takes smoothing into account.

The main contribution of this study is to develop a rigorous testing pro-

cedure for a general hypothesis on an arbitrary subset of regression functions

{βj : j = 1, . . . , pn}. The challenge arises from the ultrahigh-dimensionality in pn,

which can be as exponentially large as n, and the intrinsic infinite-dimensionality

of each Xj , for j = 1, . . . , pn. Although the FLR (and its variants) has been

well studied, few works have examined their inference procedures. For example,

Hilgert, Mas and Verzelen (2013) and Lei (2014) considered adaptive tests for

a single regression function in a classical FLR, and Shang and Cheng (2015)

did so for the generalized FLR. In the current exposition, we adopt a general

class of nonconvex penalty functions (Loh and Wainwright (2015)), which in-

clude the LASSO penalty (Tibshirani (1996)), smoothly clipped absolute devia-

tion (SCAD) penalty (Fan and Li (2001)), and minimax concave penalty (MCP)

(Zhang (2010)) as special cases. Furthermore, the theoretical properties in high-

dimensional linear regressions have been studied extensively (Meinshausen and

Bühlmann (2006); van de Geer (2008); Meinshausen and Yu (2009); Bickel, Ri-

tov and Tsybakov (2009); Zhang (2009); Fan and Lv (2011); Wang, Kim and

Li (2013); Wang, Liu and Zhang (2014); Fan, Xue and Zou (2014); Loh and

Wainwright (2015, among many others)). Recently, research on inferences in

high-dimensional linear regressions has increased, especially for the LASSO-type

convex penalty (Tibshirani (1996)). These studies include those of Wasserman

and Roeder (2009), Meinshausen and Bühlmann (2010), and Shah and Samworth

(2013) on sample splitting and subsampling, Zhang and Zhang (2014) and van de

Geer et al. (2014) on bias correction methods, and Lockhart et al. (2014) and

Taylor et al. (2014) on conditional inferences on the event that some covariates

have been selected, among others.

This study is inspired by the unconditional inference based on a decorrelated

score function of Ning and Liu (2017), owing to its generality, and because it does

not require data splitting or strong minimal signal conditions. We first exploit a
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penalized least squares procedure, treating the truncated coefficients of each βj
as a group. In this way, we obtain estimation consistency without needing oracle

properties under weaker minimal signal conditions that allow for a wider class of

suitable settings. Then, we devise the decorrelated score function in the context

of a large-scale FLR that tests a general null hypothesis on any subset of {βj : j ≤
pn}. Unlike testing a null hypothesis on a single parameter in a high-dimensional

linear regression, the limiting distribution for such a general null hypothesis is

intractable. Hence, we adopt the multiplier bootstrap to approximate the limiting

distribution of the score test statistic under the null hypothesis, and provide

theoretical guarantees for all possible levels in a uniform manner. Furthermore,

we introduce the counterparts of the score test (i.e., the decorrelated Wald test

and decorrelated likelihood ratio test) and establish the exact equivalence of the

three tests for the model under consideration.

2. Regularized Estimation by Group Penalized Least Squares

Recall that the large-scale FLR defined in (1.2), underlying predictor pro-

cesses Xj , and the corresponding regression functions βj are expressed by a com-

plete and orthonormal basis {bk : k ≥ 1}, leading to an infinite-dimensional repre-

sentation. Specifically, let the functional predictors and the associated regression

functions be expressed as linear combinations of {bk : k ≥ 1}; that is, βj =∑∞
k=1 ηjkbk and Xij =

∑∞
k=1 θijkbk, where the coefficients θijk =

∫
T Xij(t)bk(t)dt

that coincide with the projections are mean zero random variables with variances

E(θ2ijk) = ωjk > 0. As a result, model (1.2) can be reformulated as

Yi =

pn∑
j=1

∞∑
k=1

θijkηjk + εi. (2.1)

To perform an estimation and inference on the regression functions of primary

interest, it is not feasible to directly minimize the square loss with respect to the

infinite sequences of unknown coefficients ηjk. A common practice is to truncate

up to the first sn leading terms allowed to grow with n, where sn controls the

complexity of βj as a whole function, rather than viewing the basis terms as

separate predictors, and balances the bias-variance trade-off in a similar spirit to

a classical nonparametric regression. Hence, model (1.2) becomes

Yi =

pn∑
j=1

sn∑
k=1

θijkηjk +

(
εi +

pn∑
j=1

∞∑
k=sn+1

θijkηjk

)
, i = 1, . . . , n. (2.2)
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A similar technique is used by Rice and Silverman (1991), Yao, Müller and Wang

(2005), Hall and Hosseini-Nasab (2006), Cai and Hall (2006), Zhang and Chen

(2007), Hall and Horowitz (2007), Fan, James and Radchenko (2015), and Kong

et al. (2016), among others. Ideally, one would use different truncation sizes

for each βk. However, selecting truncations for a large number of functional

predictors is computationally infeasible. In practice, we adopt the strategy sug-

gested by Kong et al. (2016) of using a common sn to perform the regularized

estimation. Then, we use an ordinary least squares for the retained predictors

and choose different truncations using K-fold cross-validation for, say, K = 5.

Nonetheless, the use of a common sn suffices for the methodological development

and theoretical analysis.

Remark 1. To the best of our knowledge, this type of large-scale FLR first

appeared in Fan, James and Radchenko (2015), who considered a penalized pro-

cedure for model estimation and selection. However, our primary interest is

hypothesis testing. A careful inspection of Condition 1(A) in Fan, James and

Radchenko (2015, Appendix B), which requires
∑∞

k=1 θ
2
ijkk

4 < C2 for a univer-

sal constant C, for i = 1, . . . , n, j = 1, . . . , pn, reveals that all random processes

Xj are bounded in L2(T ), which excludes the Gaussian processes. Furthermore,

Condition 2(D) in Fan, James and Radchenko (2015) assumes that the minimal

eigenvalues of n−1Θ′jΘj ≥ c0. This is bounded from below by a constant c0 uni-

formly in 1 ≤ j ≤ qn (i.e., the important ones), where Θj = (θijk)1≤i≤n;1≤k≤sn
is the n × sn design matrix induced by Xj . In fact, this crucial condition is

not valid for an infinite-dimensional L2 process, because the minimal eigenval-

ues necessarily approach zero when sn diverges; a typical example is given by

the Karhunen-Loève expansion. In contrast, we do not make such assumptions.

