
Statistica Sinica 31 (2021), 1081-1099
doi:https://doi.org/10.5705/ss.202018.0137

EFFICIENT DESIGNS FOR THE ESTIMATION

OF MIXED AND SELF CARRYOVER EFFECTS

Joachim Kunert and Johanna Mielke

University of Dortmund and Novartis Pharma AG

Abstract: Biosimilars are copies of biological medicines developed after the patent

for the originator drug (the reference product) has expired. Extensive clinical trials

are required to show the therapeutic equivalence of the biosimilar and its reference

product before the biosimilar can be sold on the market. However, even after more

than 10 years of experience with biosimilars, there is still uncertainty whether pa-

tients can switch between the biosimilar and its reference product without negative

effects. One convenient way to assess the impact of switches is to analyze their

mixed and self carryover effects: if the products are switchable, there should be

no difference between the carryover effects. For p = 3 periods (and the number of

subjects is divisible by 8) and for p ≡ 1 mod 4 periods (and the number of subjects

is divisible by 4), determine a series of simple designs that efficiently compare the

mixed and self carryover effects of two treatments. The proof of the efficiency is

not straightforward, because the information matrices of the efficient designs are

not completely symmetric.
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1. Introduction

After the patent for a pharmaceutical product has expired, competing com-

panies can produce and sell a copy of the originator product (the reference prod-

uct). In the context of small molecule drugs, this is already well established,

and the copied products are known as generics. However, for large molecule

drugs (so-called biologics), it is not possible to produce an identical chemical

copy (Schellekens (2004)). Therefore, we call a copy of a biologic a biosimilar. In

order to obtain market authorization for a biosimilar, a company must show that

there is no clinically relevant difference between the biosimilar and the originator

product (equivalence testing). This typically means observing treatment-naive

patients under continuous treatment with either the reference treatment or the

test treatment, and then comparing their efficacy at a predefined time point.
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There is still limited experience with biosimilars in practice. Hence, there

is some uncertainty among patients, physicians, and health care providers over

whether a patient on an originator product can switch to a biosimilar. There

is also a debate on whether substituting the treatment at the pharmacy level

is acceptable (e.g., Ebber et al. (2012)). In practice, substitution could lead to

multiple switches between a biosimilar and the originator product.

In order to establish that multiple switches do affect the efficacy and safety

of a treatment, a crossover study can be conducted. Here the units are observed

over several periods, where the treatment can change between periods. No carry-

over effects are assumed in the first period. Owing to the currently used parallel

groups design, in practice, only the first period is observed for a market au-

thorization decision. Therefore, a biosimilar is accepted if the direct effects are

sufficiently similar. However, later periods may include carryover effects. One

way of confirming that switching does not affect the efficacy of the treatment is

to analyze the carryover effects.

We consider the model introduced by Afsarinejad and Hedayat (2002), which

assumes that each treatment has two carryover effects: one is present if a sub-

ject stays on the treatment (self carryover effect), and the other is present if

the subject changes to a different treatment (mixed carryover effect). Kunert

and Stufken (2002, 2008) determined optimal crossover designs for estimating

direct effects in this model. Kunert and Stufken (2008) deal with the case of two

treatments, which is relevant for our application (biosimilar and reference prod-

uct). However, when examining the switchability of a biosimilar and its reference

product, the direct effects are not of primary interest because their equivalence

will already have been established when demonstrating biosimilarity. The effects

of switching should be visible in differences between the carryover effects. Thus,

to confirm switchability, we need to focus on estimating the carryover effects.

Unfortunately, the literature on optimal designs for estimating carryover effects

is sparse. Cheng and Wu (1980) and Kunert (1983) provide some results for

carryover effects in a simpler model in which the mixed and self carryover effects

are assumed identical; however, they focus on estimating direct effects. In a

model with self and mixed carryover effects, Druilhet and Tinsson (2014) derived

optimal designs for total effects, where the total effect of a treatment is the sum

of its direct and self carryover effects. In this study, we focus on efficient designs

for estimating self and mixed carryover effects.
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2. The Model

We consider a model where the response yu,r of subject u in period r depends

on a treatment effect, subject effect, period effect, and mixed or self carryover

effect. We distinguish between the treatment effects of the biosimilar and the

originator, even though biosimilarity has already been established. Biosimilarity

only means that the direct treatment effects are similar, but not necessarily

identical. Therefore, including direct effects in the model avoids bias. The model

is given by

yu,r =

{
αu + βr + τd(u,r) + ρd(u,r−1) + eu,r, if d(u, r) 6= d(u, r − 1),

αu + βr + τd(u,r) + χd(u,r−1) + eu,r, if d(u, r) = d(u, r − 1).

