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1 as well as more numerical results on some aspects of limiting distributions and a real data set.

S1 More technical proofs

Proof of Theorem 1. The proof of the first statement is available in the
main part of the submitted paper. We here prove the second assertion.

Let &; = m(x;) — &(%:)"By + ni,i = 1,- -+ ,n. By (3.7),

Elgx){m(x) — g(x)"Bo}] = 0.
In the light of the independence between n and x, E{g(x)n} = 0. Thus,

B{g(x)e} = E[g(x){m(x) — g(x)"8,}] + E{g(x)n} = 0. This, together

with Slutsky’s theorem and the moment condition E{||g(x)||* + &%} < oo,
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entails
n'2(B8, — By) =n"PEY “g(xi)ei + 0,(1). (S1.1)
i1
Recall that n;,, —¢; = Y, — g(x;)"8,, — & = Y — g(x:)"B,, — {m(x;) —
g(x:)"By + ni} = —(B,, — By)"g(x;i). Let 3; = (&,%;). By the analog of

(6.24),
Up = Us, + (B, — Bo) " Usn + Usin, + Usan, (S1.2)

where Us,,, Uy, Us1n, Uso, are defined exactly in a similar manner to Uy, Uy,
Usin, Usay except that we replace z; = (1;,x;) by 3; = (€4, ;). Since the indi-
cator function is bounded, employing arguments exactly similar to treating
(6.28), nUsi,, = 0,(1), which indicates n'/?Usy,, = 0,(1). From Condition
D1 and (6.29), uniformly over 1 < s,¢t < n,

{e(xs)—gx)}™ (3, -5,
/ (Fo(2) — Foo(0)}dz (S1.3)

0 £) (1)

= 0,(1)(B,, — Bo)"{g(xs) — g(x:) Hg(xs) — g(x:)} (B, — By)-

By (SL1), n'/2, — Byll = 0,(1) and ||, — Byl = 0,(1). This together

with (S1.3) and Slutsky’s theorem implies

"2 Usen = Op(){n"*(B,, — Bo)} U3, (B, — Bo) = 0p(1).

Therefore, n'/2Us, = n'/?Us, + n'/2Uss, = 0p(1). Combination of (S1.2)
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leads to
n'?U, = n'PUs, + {n'*(B,, — By)} Usn + 0p(1).

Obviously, Us, and Uy, are the U-statistics with the kernels ho(3i, 35, 3%, 31)
and hi (34,3, 3%, 31), respectively. Under the alternative (1.4), both Us,, and
Uy, are non-degenerate. Invoking technical appendix 1.1 in Yao, Zhang and

Shao (2018), we have

hGr) 2 AE[{ho(1 32,34, 34) — dCov* (21, x1) 3]

= QE{OE(El,52)OX(X1,X2)’51}—2d00U2(€17X1), (S1.4)

where C.(-,-) and Cx(,-) are defined as in (6.33). As a result, n'/?{Us, —

dCov?(e1,x1)} = n'2 S i (35). Tedious calculation yields
i=1

E{h1(31,32,34,34)} = —2E[{g(x1) — 8(x2)}Cx (x1,%2) I (g1 > £2)] = 201 € RE1.5)

By the law of large numbers for U-statistics, it follows Uy, — 201, in prob-
ability. Consequently, combination of these, (S1.1) and Slutsky’s theorem

leads to

n2{U, — dCov?(e1,x1)}
' {Us, — dCov?(e1,31)} + 2{n'*(8,, — By)} 01 + 0,(1)

= 2072 {L(ei,x) + 07T g(xi)ei} + 0p(1),

i=1
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where
L(El,Xl) = E{Cg(61762)CX(X17X2)|31} — dCOUQ(El,Xl).

By the central limit theorem, n'/2{U, — dCov*(¢;,x;)} has an asymp-
totic normal distribution with mean zero and variance 4var{L(e;,x;) +
07X 'g(x;)e;}. Recalling the classical theory of non-degenerate statistics of
U-type and V-type and combining the expression (6.43), the desired result
on V,, holds and hence the related details are omitted to avoid repetition.
UJ
Proof of Theorem 2. We only report the analysis of the statistic U,, in
that the derivations on the statistics U,, and V,, are parallel. Under the
local alternatives (4.14), we have n;, —n; = —(8,, — B,)"g(x;) +n~Y2((x;).
Apparently,
|Min — Njn]
= |mi — il —{&(x:) — g(x;)}" (B, — Bo){L(ni > ;) — L(mi <m;)}
V2 0(x;) — 0 M (s> my) — LG < 7))

/{g<xi)—g(xj>}T<Bn—ﬂ0>—n-1/2{f<xi>—e<xj)}

+2 {1 —mj < 2) = I(n; < my)}dz.