As such, the predictor processes are genuinely functional in the large-scale FLR

(1.2).

In addition to the truncation, it is essential to impose a suitable penalty

on each regression function as a whole using a functional version of the group

regularization (Yuan and Lin (2006)). To regularize predictors on a comparable

scale, we often standardize the scalar predictors in a linear regression (Fan and Li

(2001)). For the functional predictors Xj , we choose to account for the variability

in the grouped projection coefficients θijk in the n × sn design matrix Θj =

(θijk)1≤i≤n;1≤k≤sn . Hence, n−1/2||Θjηj ||2 invokes a group penalty that shrinks

the unimportant regression function to zero, where ‖ · ‖2 is the Euclidean or

`2 norm (if an infinite sequence). For technical convenience, we scale up the
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penalty parameter λn by s
1/2
n , which does not affect the relative weighting of

the penalties, given the common group size sn. Thus, our target is to minimize

the penalized square loss function, as follows, denoting η = (η′1, . . . , η
′
pn)′ with

vectors ηj = (ηj1, . . . , ηjsn)′, and ‖ · ‖1 as the `1 norm:

Qn(η)︷ ︸︸ ︷
min

η:||η||1≤Rn

{
(2n)−1

n∑
i=1

(
Yi −

pn∑
j=1

sn∑
k=1

θijkηjk

)2

+

pn∑
j=1

ρλns1/2n
(n−1/2||Θjηj ||2)

}
,

︸ ︷︷ ︸
Ln(η)

︸ ︷︷ ︸
Pλn (η)

(2.3)

where ρλ(·) with the tuning parameter λ belongs to a general class of nonconvex

penalty functions satisfying conditions (P1)–(P5) in Appendix A, which includes

popular penalties such as the LASSO, SCAD, and MCP (Loh and Wainwright

(2015)). The positive constraint Rn should be chosen carefully to make the true

value η∗ a feasible point, such that ‖η∗‖1 ≤ Rn. For instance, it is often the case

that ‖η∗‖1 = O(qn), suggesting that Rn ∼ qn. Upon solving the optimization

problem in (2.3), which is guaranteed to have a global minimum by the Weier-

strass extreme value theorem if ρλ(·) is continuous, the regularized estimator

for each βj is given by β̂j(t) =
∑sn

k=1 η̂jkbk(t), where η̂ is obtained from (2.3).

An implementation using a coordinate descent algorithm based on Ravikumar

et al. (2008), with a slight modification, is presented in Appendix A. The tuning

parameters λn and sn are chosen using K-fold cross-validation (e.g., K = 5).

Note that for the purpose of general hypothesis testing, it is sufficient to ob-

tain a consistent estimation of η from (2.3) in both the `1 and the `2 sense, as

stated in Theorem 1, whereas the selection consistency or oracle property is not

necessary. Before stating Theorem 1, the main technical conditions (A1)–(A6)

are discussed below. Conditions (B1)–(B3) on the relationship between several

quantites, such as Rn, sn, qn, and λn and the penalty function requirements

(P1)–(P5) are deferred to Appendix A and B respectively.

Because we consider a large-scale FLR with functional predictors on a com-

parable scale, it is reasonable to require the second moment of each Xj ,
∫
T E(X2

j ),

to be uniformly bounded from above. Furthermore, the minimal eigenvalue of

Λ = diag{Λj : j ≤ pn} decays at a polynomial order of sn, where Λj = diag{ω1/2
jk :

k ≤ sn}; that is,
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(A1) supj≤pn
∑∞

k=1 ωjk < ∞, λmin(Λ) ≥ cs
−a/2
n , for some constants c > 0 and

a > 1.

Condition (A1) implies that the variances {ωjk : k ≤ sn} for each j are al-

lowed to be unsorted, with possible ties. This is distinct from Condition 2(D)

in Fan, James and Radchenko (2015), which requires that λmin(Λ) be bounded

by a constant from below, and is not applicable for functional predictors. For

the next assumption on the distributions of several random quantities, we de-

fine the subGaussian norm as ‖X‖φ1
= supq≥1 q

−1/2{E(|X|q)}1/q for the sub-

Gaussian random variable X, and define the sub-exponential norm as ‖X‖φ2
=

supq≥1 q
−1{E(|X|q)}1/q for the sub-exponential random variable X. We assume

the following:

(A2) The random quantities εi, ω
−1/2
jk θijk, and (wl

′Fi−Eil){E(E2
il)}−1/2 are cen-

tered subGaussian random variables satisfying ||εi||φ1
≤ c, ||ω−1/2jk θijk||φ1

≤
c, and ||(wl′Fi − Eil){E(E2

il)}−1/2||φ1
≤ c, respectively, for some positive

constant c, uniformly in i = 1, . . . , n, j = 1, . . . , pn, k = 1, . . . ,∞, and

l = 1, . . . , hnsn.

Together, conditions (A1) and (A2) imply that θijk and (wl
′Fi − Eil) are also

centered subGaussian satisfying ||θijk||φ1
≤ c1 and ||wl′Fi−Eil||φ1

≤ c1, for some

positive constant c1, uniformly in 1 ≤ i ≤ n, 1 ≤ j ≤ pn, 1 ≤ l ≤ hnsn, and

k ≥ 1. Next, we denote the information matrix and the standardized information

matrix by I = E(GiGi
′) and Ĭ = Λ−1IΛ−1, respectively, where Gi is the vector

containing θijk projected from the ith subject. We assume that the eigenvalues

of the standardized information matrix satisfy the following:

(A3) m0 ≤ λmin(Ĭ) ≤ λmax(Ĭ) ≤ m1 < ∞, for some constants m1 > m0 > 0,

with m0 > 2−1m1µ, where µ > 0 is a constant such that ρλ,µ(t) is convex

in t; see Appendix A for the general conditions on the nonconvex penalty

ρλ,µ(t).