Here, d(u, r) is the treatment assigned to subject u in period r (1 ≤ u ≤ n, 1 ≤
r ≤ p) by the design d, αu is the effect of subject u, βr is the effect of period r,

τi is the direct effect of treatment i (1 ≤ i ≤ t), and ρi is the mixed carryover

effect and χi is the self carryover effect of treatment i. No carryover effect is

present in the first period; that is, ρd(u,0) = χd(u,0) = 0. The errors eu,r, for

1 ≤ u ≤ n, 1 ≤ r ≤ p, are assumed to be independent and identically distributed

(i.i.d.) with expectation zero and variance σ2 > 0. The set of all designs with t

treatments, n subjects, and p periods is denoted by Ωt,n,p. We focus on t = 2, the

case of two treatments (reference product R, biosimilar (test) product T ). Note

that, in this case, the model with self and mixed carryover effects is equivalent

to the full model with interactions between the direct and carryover effects.

For a given design d ∈ Ω2,n,p, we define Td as the design matrix of the direct

effects, Sd as that of the self carryover effects, and Md as that of the mixed

carryover effects. We also consider the matrices U = In ⊗ 1p and P = 1n ⊗ Ip,

where ⊗ denotes the Kronecker product of matrices, Is is the (s × s) identity

matrix, and 1s is a column vector of length s with all entries equal to one. We

write the vector y of observations as y = [y1,1, . . . , y1,p, y2,1, . . . , yn,p]
T , where

the superscript T denotes the transpose of a vector or a matrix. Then, U and P

are the design matrices for the subject and period effects, respectively, and the

model can be written in vector notation as

y = Tdτ + Sdχ+ Mdρ+ Uα+ Pβ + e,

where τ is a vector of direct (treatment) effects, χ is a vector of self carryover

effects and ρ is a vector of mixed carryover effects. Furthermore, α, β, and e are
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vectors of subject effects, period effects, and residual errors, respectively. We are

interested in estimating contrasts of the four-dimensional vector of all carryover

effects,

δ =

[
χ

ρ

]
.

For a matrix A, we define the projection ω(A) = A(ATA)+AT , where

(ATA)+ is the Moore–Penrose generalized inverse. Setting ω⊥(A) = Is − ω(A),

where s is the number of rows of A, the information matrix for the estimation

of δ is given by

Cd = [Sd,Md]Tω⊥([P,U,Td])[Sd,Md];

see Kunert (1983, p. 248). Note that [Sd,Md]14 = P[0, 1, . . . , 1]T , because each

subject experiences one of the four carryover effects in all periods but the first.

Therefore, because ω⊥([P,U,Td])P = 0, the information matrix Cd has row

and column sums equal to zero and only contrasts of the carryover effects are

estimable.

To compare the performance of the designs, we consider the A-criterion;

see, for example, Pukelsheim (1993, p. 210). We define λi(A) as the ordered

eigenvalues of a real symmetric matrix A. Therefore, for a design d ∈ Ω2,n,p, the

ordered eigenvalues of Cd are λ1(Cd) ≥ λ2(Cd) ≥ λ3(Cd) ≥ λ4(Cd). Note that

λ4(Cd) = 0, because Cd14 = 0. We then define the A-criterion ϕA as

ϕA(d) =

1/

(
1

λ1(Cd)
+

1

λ2(Cd)
+

1

λ3(Cd)

)
, if λ3(Cd) > 0,

0, if λ3(Cd) = 0.

An A-optimal design d∗ maximizes ϕA(d).

Ideally, to maximize ϕA(d), we find a design with λ1(Cd) = λ2(Cd) =

λ3(Cd), where L = λ1(Cd) + λ2(Cd) + λ3(Cd) is as large as possible. Such

a design does not exist. Instead, we use a slightly smaller bound for ϕA(d).

Proposition 1. Assume the design d ∈ Ω2,n,p has an information matrix with

eigenvalues λ1 ≥ λ2 ≥ λ3 and zero, with the side conditions that

λ1 + λ2 + λ3 ≤ L, andλ3 ≤ q,

where 0 < q ≤ L/3. Then, we have for the A-criterion of the design that

ϕA(d) ≤ q(L− q)
L+ 3q

.
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For the proofs of all propositions presented in this paper, see the online Supple-

mentary Material.

