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OMNIBUS MODEL CHECKS OF LINEAR ASSUMPTIONS

THROUGH DISTANCE COVARIANCE

Kai Xu and Daojiang He

Anhui Normal University

Abstract: Although the adequacy of linearity is well researched in the statistical

literature, few studies examine this topic from the viewpoint of a measure of as-

sociation. Inspired by the well-known distance covariance (dCov), we propose two

omnibus tests for the goodness-of-fit of linearity. Methodologically, our tests do not

include any tuning parameters and are conveniently implemented. The theoreti-

cal details are of independent interest, mainly because the kernel induced by the

dCov is not smooth. We investigate the convergence of our tests under null, fixed,

and local alternative hypotheses, and devise a bootstrap scheme to approximate

their null distributions, showing that its consistency is justified. Numerical stud-

ies demonstrate the effectiveness of our proposed tests relative to that of several

existing tests.

Key words and phrases: Bootstrap, distance covariance, goodness-of-fit test, linear-

ity.

1. Introduction

Let (x, Y ) be a random vector in Rd+1 such that Y has a finite expectation.

Denote m(x) = E(Y |x), where x ∈ Rd. In a regression analysis, the relationship

between Y and x can always be written as

Y = m(x) + η, (1.1)

where m(·) is the regression function, x is a d-dimensional predictor, and η =

Y −m(x) is the error, which has conditional mean zero, given x. To motivate

our procedure, we further assume that η is independent of x. If there is no priori

preference of the independence between η and x, the method proposed in this

paper can be used to simultaneously test independence and goodness-of-fit in the

regression model (1.1)

Within a parametric framework, one often assumes that m(·) belongs to the

following parametric class:
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Mβ = {g(x)Tβ : β ∈ Rd}, (1.2)

where g(x) = {g1(x), . . . , gd(x)}T is the vector of known predictor functions,

and β is the unknown parameter vector. Linearity provides a simple parametric

approach to directly model the effects of a set of covariates on a response. Often

we need to determine the adequacy of such parametric fits. The null hypothesis

is
H0 : m(x) ∈Mβ, (1.3)

whereas the alternative to be tested is

H1 : m(x) 6∈ Mβ. (1.4)

Much of the recent statistical literature has focused on checking the ade-

quacy of parametric models. These methods include, but are not limited to,

those of Bierens (1982), Zheng (1996), Stute (1997), Fan and Huang (2001),

Khmaladze and Koul (2004), Koul and Ni (2004), Guerre and Lavergne (2005),

Escanciano (2006), Stute, Xu and Zhu (2008), and Christensen and Sun (2010).

Refer to González-Manteiga and Crujeiras (2013) for an excellent recent review.

However, few methods examine this problem from the viewpoint of a measure of

association. To the best of our knowledge, the recent work by Sen and Sen (2014)

was the first to employ the Hilbert-Schmidt independence criterion (Gretton et

al. (2008, HSIC)) to construct an omnibus goodness-of-fit test for linear models

when η is independent of x. Specifically, their proposed method uses the HSIC to

test for independence between the predictor and the residual obtained from the

parametric fit. Let ‖·‖ denote the Euclidean norm. A commonly used kernel asso-

ciated with the HSIC is the Gaussian kernel k(w,w′) = exp{−‖w−w′‖2/(2γ2)},
which is related to a bandwith parameter γ. As a dependence metric, choosing a

good bandwidth parameter remains an important open problem; see Yao, Zhang

and Shao (2018) for related discussions in other contexts.

We propose two omnibus tests for the adequacy of linearity. Both use the

popular distance covariance (Székely, Rizzo and Bakirov (2007, dCov)), which

measures the distance between the joint characteristic function of two random

vectors of arbitrary dimensions and the product of their marginal characteristic

functions in terms of a weighted L2-norm. Refer to Li, Zhong and Zhu (2012),

Matteson and Tsay (2017), and Yao, Zhang and Shao (2018) for other applica-

tions that use a dCov-based dependence measure. The proposed tests differ from

that of Sen and Sen (2014) in three major respects. First, our tests do not in-

clude bandwidth parameters, such as the choice of γ, and are easy to implement.
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Second, the techniques developed by Sen and Sen (2014) are not directly extend-

able to our framework without serious technical work, largely because the kernel

induced by the dCov is not differentiable. As such, we cannot apply techniques

such as the Taylor expansion, which are essential for establishing the asymptotic

theory of the HSIC-based lack-of-fit test. Third, we develop a distribution theory

for our test statistics based on the theory of U -statistics indexed by parameters

(Sherman (1994)). In particular, we study the limiting distribution of our test

statistics under local alternative hypotheses, which was not considered in Sen

and Sen (2014).

The rest of the paper is organized as follows. In Section 2, we review the

distance covariance and its sample estimates. In Section 3, we discuss the test

statistics and their asymptotic properties. Here we also propose a bootstrap

procedure that approximates the asymptotic critical values of the test statistics,

and prove its consistency. In Section 4, we examine the finite-sample perfor-

mance of our proposed tests using Monte Carlo simulations. Section 5 concludes

the paper. Several technical proofs are presented in Section 6. The remaining

technical proofs, as well as additional numerical results, are gathered in the online

Supplementary Material.