From (A1) and (A3), we have that λmin(I) = λmin(ΛĬΛ) ≥ cs−an , for some

constant c > 0. As a special case, if the functional predictors are uncorrelated,

Ĭ is reduced to an identity matrix that apparently fulfills (A3). Similarly, we

denote the partial information matrix and its standardized version by IHn|Hcn =

IHnHn−w′IHcnHn and ĬHn|Hcn = Λ−1HnIHn|HcnΛ−1Hn , respectively. Then, we impose a

mild assumption on the correlation structure between the predictors to be tested

and the other nuisance predictors:
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(A4) c1 ≤ λmin(ĬHn|Hcn) ≤ λmax(ĬHn|Hcn) ≤ c2 <∞, for constants c2 > c1 > 0.

The number of functional predictors pn can grow exponentially with the sample

size:

(A5) log pn ∼ nβ, for some β ∈ (0, 9−1),

where an ∼ bn denotes c1 ≤ limn→∞ |an/bn| ≤ c2, for some c1, c2 > 0. We

assume that the first qn nonzero regression functions belong to a Sobolev ball

with smoothness governed by a regularity constant δ:

(A6) supj≤qn
∑∞

k=1 η
2
jkk

2δ < c, for some positive constants δ and c.

Theorem 1. Under conditions (A1)–(A3), (A5)–(A6), (B1), (B3), and (P1)–

(P5), every local minimizer η̂ of Qn(η) obtained from (2.3) satisfies that

1) ||η̂− η||2 ≤ c0λnsa/2+1/2
n q

1/2
n , with probability tending to one, for some con-

stant c0 > 0,

2) ||η̂−η||1 ≤ c1λnsa/2+1
n qn, with probability tending to one, for some constant

c1 > 0.

Note that the upper bounds in 1) and 2) depend on the truncation size sn,

which behaves like a tuning parameter in a nonparametric regression, and reflects

the variability of η̂. From Theorem 1, the consistency of the estimated regression

curves β̂j(t) =
∑sn

k=1 η̂jkbk(t) follows

sup
j≤pn
||β̂j − βj ||L2 ≤ sup

j≤pn
||η̂j − ηj ||2 + s−δn sup

j≤qn

( ∞∑
k=sn+1

η2jkk
2δ

)1/2

= O(λns
a/2+1/2
n q1/2n + s−δn ), (2.4)

with probability tending to one, where a and δ govern the smoothness of the

functional processes and the regression functions, respectively. Note that (B1) in

Appendix B incorporates δ > a+1 > 2, which indicates that the regression curves

are relatively smoother than the functional processes, and that qn is relatively

small in the sample size, reflecting the sparseness of the model. In particular,

because ||η∗||1 =
∑qn

j=1

∑sn
k=1 |η∗jk| = O(qn) under (A6) and (B1), it is feasible

to assume Rn ∼ qn. In addition, (B3) implies that max{(log pn/n)1/2, qns
−δ
n } ≤

λn ≤ R−1n . By simple calculation, we can minimize (2.4) using s∗n =
{

2δ(a +

1)−1λ−1n q
−1/2
n

}2/(a+1+2δ)
, yielding supj≤pn ||β̂j − βj ||L2 = O

{
(λ2nqn)δ/(a+1+2δ)

}
.

Note that the estimation consistency in Theorem 1 is sufficient to guarantee the
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consistency of the testing procedure in following sections. That is, we do not

have to further refine the convergence rate, which is another advantage of our

proposal.

3. Bootstrapped Score Test for a General Hypothesis in a Large-Scale

FLR

Our goal is to test a class of hypotheses that is of full generality in a large-

scale FLR framework. Denote Pn = {1, . . . , pn} as the index set of all functional

predictors, let Hn ⊆ Pn be an arbitrary nonempty subset of Pn with cardinality

|Hn| = hn ≤ pn, and denote the complement of Hn as Hcn = Pn \ Hn. Then, the

hypothesis can be expressed as

H0 : ‖βj‖L2 = 0 for all j ∈ Hn v.s. Ha : ‖βj‖L2 > 0 for some j ∈ Hn, (3.1)

noting that the cardinality hn can be as large as pn, allowing for a hypothesis of

any size on {βj : j = 1, . . . , pn}.
To test the general null hypothesis in (3.1), we use a combination of con-

sistently estimated regression functions and a new type of score function. As

illustrated in Ning and Liu (2017), the motivation for considering a decorrelated

score is the high-dimensionality of the nuisance parameter space Hcn = Pn \ Hn,

which makes the limiting distribution of the estimated nuisance parameter con-

strained by the null hypothesis intractable (Fu and Knight (2000)). Hence, the

key is to decorrelate the score function of the primary parameter in Hn from that

of the nuisance parameter in Hcn in order to control the variability induced by

the high dimensionality. This decorrelation operation is a natural extension of

the profile score to the high-dimensional case, and leads to a test that is asymp-

totically equivalent to the classical Rao score test in the low-dimensional case

(Cox and Hinkley (1979); Ning and Liu (2017)).