3. Deriving Bounds for the A-Criterion

The aim of this study is to propose efficient designs for the joint estimation

of mixed and self carryover effects. The efficiency of the designs is measured

by comparing their A-criteria to an upper bound for the A-criterion. To use

Proposition 1, we determine an upper bound for the second-smallest eigenvalue

λ3(Cd) and an upper bound for tr(Cd), where tr(A) denotes the trace of a matrix

A.

For two matrices G,D ∈ Rs×s, we write G ≤ D if D −G is nonnegative

definite. Because the information matrix Cd has row- and column-sums zero, we

can rewrite

Cd = B4CdB4 = B4[Sd,Md]Tω⊥([P,U,Td])[Sd,Md]B4,

where Bs = ω⊥(1s) = Is − (1/s)1s1
T
s . Using this notation, we obtain an imme-

diate upper bound for Cd, namely,

Cd ≤ C̃d = B4[Sd,Md]Tω⊥([U,Td])[Sd,Md]B4; (3.1)

see Kunert (1983, Prop. 2.3). Equality holds if and only if

B4[Sd,Md]Tω⊥([U,Td])P = 0. (3.2)

We can write

ω⊥([U,Td]) = ω⊥(U)− ω⊥(U)Td(TT
d ω
⊥(U)Td)+TT

d ω
⊥(U),

see, for example, Bose and Dey (2009, Lemma 1.2.1). Hence, the matrix C̃d

defined in (3.1) can be split as follows:

C̃d = Cd11 −Cd12C
+
d22C

T
d12,

where

Cd11 = B4[Sd,Md]Tω⊥(U)[Sd,Md]B4,

Cd12 = B4[Sd,Md]Tω⊥(U)Td,

Cd22 = TT
d ω
⊥(U)Td.
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Note that the Cdij are not submatrices of the information matrix Cd. Instead,

they are submatrices of an information matrix used to jointly estimate the car-

ryover effects and the direct effects; see Cheng and Wu (1980).

Equation (3.1) implies there is an upper bound for the A-criterion,

ϕA(d) ≤ ϕ̃A(d),

where

ϕ̃A(d) =

1/

(
1

λ1(C̃d)
+

1

λ2(C̃d)
+

1

λ3(C̃d)

)
, if λ3(C̃d) > 0,

0, if λ3(C̃d) = 0.

In what follows, we aim to identify designs that optimize ϕ̃A(d), while satisfying

Equation (3.2).

Each subject receives a sequence of treatments. Define Zp as the set of all p-

dimensional vectors with entries R or T . Consider an arbitrary sequence z ∈ Zp.

For this sequence, we define

• Tz as the design matrix for the direct treatment effects for this sequence,

that is, the design matrix for the direct effects we would get from a design

consisting of one subject only, receiving sequence z;

• Sz as the design matrix for the self carryover effects for this sequence; and

• Mz as the design matrix for the mixed carryover effects for this sequence.

For a design d ∈ Ω2,n,p, define ud(z) as the number of subjects receiving se-

quence z, for z ∈ Zp. Then each ud(z) is a nonnegative integer. It is convenient

to consider the set ∆2,n,p of approximate designs, where ud(z) can be any nonneg-

ative real number, with the only restriction being that
∑
ud(z) = n. Obviously,

Ω2,n,p ⊂ ∆2,n,p, and if a design d ∈ Ω2,n,p is optimal over ∆2,n,p, it is also opti-

mal over Ω2,n,p. For each d ∈ ∆2,n,p, define πd(z) as the proportion of subjects

receiving sequence z, for z ∈ Zp. Then, all πd(z) ≥ 0 and
∑

z∈Zp
πd(z) = 1, but

for an approximate design d ∈ ∆2,n,p, the πd(z) can be irrational numbers.

It is easy to see that ω⊥(U) = In⊗Bp. Therefore, the Cdij are linear in the

sequences. More precisely, Cdij = n
∑

z∈Zp
πd(z)Cij(z), where

C11(z) = B4[Sz,Mz]
TBp[Sz,Mz]B4, (3.3)

C12(z) = B4[Sz,Mz]
TBpTz, (3.4)

C22(z) = TT
z BpTz. (3.5)
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Making use of the linearity of the Cdij , Kushner (1997) introduced a general

method for deriving optimal crossover designs. However, Kushner (1997) con-

sidered the case where all Cdij are square matrices. In our problem, Cd12 is a

(4× 2) matrix; therefore, we have to adapt the method to our situation.

Proposition 2. Assume X ∈ R2×4 is an arbitrary matrix. Then,

C̃d ≤ Cd11 −Cd12X−XTCT
d12 + XTCd22X.