0

(51.6)
By careful calculation, we obtain

nU, = nlUo, +{n"*(B, — Bo) Y {n"/?Ur,} + nUY + U
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where Uy, and Uy, are defined as in (6.24), Uéfl) ={c(n,4)}71 > hg) (zi, 2,21, 2)

1<j<k<l

with

(,7,k,0) (4,7,k,0)

(t u

W (zi 2y, ze,m) =670 Y oS (IxOI+ X)) — 1270 Y ssalx |

s<t,u<v (s,t,u)

x x¢)}T 12{0(xs)—£(xy

and 5251& _ {g( -} (B, —Bg)—n~12{k( )}{]( —p < 2)— Iy, <

xt)—g(xs)}T — —n Y 2L0(xs)— (x5
)Yz + fo{g( )—g(x:)}"(8,-By) W)~} (< o) = (g, <

o)}z, and US) = {c(n,4)} S bl (2, 2;, 24, 2) with

<j<k<l
’ (i,j’kJ) ‘ l ] k l)
_ t v u
hi (2,2, 2 z) = 67 Y dd (Il Il — 1270 D digl x|
s<t,u<v (s,t,u)

and 65, = {0(x,) — £(x))}{I(ns > m) — I(ns < m,)}. Clearly,
E{hS) (21, 20, 23, 24) } = 2B[{£(x1) — £(%2)} O (31, %) (11 > 12)] = 0,

where we use the independence between 7 and x and the fact E{f(x;)Cx(x1,
x2)} = E{l(x2) Cx(X1,%2)}. By the law of large numbers for U-statistics,

we have
U — 0, (S1.7)

in probability. Recalling that the terms Uy, and Uy, have been considered

n (6.35), we now need to focus on the rest term UQ(fL).

For convenience, write 522] = 552(6,) and h(2£) (zi,2j,21,2;) = hg@(zi, zZj,

1/28x1 (%
20,715 B,,). Apparently, 650(8,) = [ MIi—n; < 2)—1(n; <
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—n~Y2{0(x;)—¢ X . yA
mi) et [y TN 1~ < )~ (n; < i) bz That is, b (2,2,
Zk, Z1; 3y) # 0 and Lemma 2 can not be used directly. To this end, we

decompose (5&2 (B,,) into three parts
0355(Bn)
= 33(80) — B{035(Bo) i, x5} + E{055(8,) i, ;)

+ |85 (B,) — 050 (By) — E{85:1(B,) — 05 (Bo)|xi, %}

a

= 8505 (Bo) + 0505 (B,) + 0595 (B,).

¢ ¢ ¢
where 030, (80) = 05)(80)— E{05) (Bo)|xi- %}, 0803 (B,) = E{05)(B,)Ixi,x;}
and 5&2)”([‘3”) is denoted in an obvious way. By the exact analog of dealing

with (6:28), 7% 3 05 (B (I 1+l | —2[1%{%) [}) = 0,(1) uniformly
1F]

over ||B, — B,ll < Cn~'/2. Using Slutsky’s theorem gives
nUs,) = nUsg, + nUsh, + 0,(1),

where USY) = {c(n, 0}t S Y (24,2, 2k, z;) With

i<j<k<l
(3,7,k,0) (i.j.k,0)
a2z m) = 30 BB (] D =127 37 (B0l
s<t,u<v (s,t,u)
and
(3,7,k,0) (i.j.k,0)
W) sy, m) = 2 3B+ XD = 127 D7 888X
s<t,u<v stu

It is observed that UZ(QL is degenerate, namely, E{h20 (zi, 25,2k, 21)|2;} = 0

implied by E {5§€)ij(,30)|zi} = 0 and the independence between 1 and x, and
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E{I(ni —mos < 2)—I(m < my)}* = |Fn 25 (z) — Fn<2>(0)|. Besides, condition
)

(
a )
E{|¢(x)|**"} < oo implies max [((x;) = £(x;)| < 2 max [((x;)] = 0,(n'/?).