We first introduce some notation for the score decorrelation in the proposed

large-scale FLR. Recall that ωjk is the variance of the i.i.d. projection coefficient

{θijk =
∫
T Xij(t)bk(t)dt : i = 1, . . . , n}. Denote Λj = diag{ω1/2

j1 , . . . , ω
1/2
jsn
}, for

j ≤ pn, as the block diagonal matrix ΛHn = diag{Λj : j ∈ Hn}; similarly

ΛPn ≡ Λ. Let Θ = (G′1, . . . , G
′
n)′ = (ΘHn ,ΘHcn), ΘHn = (E′1, . . . , E

′
n)′, and

ΘHcn = (F ′1, . . . , F
′
n)′, where Gi, Ei, and Fi are vectors containing the coefficients

θijk from the corresponding functional predictors for the ith subject. Here, ΘHn is

formed by concatenating {Θj : j ∈ Hn} in a row, as is ΘHcn , where Θj is an n×sn
design matrix with θijk as its ikth entry. In addition, denote η = (η′Hn , η

′
Hcn)′ and
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Y = (Y1, . . . , Yn)′, where ηHn stacks {ηj : j ∈ Hn} in a column, as in the case

of ηHcn . Here, we view the least squares Ln(η) = Ln(ηHn , ηHn) = (2n)−1(Y −
Θη)′(Y −Θη) as the negative likelihood function of η without introducing extra

notation. Furthermore, denoting IHcnHn = E(FiEi
′) and IHcnHcn = E(FiFi

′), we

define

w = I−1HcnHcnIH
c
nHn = (w1, . . . , whnsn) ∈ R(pn−hn)sn×hnsn .

For the decorrelation, we define a new score function with respect to the primary

parameter ηHn , denoted by S(η), in the context of our large-scale FLR, as follows:

S(η) = S(ηHn , ηHcn) = n−1Λ−1Hn(w′Θ′Hcn −Θ′Hn)(Y −ΘHnηHn −ΘHcnηHcn)

= n−1
n∑
i=1

Λ−1Hn(w′Fi − Ei)(Yi − E′iηHn − F ′iηHcn). (3.2)

It is easy to verify that this new score function with respect to the primary
parameter ηHn is uncorrelated with the traditional score function with respect

to the nuisance parameter ηHcn ; that is, E{S(η)∇ηHcnLn(η)} = 0 (Ning and Liu

(2017)), where ∇γ denotes the gradient vector taken with respect to γ.

Given the consistent estimation of the regression coefficients and the decor-

related score function, we are ready to construct the proposed score test for

the general hypothesis in (3.1) in a large-scale FLR. Note that the decorrelated

score function S(η) defined in (3.2) cannot be calculated directly from the ob-

served data, owing to the unknown quantities w = I−1HcnHcnIH
c
nHn and ΛHn . It is

straightforward to estimate ΛHn by substituting in ω̂jk = n−1
∑n

i=1 θ
2
ijk, denoted

by Λ̂Hn ; the process is similar for Λ̂ and Λ̂Hcn . To estimate w, a natural choice

is the moment estimator ŵ = Î−1HcnHcn ÎH
c
nHn , where ÎHcnHcn = n−1ΘHcn

′ΘHcn for

IHcnHn = E(FiEi
′), and ÎHcnHn = n−1ΘHcn

′ΘHn for IHcnHcn = E(FiFi
′). However,

this estimator may not exist, because the matrix ÎHcnHcn can be singular in high-

dimensional settings. We follow the suggestion by Ning and Liu (2017) to adopt

the Dantzig selector (Candes and Tao (2007)) to estimate the (pn−hn)sn×hnsn
unknown matrix w by column. Alternative procedures can also be used (not

pursued here for brevity). Specifically, for each l = 1, . . . , hnsn, we solve

ŵl ∈ argmin
wl
||wl||1 s.t. ||n−1

n∑
i=1

EilFi
′ − w′ln−1

n∑
i=1

FiFi
′||∞ ≤ τn, (3.3)

where τn is a common tuning parameter chosen using K-fold cross-validation,
giving the resulting estimator ŵ. Therefore, we have the estimated decorrelated

score function
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Ŝ(η) = Ŝ(ηHn , ηHcn) = n−1Λ̂−1Hn(ŵ′Θ′Hcn −Θ′Hn)(Y −ΘHnηHn −ΘHcn η̂Hcn)

= n−1
n∑
i=1

Λ̂−1Hn(ŵ′Fi − Ei)(Yi − E′iηHn − F ′iηHcn), (3.4)

where Λ̂Hn is invertible by Lemma 3 in the Supplementary Material. Then,

we substitute in the estimator η̂ obtained from minimizing (2.3) to construct

the decorrelated score test statistic under the null hypothesis H0 : ‖βj‖L2 =

0, for all j ∈ Hn, leading to

T̂ ∗ = n1/2Ŝ(0, η̂Hcn) = n−1/2
n∑
i=1

Ŝi, Ŝi = Λ̂−1Hn(ŵ′Fi − Ei)(Yi − F ′i η̂Hcn). (3.5)

Note that the null hypothesis in (3.1) is of full generality with the dimen-

sion hnsn, where sn grows with n (often at a fractional polynomial order) to

approximate the infinite-dimensional functional spaces, and hn can be as large

as pn. Unlike testing a finite-dimensional null hypothesis, it is difficult to find a

tractable limiting distribution, even when testing a single functional predictor,

hn = 1. Hence, we use its infinity norm ||T̂ ∗||∞ = max{|T̂ ∗l | : l = 1, . . . , hnsn} to

test against the null hypothesis in (3.1), and adopt a computationally efficient

and theoretically guaranteed bootstrap method to approximate the limiting dis-

tribution of ||T̂ ∗||∞. Because a standard bootstrap is expensive as a result of

repeatedly estimating η and w, we consider the multiplier bootstrap method

proposed by Chernozhukov, Chetverikov and Kato (2014). Specifically, denote

T̂ ∗e = n−1/2
∑n

i=1 eiŜi, where {e1, . . . , en} is a set of i.i.d. standard normal ran-

dom variables independent of the data. Then, define

cB(α) = inf{t ∈ R : Pe(||T̂ ∗e ||∞ ≤ t) ≥ 1− α} (3.6)

as the 100(1−α)th percentile of ||T̂ ∗e ||∞, where Pe(·) denotes the probability with

respect to {e1, . . . , en}. Based on this critical value, we reject the null hypothesis

at the significance level α provided that ||T̂ ∗||∞ ≥ cB(α). Furthermore, note

that the vector T̂ ∗ in ||T̂ ∗||∞ is nearly standardized, owing to the transformation

Λ̂−1Hn in (3.5). This is sensible because the multiplier bootstrap method indeed

requires that the test statistics have comparative scaling. Theorem 2 states that

under the null hypothesis and some mild conditions, the Kolmogorov distance

between the distributions of ||T̂ ∗||∞ and ||T̂ ∗e ||∞ converges to zero as the sample

size grows. This provides theoretical guarantees for the decorrelated score test

based on the multiplier bootstrap method uniformly over all α ∈ (0, 1).