A sufficient condition for equality is that X = Xd, where Xd = C+
d22C

T
d12.

Note that the right-hand side of the inequality in Proposition 2 is linear in

the sequences; that is,

Cd11 −Cd12X−XTCT
d12 + XTCd22X (3.6)

= n
∑
z∈Zp

πd(z)
(
C11(z)−C12(z)X−XTCT

12(z) + XTC22(z)X
)
.

As a first step, we can use this proposition to derive an upper bound for

λ3(Cd) (see Proposition 4). Define

b2 =
1√
2

[
1

−1

]
.

Then, b2b
T
2 = B2. Using this notation, we obtain an immediate consequence of

Proposition 2.

Proposition 3. Assume k ∈ R4 and x ∈ R. Then,

kT C̃dk ≤ kTCd11k− 2kTCd12b2x+ bT
2 Cd22b2x

2.

A sufficient condition for equality is that x = kTCd12C
+
d22b2 = xd, say.

This proposition allows us to give an upper bound for λ3(Cd).

Proposition 4. Consider an arbitrary design d ∈ ∆2,n,p. Assume that 0 6= k ∈
R4, with kT14 = 0, and that x ∈ R. For the second-smallest eigenvalue, we then

have that

λ3(Cd) ≤ n 1

kTk
max
z∈Zp

{kTC11(z)k− 2kTC12(z)b2x+ bT
2 C22(z)b2x

2}.

We use another consequence of Proposition 2 to derive a bound for tr(C̃d).
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Proposition 5. Consider an arbitrary design d ∈ ∆2,n,p and any matrix X ∈
R2×4. We then have

tr(Cd) ≤ nmax
z∈Zp

tr
(
C11(z)− 2C12(z)X + XTC22(z)X

)
.

Set

Lz(X) = n tr
(
C11(z)− 2C12(z)X + XTC22(z)X

)
.

Then, Proposition 5 can be written as

tr(Cd) ≤ max
z∈Zp

Lz(X). (3.7)

Proposition 5 holds for any X ∈ R2×4. We choose an X that gives a small

bound. One way to find such an X is as follows. Assume there is a design

f ∈ Ω2,n,p, for which we hope that f maximizes tr(Cd). Clearly, from (3.1), we

have tr(Cf ) ≤ tr(C̃f ). It follows from Proposition 2 that

tr(C̃f ) ≤ tr
(
Cf11 −Cf12Xf −XTCT

f12 + XTCf22X
)

=
∑
z∈Zp

πfLz((X),

with equality for X = Xf = C+
f22Cf12. For some X 6= Xf , this inequality can be

strict. In that case, there will be at least one z ∈ Zp, such that Lz(X) > tr(C̃f ).

However, for X = Xf , it is possible that all Lz(Xf ) ≤ tr(C̃f ). If (3.2) holds

for f , it is even possible that all Lz(Xf ) ≤ tr(Cf ). This would be sufficient for

tr(Cf ) to be maximal.

Proposition 6. Assume f ∈ Ω2,n,p is such that, for every sequence z ∈ Zp, we

have

Lz(Xf ) ≤ tr (Cf ) , where Xf = C+
f22C

T
f12,

as in Proposition 2. Then,

tr(Cf ) = max
d∈∆2,n,p

tr(Cd).

For any sequence z ∈ Zp, there is a dual sequence z̄ ∈ Zp, where each T in

z is replaced by an R in z̄, and vice versa. A design d ∈ ∆2,n,p is called dual

balanced if πd(z) = πd(z̄) for each pair of dual sequences z and z̄ in Zp. The next

proposition allows us to restrict our attention to dual-balanced designs in what

follows.
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Proposition 7. If we allow for approximate designs, then for each design d ∈
∆2,n,p, there is a dual-balanced design f ∈ ∆2,n,p, such that

ϕ̃A(f) ≥ ϕ̃A(d).

4. Efficient Dual-Balanced Designs

For a given sequence z ∈ Zp, it is possible to give explicit entries of Cij(z).