1<4,5<n 1<i<n

Based on these observations, we have

o In=1/2 {e(x1)—£(x2)}| .
var{nUs, } < CE/ Fy@(2) = Ee(0)ldz = O(n ™),
0 1 1

which leads to nUQ(fL) = nUQ(QI + 0,(1). Consequently,
Uy = U+ {n'/(8, = Bo)}* {n/*Us} + nUzp, + 0,(1),

Additionally, max [{g(x,) = g(x)}"(8, — Bo) +n~V{e(x,) — ((x)} <
2018, ~ Byl max e |+207 Y2 max [£(x)] = 0,(n"/2) 1B, ~ Boll +0,(1) =
0p(1). Combining this and Taylor’s expansion, we have uniformly over 1 <

s, t <n,

Y4
0504(8,) (S1.8)
/{g<xs>g(xz)}%ﬁn[30>n—1/2{e(xs>e<xt>

0 (1)

{g Xt IE /6 -1/ {E xS) f(::t)
+ /
0

= {1+ 0,(1)},2(0) [(B, - By {g(x.) — g(x0)} - n-l/Q{axs) ()]’

= {1+ 0,(}, (08, — By {g(x.) - glx) He(x.) — g(x)} (B, Bo)
=21+ 0,(1)}n 2,2 (0)(B,, — B)" {(x.) — gx) HE(x.) — £x))
L oI f (0){€x) — £x0)),
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from which it follows

nUg = fyo (028, = By)} U, {n'(8, — By)
—2f,7g>>(0){”1/2(ﬁn — Bo)}'Us,) + fng;(o)UM), (S1.9)

where U}, is described as in (6.31), Uéfl) ={c(n,4)}7' hg) (z;,25, 2k, 21)

1<j<k<l
with
(4,9,k,1) (,7,k,0)
l
W (s mgzm) = Y S (Il + X)) — 1270 > skl
s<t,u<v (s,t,u)

and 65, = {g(x,)—g(x) H(x,)—L(x,)}, and U},) = {c(n,4)} 7 S hi(z,

i<j<k<l
Z;j, Zg, Z;) With
(4,9,k,1) (,7,k,1)
¢ 0)
Wiz mm) = Y S+ X)) — 1270 > ailx)
s<t,u<v (s,t,u)

and 6\ = {l(x,) — £(x,)}2. By direct calculations, E{h\’ (21,25, 23,24)} =
El{g(x1)—g(x2) H(x1)—l(x2) } Ox (31, %2)] = —2E{g(x1) — Eg(x1) H(x2) —
El(x)}x1 — %o & 201, € R and E{h\" (21,25, 23,24)} = E[{l(x1) —
U(x2) Y Cx(x1, %2)] = —2E{{(x1) — EL(x1) HU(x2) — BU(%2) } X1 =2 | = 2020,

where we also employ the fact E{Cx(x1,x2)|x1} = 0. Under the local alter-
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natives (4.14), B,, — B, can be expressed as

n2(3. — B,) (S1.10)
= 2R g+ {0 e(x)g(a) T =BT Y g (k)
i=1 i=1 =1

+n 2yt Z g(x;)0(x;) +

=1

= n7'PET) Cg(xi)m + BT E{g(x)((x)} + 0,(1).

=1

('Y gx)s(x)7} ! - B

n! Z g(xi)l(x;)

Write ooy = F{g(x){(x)} € R% By employing (51.10) and Slutsky’s theo-

rem,

nU,

= nUon +{n'2(B, = Bo) Y {n'*Uin} + 0 (0){n' (8, = Bo)}' U, {n'*(B,, = Bu)}
=2f, () {n*(B, = Bo)} Uy + 1,2 (O)U;) + 0y(1)

= nUon +{n"*(8, = Bo)}" {n'*Uin} + 2, (0){n" (8, — By)}" A{n'*(B,, — Bo)}
—4fe (0){n"*(B, — Bo)} o1c + 2/, (0)e2 + 0p(1)

= DoAY i) + (D mlxomt eord ST 2O () — dewf, @ (0))
i=1 Jj=1

=1 =1
+2f o (0){n™2 ) " glxim: + o} " STAS T2 " g(xim + cor} + 2, @ (0) 02
) =1 =1 )

+0p(1).