1112 XUE AND YAO

Theorem 2. Under conditions (A1)–(A6) in Section 2 and (B1)–(B3) and (P1)–

(P5) in Appendices A and B, respectively, and using the local minimizer η̂ from

Theorem 1, then under H0 : ‖βj‖L2 = 0, for all j ∈ Hn, the Kolmogorov distance

between the distributions of ||T̂ ∗||∞ and ||T̂ ∗e ||∞ satisfies

lim
n→∞

sup
t≥0

∣∣P (||T̂ ∗||∞ ≤ t)− Pe(||T̂ ∗e ||∞ ≤ t)
∣∣ = 0

and, consequently, limn→∞supα∈(0,1)
∣∣P{||T̂ ∗||∞ > cB(α)} − α

∣∣ = 0.

4. Exact Equivalence to Decorrelated Wald and Likelihood Ratio Tests

Based on the decorrelation used in the score function in (3.2), we can con-

struct the counterparts of other classical tests, such as the Wald and likelihood

ratio tests, for high-dimensional models (e.g., the Cox proportional hazard model)

in which these tests can be shown asymptotically equivalent (Fang, Ning and Liu

(2017)). In this section, we introduce the decorrelated Wald and likelihood ra-

tio tests that can be shown to be exactly (not asymptotically) equivalent in the

context of a large-scale FLR.

For the decorrelated Wald test, we adopt a one-step procedure based on the

estimated decorrelated score function in (3.4) to find an estimator ήHn of ηHn ,

as follows:

ήHn = η̂Hn −
{
∂Ŝ(η̂Hn , η̂Hcn)

∂ηHn

}−1
Ŝ(η̂Hn , η̂Hcn). (4.1)

Then, the decorrelated Wald test statistic is given by

Ŵ ∗ = n1/2Λ̂−1Hn ÎHn|Hcn ήHn , (4.2)

where ÎHn|Hcn = ÎHnHn − ŵ′ÎHcnHn . Consequently, the decorrelated Wald test

is such that we reject the null hypothesis in (3.1) at the significance level α if

||Ŵ ∗||∞ ≥ cB(α), where cB(α) is the critical value defined in (3.6).

To define the decorrelated likelihood ratio test statistic, we begin with some

assumptions and notation. Without loss of generality, assume that the index

set Hn for the null hypothesis corresponds to the first hn functional predic-

tors (i.e., Hn = {1, . . . , hn}), and rewrite the loss function Ln(η) as Ln(η) =

Ln(ηHn , ηHcn) = Ln(ηjk, ηHn\ηjk, ηHcn), where ηHn\ηjk represents the vector that

excludes ηjk. We introduce the following negative decorrelated partial likelihood
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function Ljk(η) for each ηjk, for j = 1, . . . , hn and k = 1, . . . , sn:

Ljk(η) = Ljk(ηHn , ηHcn) = Ljk(ηjk, ηHn\ηjk, ηHcn)

= Ln(ηjk, ηHn\ηjk, ηHcn − ηjkw(j−1)sn+k)

=
1

2n
||Y −ΘHnηHn −ΘHcn(ηHcn − ηjkw(j−1)sn+k)||

2
2, (4.3)

where w(j−1)sn+k is the {(j−1)sn+k}th column of the matrix w = I−1HcnHcnIH
c
nHn .

Note that E{∂Ljk(ηjk, ηHn\ηjk, ηHcn)/∂ηjk∇ηHcnLn(η)} = 0 uniformly in j =

1, . . . , hn and k = 1, . . . , sn. The estimated version of Ljk(η) is

L̂jk(η) = L̂jk(ηHn , ηHcn) = L̂jk(ηjk, ηHn\ηjk, ηHcn)

= Ln(ηjk, ηHn\ηjk, ηHcn − ηjkŵ(j−1)sn+k)

=
1

2n
||Y −ΘHnηHn −ΘHcn(ηHcn − ηjkŵ(j−1)sn+k)||

2
2, (4.4)

where ŵ(j−1)sn+k is obtained from (3.3). To implement this test, we also need

an estimator ὴjk for each ηjk that approximately minimizes L̂jk(ηjk, 0, η̂Hcn) with

respect to ηjk. Unlike Fang, Ning and Liu (2017), who used ήHn from the decor-

related Wald test, we again employ a one-step estimator ὴjk based on the fact

that ∂L̂jk(ὴjk, 0, η̂Hcn)/∂ηjk is close to zero; that is,

ὴjk = −
{
∂2L̂jk(0, 0, η̂Hcn)

∂η2jk

}−1{∂L̂jk(0, 0, η̂Hcn)

∂ηjk

}
. (4.5)

Denote Υ̂ as an hnsn×1 vector with {(j−1)sn+k}th element equal to 2n{L̂jk(0,
0, η̂Hcn) − L̂jk(ὴjk, 0, η̂Hcn)}. Then, the decorrelated likelihood ratio test statistic

is given by

L̂∗ = Λ̂−2Hndiag

{
(ΘHcnŵ −ΘHn)′(ΘHcnŵ −ΘHn)

n

}
Υ̂, (4.6)

with the same critical value cB(α) as that in (3.6) for a level-α test. The ex-

act equivalence between the three proposed tests for the large-scale FLR is es-

tablished in Theorem 3, where Ŵ ∗ and L̂∗ denote the decorrelated Wald and

likelihood ratio statistics, as in (4.2) and (4.6), respectively.