We define nR and nT as the number of appearances of treatment R and T ,

respectively, in z. Let mRT and mTR be the number of appearances of the mixed

carryover effects of R and T , respectively, and sRR and sTT be the number of

appearances of the self carryover effects of R and T , respectively, in z. Then,

ST
z BpSz =

[
sRR 0

0 sTT

]
− 1

p

[
s2
RR sRRsTT

sRRsTT s2
TT

]
,

ST
z BpMz = −1

p

[
mRT sRR mRT sTT

mTRsRR mTRsTT

]
,

ST
z BpTz =

[
sRR 0

0 sTT

]
− 1

p

[
sRRnR sRRnT
sTTnR sTTnT

]

=
1

p

[
sRRnT −sRRnT
−sTTnR sTTnR

]
,

where we have used that nR + nT = p. Similarly,

MT
z BpMz =

[
mRT 0

0 mTR

]
− 1

p

[
m2

RT mRTmTR

mRTmTR m2
TR

]
,

MT
z BpTz =

[
0 mRT

mTR 0

]
− 1

p

[
mRTnR mRTnT
mTRnR mTRnT

]

=
1

p

[
−mRTnR mRTnR
mTRnT −mTRnT

]
.

These (2× 2) matrices can be used to determine the (4× 4) matrix C11(z) and

the (4× 2) matrix C12(z). The matrix C22(z) is given by

C22(z) = TT
z BpTz

=

[
nR 0

0 nT

]
− 1

p

[
n2
R nTnR

nTnR n2
T

]
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=

nR(1− 1
pnR

)
−1

pnTnR

−1
pnTnR nT

(
1− 1

pnT

)
=

1

p
nTnR

[
1 −1

−1 1

]
=

2

p
nTnRB2.

The fact that C22(z) is proportional to B2 for any z implies that, for any design

d, there is a c such that Cd22 = cB2. Hence, one g-inverse of Cd22 is given by

C+
d22 =

1

c
B2.

4.1. Efficient designs for p = 3

First, we consider the case p = 3. We try to find an approximate design d

that maximizes ϕ̃A. Then, there are eight possible sequences (see Table 1); and

ϕ̃A(d) is uniquely determined by the eight proportions πd(z), for z ∈ Z3. Note

that z1 and z2, z3 and z4, z5 and z6, and z7 and z8 are pairs of dual sequences.

We conclude from Proposition 7 that the best design is a dual-balanced design,

that is, πd(z1) = πd(z2) = p1, πd(z3) = πd(z4) = p3, πd(z5) = πd(z6) = p5, and

πd(z7) = πd(z8) = p7, say. With this restriction, we get

ST
d ω
⊥(U)Sd

n
=
∑
z

πd(z)ST
z B3Sz =

2

3
(p1 + p3 + p7)I2,

ST
d ω
⊥(U)Md

n
=
∑
z

πd(z)ST
z B3Mz =

[
−1

3p7 −1
3p3

−1
3p3 −1

3p7

]
,

ST
d ω
⊥(U)Td

n
=
∑
z

πd(z)ST
z B3Tz =

(
2

3
p3 +

2

3
p7

)
B2,

MT
d ω
⊥(U)Md

n
=
∑
z

πd(z)MT
z B3Mz

=

[
2
3(p3 + p7) + 4

3p5 −2
3p5

−2
3p5

2
3(p3 + p7) + 4

3p5

]
,

MT
d ω
⊥(U)Td

n
=
∑
z

πd(z)MT
z B3Tz = −

(
2

3
p3 +

4

3
p7 + 2p5

)
B2,

and
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Table 1. Possible sequences with three periods (p = 3).

Sequence mTR mRT sRR sTT nR nT
z1 TTT 0 0 0 2 0 3
z2 RRR 0 0 2 0 3 0
z3 RTT 0 1 0 1 1 2
z4 TRR 1 0 1 0 2 1
z5 RTR 1 1 0 0 2 1
z6 TRT 1 1 0 0 1 2
z7 RRT 0 1 1 0 2 1
z8 TTR 1 0 0 1 1 2

TT
d ω
⊥(U)Td

n
=
∑
z

πd(z)TT
z B3Tz =

8

3
(p3 + p5 + p7) B2.

Combining these results, we have

1

n
C̃d = B4


a b e f

b a f e

e f c d

f e d c

B4,

where

a =
2

3
(p1 + p3 + p7)− p2

3 + p2
7 + 2p3p7

12(p3 + p5 + p7)
,

b =
p2

3 + p2
7 + 2p3p7

12(p3 + p5 + p7)
,

c =
2

3
(p3 + p7) +

4

3
p5 −

p2
3 + 4p2

7 + 9p2
5 + 4p3p7 + 6p3p5 + 12p7p5

12(p3 + p5 + p7)
,

d = −2

3
p5 +

p2
3 + 4p2

7 + 9p2
5 + 4p3p7 + 6p3p5 + 12p7p5

12(p3 + p5 + p7)
,

e = −1

3
p7 +

p2
3 + 3p7p3 + 3p3p5 + 2p2

7 + 3p7p5

12(p3 + p5 + p7)
,

f = −1

3
p3 −

p2
3 + 3p7p3 + 3p3p5 + 2p2

7 + 3p7p5

12(p3 + p5 + p7)
.