Following the arguments for (6.42), we complete the proof.
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Proof of Theorem 3. Let z!, = (n},,Xn),i = 1,--- ,n, and denote by
the p in o), E* and var® the probability, expectation and variance under the
bootstrapped space. Recall that given the data, {z},}? , is independent and
identically distributed and 7}, is independent of x;,. Applying the technical

details of Theorem 1 to the bootstrapped space, we have

*
nU,

= S hN @, 2,) + Y gk T YA R (25,))
1 =1

i#j i=

2L (O{n ™2 Y g )ni, "2 AL 2 Y gk} + o (1),

) i=1 i=1
and
nV,;
= SN @, 2 + Y gk S Y2 (2,
1=1 =1

i=1 j=1

27 (01 3 g, S AL 2 S o} + 05(1),

W i=1 i=1
where ¥ = E*{g(x1,)g(x1,)"}, AL = —E*[{g(x1,) — E*g(x1n) H{g(X2n) —
Eg(x20)}" %10 = Xanll], hi (21, 75,) = E{ho(Z50s 230 B 700|200 7} =
Coy (M s M) O (X X)) With Cr (075 m5,,) = |03 =50 | — B (I05,, =05, 01) —
EX(Inty — m3alIn5,) + E*(Inf,, — m3,]) and Cx(Xip, X2n) = [[X1n — Xou —
E*([[x1n — X0l [%10) = B* (%10 — Xan[[X20) + E* (X1 — Xa0l), hiy (25,) =

E{h (21, 250, 23, i) |21, } = H1=2F; (7,)) {8 (X1n) =8 (%20 )} OX (Xan,
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Xon)|X1n), and f* e () and Fys (-) are the pdf and cdf of nj, — n3, and nj,,
)y
respectively.
Let z; = (&;,%;), where &; has the same distribution as ¢; = m(x;) —

g(x;)"By + 1; and is independent of x;. To obtain the desired results, our

next goal is to show that

S8 = of(1), (SL11)
Af—A = of(1), (S1.12)

f(2)() f(&() = 0;7(1)7 (Sl'13>

(1)

”_1/22g<xm)772"n—n_1/2zg(xi)é3 = oy(1), (S1.14)
=1 i=1

n-1/2 Z h&) (z;,) — n-1/2 Z hﬁ”(%) = 0;;(1)7 (S1.15)
i i=1

n-lzh% z. 7)) — E{h$ (7,2)} = o0i(1), (SL16)

‘1Zh 2. 25) —n 'Y WP (@ 7) = oj(1).  (S1.17)

i#] i#]

Since {x;,}, is an independent and identically distributed sample from

3 g(x)g(x)" and A5 = —n~?

J=1

{Xl}z 1 E -

> 3" glx)g(x,)"[xim

7=1

NgE ':'MB
M31M3

X;jll=n~ Z > Z” g(xi)g(x))" xk—x[+2n 7" Zl kzlg( Xi)g (%) " [|xi—
i=1j5=1k=11=1 7 j= =
xi||. By the law of large numbers for V-statistics, (S1.11) and (S1.12) hold.

For any ¢ € R, given the data, the characteristic function of nj — n;

is E*[exp{it(nf —m3)}] = n~2 Y. exp{it(nin — njn)}, which further equals
ij=1
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n—2 ‘anl exp{it(e;—e;) }+n2 anl exp{it(e;—e;) Hexp[—it(B,—Bo) " {g(x;)—
1,j= LI=

g(x;)}] = 1]) via recalling that 9, —1jn — (i — &) = =(8, — Bo)"{g(x) —

&%)}, Condition F yields max [(8, — B,)"{&(x) — &5} < 18, -

Boll max |lg(x;) — g(x;)[| = 0,(1). Thus,
S,)SN

E'lexp{it(ni —my)}] = n7* Y explit(si — <)} +0(1)

ij=1

= Elexp{it(e1 — &2)}] + o5(1).

Together with the Glivenko-Cantelli theorem almost surely, ny —n5 — €1—¢»
in distribution. Combining continuity theorem and Sultsky’s theorem, we
obtain (S1.13).

Similarly,

B [exp{itg(x1n)n1, }]

= n7? ) expfitg(xi)e;} +n77 Y exp{itg(xi)e; }exp{—it(8, — By)"{g(x;)} — 1]

3,j=1 i,j=1
= 02 Y explitg(xi)e;} + 05(1) = Elexplitg(xi)éi}] + o5(1).
ij=1

From the Glivenko-Cantelli theorem, we have almost surely, g(x1,)n;, —

g(x1)&; in distribution. It is noted that E||g(x1,,)n5, /1> = n2 > [lg(xi)e;]|*+

ij=1
= 3 )P, — €5) and
)=
2 2 <« _ 2 12 _ . .
max |y, —&j] < 2 max {[|B, — By[" max lg(x;)|" + 18, — BollllgGxi)lel}

= {1+ 0,1} uax 18, — Bolllg(x,)lesl
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By Condition F, E{|lg(x;)|l|lg;|}*™ < oo for some ¢ > 0. Therefore,
max [lg(x;)lllj] = o0p(n™/?) implying max |nj, — &f| = o,(1). That is,

E|lg(x1)n}, 1> = Ellg(x1)e1]|* + 05(1). Consequently,
E*{g(x1a)n1, — g(x1)21}* = 03(1).