Theorem 3. Under conditions (A1)–(A6) in Section 2 and (B1)–(B3) and (P1)–

(P5) in Appendices A and B, respectively, and using the local minimizer η̂ from

Theorem 1, then under H0 : ‖βj‖L2 = 0 for all j ∈ Hn, one has ||T̂ ∗||∞ =

||Ŵ ∗||∞ = ||L̂∗||1/2∞ .
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We conclude this section by pointing out that the exact (not asymptotic)

equivalence between these three tests under the general null hypothesis in (3.1)

occurs because we use one-step estimators in the Wald and likelihood ratio statis-

tics and in the linear structure of the FLR model. Hence, it suffices to focus on,

for instance, the decorrelated score test only.

5. Simulation Studies

The simulated data {yi, i = 1, . . . , n} are generated from the following model:

yi =

pn∑
j=1

∫ 1

0
βj(t)xij(t)dt =

pn∑
j=1

∑
k

ηjkθijk + εi,

with n = 100 subjects and pn = 200 functional predictors, where the errors

ε1, . . . , εn are i.i.d. fromN(0, σ2). The functional predictors have mean zero and a

covariance function derived from the Fourier basis φ1 = 1, φ2` = 21/2 cos{`π(2t−
1)}, for ` = 1, . . . , 25, and φ2`−1 = 21/2 sin{(` − 1)π(2t − 1)}, for ` = 2, . . . , 25,

t ∈ T = [0, 1]. The underlying regression function is βj(t) =
∑50

k=1 ηjkφk(t), for

j ≤ qn = 3, where ηjk = cj(1.2 − 0.2k) for k ≤ 4, and ηjk = 0.4cj(k − 3)−4

for 5 ≤ k ≤ 50, with constants {cj : j ≤ qn} chosen for different settings,

and the other βj(t) = 0, for all t ∈ T . To generate Xij(t), for j = 1, . . . , pn,

define Vij(t) =
∑50

k=1 θ̃ijkφk(t), where {θ̃ijk} follows an independently distributed

N(0, k−2) for different i and j. The pn functional predictors are then defined

using the autoregressive relationship,

Xij(t) =

pn∑
j′=1

ρ|j−j
′|Vij′(t) =

50∑
k=1

pn∑
j′=1

ρ|j−j
′|θ̃ij′kφk(t) =

50∑
k=1

θijkφk(t),

where θijk =
∑pn

j′=1 ρ
|j−j′|θ̃ij′k, and the constant ρ ∈ (0, 1) controls the corre-

lations between the functional predictors; here, we present the case of ρ = 0.3.

For the observed measurements, we take discrete realizations of {Xij(·), j =

1, . . . , pn} at 100 equally spaced times {tijl, l = 1, . . . , 100} ∈ T . Next, we use

an orthonormal cubic spline basis to fit the model, where the tuning parameters

sn and λn are chosen using five-fold cross-validation and the algorithm with the

SCAD penalty (see Appendix A). Then, we construct the decorrelated score

test statistic and its associated α = 5% empirical quantile using a wild boot-

strap with N = 10,000 bootstrap samples. Table 1 summarizes the empirical

sizes and powers under the null and several alternative hypotheses in different
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Table 1. Simulation results for different settings of the regression curves {βj : j ≤ qn}
specified by {cj : j ≤ qn}, under various hypotheses measured over 500 Monte Carlo
replicates, where n = 100, pn = 200, qn = 3, ρ = 0.3, and σ2 = 1. Shown are the
empirical rejection proportions with corresponding standard errors in parentheses. In
particular, the rejection rates in the first 11 rows depict the pattern of the power function
under H0 : ‖β1‖L2 = 0 with ascending signal strength in β1, while ‖βj‖L2 = 0 for j ≥ 2.
This is followed by testing different hypotheses H0, when the underlying ‖βj‖L2 6= 0, for
j = 1, 2, 3. Note that in all settings, ‖βj‖L2 = 0, for j ≥ 4.

Setting of {βj : j ≤ 3} H0 : ‖βj‖L2 = 0, j ∈ Hn Rejection proportion

c1 = 0 , c2 = 0, c3 = 0 Hn = {1} 0.046 (0.009)

c1 = 0.1, c2 = 0, c3 = 0 Hn = {1} 0.086 (0.013)

c1 = 0.2, c2 = 0, c3 = 0 Hn = {1} 0.300 (0.021)

c1 = 0.3, c2 = 0, c3 = 0 Hn = {1} 0.574 (0.022)

c1 = 0.4, c2 = 0, c3 = 0 Hn = {1} 0.752 (0.019)

c1 = 0.5, c2 = 0, c3 = 0 Hn = {1} 0.894 (0.014)

c1 = 0.6, c2 = 0, c3 = 0 Hn = {1} 0.948 (0.100)

c1 = 0.7, c2 = 0, c3 = 0 Hn = {1} 0.974 (0.007)

c1 = 0.8, c2 = 0, c3 = 0 Hn = {1} 0.988 (0.005)

c1 = 0.9, c2 = 0, c3 = 0 Hn = {1} 0.996 (0.003)

c1 = 1, c2 = 0, c3 = 0 Hn = {1} 1.00 (0.000)

c1 = 1, c2 = 1, c3 = 1 Hn = {1} 0.986 (0.005)

c1 = 1, c2 = 1, c3 = 1 Hn = {1, . . . , 5} 1.00 (0.000)

c1 = 1, c2 = 1, c3 = 1 Hn = {1, . . . , 20} 1.00 (0.000)

c1 = 1, c2 = 1, c3 = 1 Hn = {5, . . . , 20} 0.050 (0.010)

settings specified by {cj : j ≤ qn}, based on the rejection proportion over 500

Monte Carlo replicates. The computation takes between two and three minutes,

on average, for each case in one Monte Carlo run.