This matrix has eigenvalues

λ1 =
a− b+ c− d

2
+

√
(e− f)2 +

(
c− d− a+ b

2

)2

,
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λ2 =
a− b+ c− d

2
−

√
(e− f)2 +

(
c− d− a+ b

2

)2

,

λ3 =
a+ b+ c+ d

2
− e− f,

and λ4 = 0. The largest

ϕ̃A(d) =
1

(1/λ1 + 1/λ2 + 1/λ3)

that we found in a numerical search was ϕ̃A(d̃) = 0.0636n, attained by a design

d̃ with proportions

pd̃(1) = 0.0951, pd̃(3)= 0.1033, pd̃(5) = 0.1684, and pd̃(7)= 0.1332.

Unfortunately, there are two problems with d̃. First, it takes a large number

of experimental subjects to construct an exact design with these proportions.

Second, the true A-criterion of d̃ is less than the bound: ϕA(d̃) < ϕ̃A(d̃). This is

because d̃ does not satisfy (3.2).

A sufficient condition to satisfy (3.2) is as follows. Assume the design d is

such that in all periods, both direct effects appear in exactly half of the subjects,

and that in each of the periods 2, . . . , p, each of the four carryover effects appears

in exactly one quarter of the subjects. This implies that∑
z

πd(z)TT
z =

1

2
121

T
p ,

and ∑
z

πd(z) [Sz, Mz]
T = 14

[
0,

1

4
,
1

4
, . . . ,

1

4

]
.

Now, note that

B4[Sd, Md]Tω⊥([U,Td])P =
(
B4[Sd, Md]T −Cd12C

+
d22T

T
d

)
ω⊥(U)P

=
(
B4[Sd, Md]T −Cd12C

+
d22T

T
d

)
(1n ⊗Bp)

= n

(
B4

∑
z

πd(z)[Sz, Mz]
T −Cd12C

+
d22

∑
z

πd(z)TT
z

)
Bp.

Thus, for our d,

B4[Sd, Md]Tω⊥([U,Td])P = 0
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and, therefore, Cd = C̃d.

The design d̃ clearly does not satisfy the sufficient condition. In periods 2

and 3, the number of subjects receiving a mixed carryover is larger than the

number of subjects receiving a self carryover. The difference is larger in period

3 than in period 2. If n is divisible by eight, we can, instead of the design d̃,

use an exact, dual-balanced design d̂1 ∈ Ω2,n,3 that allots πd̂1
(z) = 1/8 to all

sequences in Z3. It is easy to verify that the design d̂1 satisfies the sufficient

conditions for (3.2). Direct computation gives ϕA(d̂1) = 0.0628n, which is very

close to the numerically derived upper bound for the A-criterion (0.0636n). If

the numerically derived bound is the true maximum, the efficiency of the design

d̂1 is at least 0.987.

4.2. Efficient designs for p ≡ 1 mod 4

We now consider the case p = 4`+ 1, where ` is a natural number, and n is

divisible by four. For this case, consider the exact design d̂2 ∈ Ω2,n,p, where each

of the sequences

z1 = [R T T R R · · · T T R R ],

z2 = [R R T T R R · · · T T R ],

and their duals

z̄1 = [T R R T T · · · R R T T ],

z̄2 = [T T R R T T · · · R R T ],

are assigned to one quarter of the subjects.

In practice, these designs d̂2 are appealing, because they are not too com-

plicated from an operational point of view, and the treatment sequence is not

too obvious for the subjects, i.e., the subjects cannot easily determine when they

switch.

For z1, we get nR = 2`+ 1 and nT = 2`, and mRT = mTR = sRR = sTT = `.

This implies that

ST
z1BpSz1 =

[
` 0

0 `

]
− 1

p

[
`2 `2

`2 `2

]
,

ST
z1BpMz1 = −1

p

[
`2 `2

`2 `2

]
,

ST
z1BpTz1 =

1

p

[
(2`+ 1)` −(2`+ 1)`

−2`2 2`2

]
,
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MT
z1BpMz1 =

[
` 0

0 `

]
− 1

p

[
`2 `2

`2 `2

]
,

and MT
z1BpTz1 =

1

p

[
−2`2 2`2

(2`+ 1)` −(2`+ 1)`

]
.