Also, E*{n™V2 3 g(oc, i, =2 3 gloe)Ei Y = B+ {2 3 gl —
B g B 5 i, S ()8 = ()
N — g(xil)gl}Q = 0;(1). This slzows (S1.14). :

Likewise, we can show for any t,ts,t3,t4 € R E*{exp(itiz}, +
37y, + i3z, + it5z},)} = E{exp(it7 +it3z, +it]7; +it17,) } +05(1). In-
voking the Glivenko-Cantelli theorem yields almost surely, (z3,, z3,, 23, 25,,)
— (21, Z2, Z3, Z4) in distribution. By the continuous mapping theorem, it fol-
lows h{))(z;,) = hS"(@) he) (24,.21,) — b (7,7%) and b)) (2}, 2;,) —
h((f) (z1,22) in distribution. Recalling the definitions of h&) and héi) de-
scribed at the beginning of the proof, E*{h\" (z* )12 = B{h{"(z:)}2, E*{h{”
(21 20)Y = B{WG G0, 70) 1 and B2 {hg) (a7, 25,) 1 = B{R” (31, 22)},
which implies E*{h{}) (z},)—h{" (#1)}* = 03(1), E*{hi) (25, 25,) —h (71, 21)
}? =0j(1) and E*{h(()i)(z”l‘n, z5,) — héz)(ﬁl,EQ)}2 = 0;(1). Combining the u-
niform integrable theorem and the lemma 5.2.1A of Serfling (1980), we
immediately obtain (S1.15), (S1.16) and (S1.17). Together with (S1.11)—

(S1.17), the desired result easily follows from exact analogy to the proof of
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part I of Theorem 1.

S2 More numerical results

S2.1 Some aspects of limiting distributions

We carry out simulations to assess some aspects of limiting distributions in
the main text. We use quantile-quantile plots to compare the null distri-
butions of nU, and nV,, in which the estimated residuals are used as well
as their oracle versions in which the unobserved true errors are used. As
a simple comparison, we here include the HSIC test (nHSIC,, for short)
developed in Sen and Sen (2014).

Counsider the linear model

Y =1+2X +n, (52.18)

where X is from the uniform distribution on the unit interval, n is normally
distributed with mean 0 and variance 0.01 and 7 is independent of X. We
consider the sample size n=100 and the predictor vector x = (1, X).

The Q-Q plots obtained by simulating 5000 Monte Carlo samples are
shown in Figure 1. It can be seen from Figure 1(A) and Figure 1(B)

that when generalizing Székely, Rizzo and Bakirov (2007)’s independent



S2. MORE NUMERICAL RESULTS

o«
o o o
v | 8 °
o oS o
@ s
S ®
3 o o ¢
3 s < |
O s o
g 2
S E
& =
£ g
=] %
£ o 3 24
z d -
> A <]
z i 2
k5 A s
§ § S
Z o
§ o o
3
(o4
=
=
=
S
T
T T T T T T T T T
-0.1 0.0 0.1 0.2 0.3 0.1 0.2 0.3 04 0.5
Quantiles for nU,with observed residuals Quantiles for nV,with observed residuals
< B
o o
®
S o
3 o
@ &
o 3
&
=
g o i
5§ o
&
% £
£
z
o
Q9
5 .
2 o
=
8
@
2
g5 24
g o
(o4
o
2
T T T T T
0.0 0.1 0.2 0.3 0.4

Quantiles for nV,with observed residuals

(©)