From Table 1, the rejection proportions of the first 11 null hypotheses in-

crease quickly as the signal of β1 increases with βj = 0, for j ≥ 2, which is

expected for a power function curve. In addition, the rejection proportion under

the first null hypothesis is, as expected, close to the prespecified significance level

α = 5%. Among the last four null hypotheses, which include larger sets of re-

gression parameter functions, the proposed test has a rejection rate close to the

significance level α = 5% when the nonzero βj all reside in the alternative param-

eter space (i.e., the last null hypothesis), and possesses good power for testing

the other three null hypotheses. We repeated the experiments using different

settings of n, pn, qn, ρ, and σ2 , finding similar patterns with descending power
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for larger values of pn and σ2 and ascending power for larger n. The influence of

ρ on the power is not as noticeable as that of pn and σ2, whereas the influence

of qn is mainly associated with the hypothesis of interest. These similar results

are not reported here.

6. Real-Data Example

We analyze a data set on 848 individuals from the Human Connectome

Project (HCP); see http://www.humanconnectome.org/ for more information

on the HCP. The response of interest is a continuous score called Emotion Task

Shape Acc, calculated from emotion-processing fMRI tasks. These tasks are re-

lated to the brain processing of negative emotions such as fear or anger; a detailed

description is available at https://www.humanconnectome.org/study/hcp

-young-adult/document/500-subjects-data-release. There are 35 regions

of the brain (e.g., lingual, paracentral, isthmuscingulate etc.). Here, we are in-

terested in identifying those regions that have a significant effect when processing

negative emotional tasks. Thus, we have pn = 35 functional predictors, where the

fMRI readings for each functional predictor are recorded at 176 equally spaced

time points, rescaled to a unit interval. Previous studies have shown that three

regions, the isthmuscingulate (Rockstroh and Elbert (2010)), lingual (Goldin

et al. (2008)), and frontalpole (Musha et al. (1997)), are responsible for negative

emotions. Thus, it is of keen interest to pick out these crucial regions from the

study.

We adopt an orthonormal cubic B-spline basis, and fit the large-scale FLR

with the number of inside knots kn = sn−4 and the tuning parameter λn chosen

using five-fold cross-validation. As a result of the regularized estimation, 17 of the

35 regression functions are retained in the model. To perform hypothesis testing

on the importance of these regions, we first conduct a marginal test for each

individual region using the proposed decorrelated score test statistic. From the

results, we reject the null hypotheses for isthmuscingulate (j = 10, p = 0.0028),

lingual (j = 13, p = 0.0007), and frontalpole (j = 32, p = 0.0346) at a significance

level of 0.05. Based on the marginal significance, we carry out an overall test for

H0 : ‖βj‖L2 = 0, for all j /∈ {10, 13, 32}, and fail to reject this null hypothesis

at level 0.05 with a p-value of 0.2725. This indicates that the other functional

predictors are not statistically important. Therefore, it is reasonable to retain

these three regions in our model (i.e., isthmus cingulate (j = 10), lingual (j = 13),

and frontalpole (j = 32)). To further justify their significance, we refit the FLR

http://www.humanconnectome.org/
https://www.humanconnectome.org/study/hcp-young-adult/document/500-subjects-data-release
https://www.humanconnectome.org/study/hcp-young-adult/document/500-subjects-data-release


TASTING IN LARGE-SCALE FLR 1117

lsthmuscingulate(j=10)

E
ff

ec
t

Time
0         0.1      0.2       0.3      0.4       0.5       0.6      0.7       0.8      0.9         1

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

(a)
E

ff
ec

t
Time

0         0.1      0.2       0.3      0.4       0.5       0.6      0.7       0.8      0.9         1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

Lingual(j=13)

(b)

E
ff

ec
t

Time
0                   0.2                  0.4                  0.6                  0.8                    1

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

-0.2

Frontalpole(j=32)

(c)

Figure 1. The estimated regression coefficient functions obtained from the FLR model
containing three functional predictors corresponding to the isthmuscingulate (j = 10),
lingual (j = 13), and frontalpole (j = 32) regions, respectively.

model using these three predictors only, and conduct a marginal test for each

of the three regions. We find that all three marginal tests are rejected at level

0.05, with p-values of 0.0138, 0.0174, and 0.0203, respectively. This indicates

that a model with these three regions may not be reduced further. In terms of

computation, the proposed method takes around eight minutes.

The estimated regression parameter functions for the three regions are dis-

played in Figure 1. From the left panel, it appears that the negative emotion is

periodically associated with the isthmuscingulate region over the entire duration,

and becomes more influential over time. This is consistent with the finding of

Rockstroh and Elbert (2010) that the isthmuscingulate region is responsible for

negative emotions such as fear. Figure 1(b) shows that the effect of the lingual re-

gion appears neutral before t = 0.7 on the re-scaled unit time scale, but becomes

stronger thereafter, supporting the finding of Goldin et al. (2008) of an associa-

tion between the lingual region and negative emotion. In Figure 1(c), the effect

of the frontalpole region varies from negative to positive on the response. This

pattern agrees with the finding of Musha et al. (1997) that the frontalpole region

is associated with emotions in the change of mood from happiness to sadness.

Note that caution is required when interpreting the regression functions, espe-

cially for the estimates near the beginning and end times, owing to a boundary

effect.

Supplementary Material

The auxiliary lemmas used to show the main theorems, as well as the proofs

of those lemmas and theorems, are deferred to the online Supplementary Mate-

rial.
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Appendix

A. Nonconvex Penalty and Algorithm

Without loss of generality, we assume that the data are centered so that we

have n−1
∑n

i=1 Yi = 0 and n−1
∑n

i=1 θijk = 0, for any j = 1, . . . , pn, k = 1, . . . , sn.