With straightforward algebra, we get that

C11(z1) = `B4, C12(z1) = `

[
B2

−B2

]
and C22(z1) =

4`(2`+ 1)

p
B2.

Because the sequence z2 has the same parameters, nR = 2` + 1, nT = 2`, and

mRT = mTR = sRR = sTT = `, we find that all Cij(z2) = Cij(z1).

For the dual sequences z̄1 and z̄2, the roles of R and T are interchanged.

Hence, nT = 2`+1 and nR = 2`, but we also have mRT = mTR = sRR = sTT = `.

Thus once again, C11(z̄i) = C11(z1), C12(z̄i) = C12(z1), and C22(z̄i) = C22(z1),

for i = 1, 2. This implies that, for the design d̂2,

Cd̂211 = n`B4, Cd̂212 = n`

[
B2

−B2

]
and Cd̂222 =

4`(2`+ 1)n

p
B2. (4.1)

We therefore have

C̃d̂2
= n`B4 −

n`p

8(2`+ 1)


1 −1 −1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1



=
n(p− 1)

16(p+ 1)


2p+ 3 −1 −1 −2p− 1

−1 2p+ 3 −2p− 1 −1

−1 −2p− 1 2p+ 3 −1

−2p− 1 −1 −1 2p+ 3

 .
To show that Cd̂2

= C̃d̂2
, we verify that, in each period, the direct effect of each

treatment appears in exactly two of the sequences; furthermore, in each of the

periods 2, . . . , p, each of the four carryover effects appears in exactly one of the

four sequences.

This implies that (3.2) holds and Cd̂2
= C̃d̂2

. Therefore,

tr(Cd̂2
) =

n(2p+ 1)(p− 1)

4(p+ 1)
.
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The eigenvalues of Cd̂2
are λ1(Cd̂2

) = λ2(Cd̂2
) = n((p− 1)/4), λ3(Cd̂2

) = n((p−
1)/(4(p + 1))), and zero. The eigenvector corresponding to λ3(Cd̂2

) is k3 =

(1/2) [1,−1,−1, 1]T .

Therefore, the A-criterion of the design d̂2 is

ϕA(d̂2) = n
p− 1

4 + 4 + 4(p+ 1)
= n

p− 1

4(p+ 3)
.

Note that this cannot be larger than n/4. Even if the number of periods p goes

to∞, we have ϕA(d̂2)→ n/4. This is similar to what happens for the estimation

of the direct effects in the same model (see Kunert and Stufken (2008)): a large

number of periods is of limited use.

In the special instance that p = 5, we did a numerical search to find an

A-optimal design. In the best design g that we found, each of the sequences

[RTTRR] , [TRRTT ] , [RRTTR] , and [TTRRT ]

is given to 20% of the subjects. Additionally, each of the sequences

[RTRRR] , [TRTTT ] , [RRRTR] , and [TTTRT ]

is given to 5% of the subjects. For this design, the A-criterion is ϕA(g) =

n/7.9375. This is only a small gain compared to the design d̂2 with ϕA(d̂2) = n/8.

If g truly is the A-optimal design, then d̂2 has an efficiency of 7.9375/8 = 0.99.

However, the design g is more complicated from an organizational viewpoint, and

it requires that the number of subjects be divisible by 20.

A practical experiment to examine switchability was carried out by Griffiths

et al. (2017). They used a design h that gave each of the sequences

[RTRTT ] , [TRTRR] , [TTTTT ] , and [RRRRR]

to 25% of the subjects. We then get ϕA(h) = n/11.65, which is clearly less than

ϕA(d̂2). However, note that Griffiths et al. (2017) did not use our model. Their

analysis compared the performance of the subjects from the first two groups,

with switches, to that of the subjects from the last two groups, without switches.

Because every subject receives switches in design d̂2, the analysis of Griffiths et

al. (2017). would not have been possible with d̂2.

Two works have derived optimal designs for our model for two treatments.

Neither were interested in estimating the carryover effects. Druilhet and Tinsson

(2014) derived optimal designs for the estimation of total effects. The total effect
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of a treatment is the sum of its direct and self carryover effects. In the case of two

treatments and five periods, each subject in Druilhet and Tinsson (2014) design

experiences exactly one switch: in the first two periods, the subject receives the

same treatment twice, before switching to the other treatment for the last three

periods. For the joint estimation of the mixed and self carryover effects, this

design has an A-criterion of zero: the rank of the information matrix is only

two. On the other hand, with d̂2, we can estiamte the total effects. However, its

efficiency compared to that of the design by Druilhet and Tinsson (2014) is only

75%.