Figure 1: Quantile-quantile plots of 5000 realizations of (A)nU, obtained using the
observed residuals versus nV, obtained using the observed residuals in the linear model
(52.18); (B)mV, obtained using the observed residuals versus nV;, obtained using the
true unknown errors in the linear model; (C): nV,, obtained using the observed residuals

versus nHSIC, obtained using the observed residuals in the same model.
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test of no-effect model to the test of the lack-of-fit of a regression mod-
el, the limiting distributions of the test statistic of Székely, Rizzo and
Bakirov (2007) and its unbiased version will change. From Figure 1(A),
we further observe that the black 45° reference line is parallel to the red
line. This indicates that though replacing the unobserved true errors by
the observed residuals turns out to have an effect, difference of asymp-
totic null distributions between nU, and nV, only relies on the constant

o0

SN = E(| m —mn |)E(||x1 — x2||) & 0.125. These simulation results are

=1

in line with these theoretical findings, as suggested by our Theorem 1. Ad-
ditionally, the simulation results reported in Figure 1(C) illustrate clearly
difference of the limiting distributions for nV,, and nH SIC,,. This is antic-
ipated in that both our proposals and Sen and Sen (2014)’s test are not
asymptotically distribution-free and depend in a complicated way on data

generating process and kernels.

S2.2 Data illustration

We illustrate the performance of our proposals through a real data analysis
on the well-known Boston housing data collected by Harrison and Rubin-
feld (1978). The original data have been taken from the UCI Repository

Of Machine Learning Databases at http://www.ics.uci.edu/~mlearn/
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MLRepository.html. This data have been analyzed by many researchers,
such as Kong and Xia (2012), Fan, Ma and Dai (2014), and Sen and Sen
(2014). However, we here consider the version of the dataset that incorpo-
rates the minor corrections and is available in R package “mlbench”. The
corrected data consist of 506 observations on 13 variables, with each obser-
vation corresponding to one census tract. The response variable Y is medv
(median value in $1,000s of owner-occupied homes in a given area).

To preprocess the data, following the suggestion by Kong and Xia
(2012), we take logarithm to the response variable. In particular, Kong
and Xia (2012) revealed that among the 13 variables, the variables rm and

Istat are very influential factors on prices for house. As an illustration,

(A) (B) (©)
Figure 2: (A) Plot of log(medv) against factor rm. (B) Plot of log(medv) against factor

Istat. (C) Plot of the residuals against the fitted values.

we consider the 3-dimensional predictor vector x = (1, X1, X3), where X;
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is the variable rm and X, is the variable Istat. Many empirical results
from the analysis of the data tend to exhibit a nonlinear trend between
the response and the predictors, and an error variance heteroscedasticity;
see Harrison and Rubinfeld (1978), Kong and Xia (2012) and Sen and Sen
(2014). To demonstrate the non-linear dependence, we report the scatter-
plots of log(medv) versus these two factors with cubic spline fit curves in
Figure 2 (A) and Figure 2 (B), respectively. To demonstrate the error vari-
ance heteroscedasticity, we report the residual plot for the fitted model in
Figure 2(C). These results are clearly in line with the conclusions available
in the literature.

It is reasonable to assume alternative hypothesis that both the assump-
tion of independence between the error and predictor variables and the
goodness-of-fit of the parametric model are violated, to be true. Therefore,
different tests that jointly check parametric specification and independence
in linear regression models can be compared on the basis of their power func-
tions. As developed in Theorems 1 and 3 in the main text, the proposed
bootstrap method can also be used to provide p-values for simultaneously
testing independence and goodness-of-fit in linear models. We compare our
proposals U,, and V;, with HSIC-based tests HSIC(1) and mHSIC' in that

to the best of our knowledge, the only existing method can be directly used
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for implementing a joint test for parametric specification and independence

in linear regression models. As expected, all the tests U,, V,, HSIC(1)

Figure 3: The density functions of p-values of the tests U, (solid line), V,, (dotted line),
HSIC(1)(dashed line) and mHSIC (twodash line) in the analysis of the Boston housing

data with the subset size N = 50 chosen from the whole dataset.

and mHSIC yield p-values of essentially 0. However, if we use the whole
dataset for testing, any test will either reject null hypothesis or accept it.
In other words, based on that single experiment, it is not possible to com-
pare among different test procedures. Borrowing the idea from section 5 of
Biswas, Mukhopadhyay and Ghosh (2014), we repeat the experiment 1000
times based on 1000 random subsets of the same size chosen from the w-
hole data set. Let N denote the subset size and consider N = 50 here.

The density functions of p-values of U, V,,, HSIC(1) and mHSIC with
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corresponding powers being 0.578, 0.668, 0.370 and 0.384 at significance
level 0.05, are reported in Figure 3, from which we see that p-values of our

tests fluctuate more closely around the origin.
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