In addition, for each j = 1, . . . , pn, we denote f̂j = Θj η̂j , where η̂j is an estimator

of ηj , and Uj = Θj(Θj
′Θj)

−1Θj
′. The optimization of (2.3) can be achieved by

adopting the coordinate descent method similar to those used in Ravikumar et al.

(2008) and Fan, James and Radchenko (2015) with slight modification, where

ρλn(·) is replaced by ρλns1/2n
(·). For completeness, we restate below a general

class of nonconvex penalty functions ρλ satisfying the technical conditions (P1)–

(P5) as in Loh and Wainwright (2015).

(P1) ρλ is an even function, and ρλ(0) = 0.

(P2) For t ≥ 0, ρλ(t) is nondecreasing in t.

(P3) gλ(t) = ρλ(t)/t is nonincreasing in t, for t > 0.

(P4) ρλ(t) is differentiable except at t = 0, limt→0+ ρ′λ(t) = λL, for some positive

constant L.

(P5) ρλ,µ(t) is convex in t, for some positive constant µ, where ρλ,µ(t) = ρλ(t) +

2−1µt2.

It is known that most nonconvex regularizers, e.g., LASSO, SCAD and MCP,

meet those conditions, and Lemma 1 in the online supplement studies the prop-

erties of those penalty functions. Then, we provide a fitting algorithm for the

large-scale FLR by slightly modifying that of Ravikumar et al. (2008).
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(i) Start with the initial estimator f̂j = 0, for each j = 1, . . . , pn.

(ii) Caculate the residual Rj = Y −
∑
k 6=j f̂k, while fixing the values of {f̂k : k 6= j}.

(iii) Caculate the P̂j = UjRj .

(iv) Let f̂j = max
{

1− ρ′
λns

1/2
n

(n−1/2||f̂j ||2)n1/2/||P̂j ||2, 0
}
P̂j .

(v) Let f̂j = f̂j − n−11n
′f̂j1n, where 1n denotes the n× 1 vector of ones.

(vi) Repeat (ii) to (v) for j = 1, . . . , pn and iterate until convergence to obtain the

final estimates f̂j , for j = 1, . . . , pn.

(vii) Compute η̂j = (Θj
′Θj)

−1Θj
′f̂j by using the final estimates f̂j from step (vi) to

get the final estimates η̂j , for j = 1, . . . , pn.

B. Conditions on the Large-Scale FLR Model

Next we quantify the relationship among the parameters qn, sn, Rn and

the sample size n, which is needed for establishing the estimation consistency

in Theorem 1. Recall that qn is the number of significant predictors, Rn is a

parameter such that ||η∗||1 ≤ Rn where η∗ represents the true value of η. Then

we assume

(B1) max(nβq2ns
a+1−δ
n , n2βq2ns

a/2+1−δ
n , n5β/2−1/2Rnqns

a/2+1
n , n3β/2−1/2Rnqns

a+1
n ,

nβ+1/2qns
−δ
n log sn) = o(1).

In particular, since ||η∗||1 =
∑qn

j=1

∑sn
k=1 |η∗jk| = O(qn) under (A6) and (B1), it

is feasible to assume Rn ∼ qn in practice. We provide two concrete examples to

illustrate (B1) as follows:

• If Rn ∼ qn ∼ c for some constant c > 0, then (B1) is reduced to

max(nβsa+1−δ
n , n2βsa/2+1−δ

n , n5β/2−1/2sa/2+1
n , n3β/2−1/2sa+1

n , nβ+1/2s−δn log sn)

= o(1). (B.1)

It is easy to check that there exists sn satisfying (B.1) if min{(2δ−a−2)/(4β), (δ−
a− 1)/β, (2δ − 2)/(2β + 1)} > max{(a+ 2)/(1− 5β), (2a+ 2)/(1− 3β)}.

• If Rn ∼ qn ∼ sn, then (B1) is reduced to

max(nβsa+3−δ
n , n2βsa/2+3−δ

n , n5β/2−1/2sa/2+3
n , n3β/2−1/2sa+3

n , nβ+1/2s1−δn log sn)

= o(1), (B.2)

and sn satisfies (B.2), if min{(2δ−a−6)/(4β), (δ−a−3)/β, (2δ−2)/(2β+1)} >
max{(a+ 6)/(1− 5β), (2a+ 6)/(1− 3β)}.

Next, we denote ρn = supl≤hnsn ||wl||0, where ||wl||0 is the number of nonzero
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elements in the lth column of w. Now we quantify the relationship between ρn
and various other parameters, which is needed in Theorem 2.

(B2) max{n3β/2ρnqns3a/2−δn log sn, n
5β/2−1/2ρnq

2
ns

2a+1−δ
n , n2β−1/2(log n)1/2ρns

3a/2
n ,

n3β−1Rnρnqns
2a+1
n } = o(1).

Note that the order of ρn is determined by the relative orders of parameters qn,

sn and Rn. For instance, if the predictors in Hn are uncorrelated with nuisance

predictors, (B2) holds trivially. If ρn ∼ c and Rn ∼ qn ∼ sn, then (B1) entails

(B2). We also impose some conditions on the tuning parameters λn and τn in

the regularizers in (2.3) and in the Dantizig method (3.3), respectively.

(B3) nβqns
a+1
n = o(λ−1n ), n2βqns

a/2+1
n = o(λ−1n ), n5β/2−1/2ρnqns

2a+1
n = o(λ−1n ),

nβ/2−1/2Rn = o(λn), qns
−δ
n = o(λn), τn ∼ {log(pnsn)/n}1/2.

In particular, if Rn ∼ qn, then (B3) implies that max{(log pn/n)1/2, qns
−δ
n } ≤

λn ≤ R−1n , which is consistent with the assumption (6) of Theorem 1 in Loh and

Wainwright (2015). By combining (A5), (B1) with (B3), one has τn ∼ nβ/2−1/2.
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