Kunert and Stufken (2008) derived optimal designs for estimating direct

effects. For any given p, the set of all A-optimal designs for the estimation of

direct effects is rather large. For p ≡ 1 mod 4 and n divisible by eight, it contains

the designs d̂2. So, when estimating the direct effects, the designs d̂2 are, in fact,

optimal.

In the next section, we derive an upper bound for the A-criterion for the

estimation of the carryover effects of any design for an arbitrary p. With the

help of this bound, we show that for p ≡ 1 mod 4 and p > 5, no other design

outperforms d̂2.

5. An Upper Bound for the A-Criterion

In this section, for arbitrary p, we derive equation (5.2), an upper bound

for the A-criterion ϕA(d). The derivation, based on the general upper bound for

ϕA(d) given in Proposition 1, proves the upper bounds for λ3(Cd) and tr(Cd)

in equation (5.1) and Proposition 10, respectively. We begin with two technical

lemmas.

Proposition 8. Consider an arbitrary sequence z ∈ Zp. Then, the design-

matrices Tz, Sz, and Mz satisfy the equality

Szb2 −Mzb2 −Tzb2 =


a

0
...

0

 ,
where a ∈ {−1, 1}.

Proposition 9. Consider an arbitrary sequence z ∈ Zp, and choose k = (1/2)[1,

−1,−1, 1]T . Define
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Jz(x) = kTC11(z)k− 2kTC12(z)b2x+ bT
2 C22(z)b2x

2.

Then, for each sequence z, we get

Jz

(
1√
2

)
=
p− 1

4p
.

Consider an arbitrary design d ∈ ∆2,n,p, and k from Proposition 9. Because

kT14 = 0 and kTk = 1, it follows from Propositions 4 and 9 that

λ3(Cd) ≤ nmax
z∈Zp

Jz

(
1√
2

)
= n

p− 1

4p
. (5.1)

Recall that λ3(Cd̂2
) = n((p − 1)/(4(p + 1))); see Section 4.2. Thus, λ3(Cd̂2

) is

slightly less than the bound in (5.1).

We now determine an upper bound for the trace of the information matrix,

with the help of Proposition 5. Because we expect d̂2 to have a maximum trace,

we choose X = Xd̂2
.

From the equations in (4.1), we conclude that

Xd̂2
= C+

d̂222
CT

d̂212
=

p

2(p+ 1)

[
B2,−B2

]
.

Proposition 10. Choose X∗ = c [B2,−B2], where c = p/(2(p+1)), and consider

an arbitrary sequence z ∈ Zp. Then,

Lz(X
∗) = n tr

(
C11(z)− 2C12(z)X∗ + X∗TC22(z)X∗

)
≤ n (2p+ 3)(p− 1)

4(p+ 1)
.

For d̂2, we showed in Section 4.2 that

tr(Cd̂2
) = n

(2p+ 3)(p− 1)

4(p+ 1)
.

Therefore, it follows from Propositions 10 and 6 that tr(Cd̂2
) is maximal.

Even in cases where p ≡ 1 mod 4 is not satisfied, we conclude from Proposi-

tions 5 and 10 that

tr(Cd) ≤ Lz(X
∗) = n

(2p+ 3)(p− 1)

4(p+ 1)
.

This inequality, together with (5.1), allows us to use Proposition 1. We
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therefore conclude that the A-criterion of any design d satisfies

ϕA(d) ≤ q(L− q)
L+ 3q

,

with L = n ((2p+ 3)(p− 1))/(4(p+ 1)) and q = n (p− 1)/4p. Hence, with some

straightforward algebra, we have that

ϕA(d) ≤ n (p− 1)(2p2 + 2p− 1)

4p(2p2 + 6p+ 3)
= ϕ∗A, (5.2)

say. Recall that the A-criterion of the design d̂2 from Section 4.2 is ϕA(d̂2) =

n (p− 1)/(4(p+ 3)). This means that the efficiency of the design d̂2 is at least

ϕA(d̂2)

ϕ∗A
=

2p3 + 6p2 + 3p

2p3 + 8p2 + 5p− 3
,

which is equal to 0.88 for p = 5, and 0.92 for p = 9. The results discussed in

Section 4.2 indicate that our bound seems to be not very sharp for p = 5. For

p ≥ 9, however, it is sharp enough to show that the designs d̂2 are highly efficient.

If p→∞, their efficiency goes to one.

Supplementary Material

The online Supplementary Material contains detailed proofs for all propositions.
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