2. Preliminaries

The dCov introduced by Székely, Rizzo and Bakirov (2007) is a multivariate

measure of independence between d1- and d2-dimensional random vectors u and

v, with E(‖u‖+ ‖v‖) <∞, where d1 and d2 can be arbitrary. The nonnegative

number dCov(u,v) is defined as the positive square root of

dCov(u,v)2 =
1

cd1cd2

∫
Rd1+d2

|φu,v(t, s)− φu(t)φv(s)|2

‖t‖1+d1‖s‖1+d2
dtds,

where φu and φv are the individual characteristic functions of u and v, respec-

tively, φu,v is the joint characteristic function of u and v, cd = π(1+d)/2/Γ{(1 +

d)/2}, and Γ(·) is a gamma function. The dCov enjoys many desirable proper-

ties (Székely, Rizzo and Bakirov (2007); Székely and Rizzo (2012, 2013)). In

particular, dCov(u,v)2 = 0 if and only if u and v are independent.

To obtain a practical estimator for the squared dCov, Székely and Rizzo

(2009) state that

dCov(u,v)2 = E{U(u,u′)V (v,v′)},

where U(u,u′) = ‖u− u′‖ − E(‖u− u′‖ | u)− E(‖u− u′‖ | u′) + E(‖u− u′‖),
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V (v,v′) = ‖v−v′‖−E(‖v−v′‖ | v)−E(‖v−v′‖ | v′)+E(‖v−v′‖), and (u′,v′)

is an independent and identically distributed (i.i.d.) copy of (u,v). Suppose that

(ui,vi), for i = 1, . . . , n, is a random sample from the population (u,v). Define

Aij = ‖ui − uj‖ − n−1
n∑
k=1

‖ui − uk‖ − n−1
n∑
l=1

‖uj − ul‖+ n−2
n∑

k,l=1

‖uk − ul‖,

Bij = ‖vi − vj‖ − n−1
n∑
k=1

‖vi − vk‖ − n−1
n∑
l=1

‖vj − vl‖+ n−2
n∑

k,l=1

‖vk − vl‖.

Then a natural estimator for dCov(u,v)2 can be defined as

dCov1,n(u,v)2 = n−2
n∑

i,j=1

AijBij . (2.1)

Székely, Rizzo and Bakirov (2007) showed that dCov1,n(u,v)2 is a V -type statis-

tic. That is, dCov1,n(u,v)2 is a biased estimate of dCov(u,v)2. In practice,

researchers are sometimes interested in U -type statistics. Székely and Rizzo

(2014) constructed an unbiased estimator defined as

dCov2,n(u,v)2 = {n(n− 3)}−1
n∑
i 6=j
AijBij , (2.2)

where

Aij = ‖ui − uj‖ − (n− 2)−1
n∑
k=1

‖ui − uk‖ − (n− 2)−1
n∑
l=1

‖uj − ul‖

+{(n− 1)(n− 2)}−1
n∑

k,l=1

‖uk − ul‖,

Bij = ‖vi − vj‖ − (n− 2)−1
n∑
k=1

‖vi − vk‖ − (n− 2)−1
n∑
l=1

‖vj − vl‖

+{(n− 1)(n− 2)}−1
n∑

k,l=1

‖vk − vl‖.

Based on (2.2) and (2.1), we construct two statistics for testing (1.3).

3. Method

3.1. The statistics

Consider the regression model given in (1.1), with E{m2(x)} < ∞ and

E(η2) <∞. Define
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β0 = argmin
β∈Rd

E{Y − g(x)Tβ}2. (3.1)

Supposing E‖g(x)‖2 <∞, we obtain β0 = [E{g(x)g(x)T}]−1E{g(x)m(x)}. Ap-

parently, under H0, m(x) = g(x)Tβ0. Assume that we have a random sample

(xi, Yi), for i = 1, . . . , n, from model (1.1), and define the unobserved errors

ηi = Yi −m(xi), for i = 1, . . . , n. We estimate β0 using the sample analogue of

(3.1), and obtain the following least squares estimator of β0:

βn =

{
n−1

n∑
i=1

g(xi)g(xi)
T

}−1
n−1

n∑
i=1

g(xi)Yi, (3.2)

when n−1
∑n

i=1 g(xi)g(xi)
T is invertible. Let ηin = Yi−g(xi)

Tβn be the resulting

residuals. Assume that Âij and B̂ij and Âij and B̂ij are defined as in (2.1) and

(2.2), respectively, except that ‖ui−uj‖ and ‖vi−vj‖ are replaced by ‖xi−xj‖
and the observed |ηin − ηjn|, respectively. Following the argument presented in

Section 2, we propose the following V -type and U -type test statistics:

Vn = n−2
n∑

i,j=1

ÂijB̂ij , (3.3)

and

Un = {n(n− 3)}−1
∑
i 6=j
ÂijB̂ij , (3.4)

respectively. In essence, our methods use the dCov to test for independence

between the predictor and the residual obtained from the parametric fit. From

Corollary 2 of Székely, Rizzo and Bakirov (2007), it is easy to see that under the

independence of x and η, as n→∞, n{dCov1,n(x, η)}2 converges in distribution

to
∞∑
i=1

λiZ2
i , (3.5)

satisfying
∑∞

i=1 λi = E(|η1 − η2|)E(‖x1 − x2‖), where Zi denotes an indepen-

dent standard normal random variable, and λi is a nonnegative constant that

depends on the distribution of (η,x) and is defined in (3.6). The relations be-

tween U and V statistics (Serfling (1980)) show that n{dCov2,n(x, η)}2 converges

in distribution to
∑∞

i=1 λi(Z2
i − 1). However, ηi is unobserved. In contrast to

{dCov1,n(x, η)}2 and {dCov2,n(x, η)}2, the asymptotic theory of Un and Vn is

not trivial.
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3.2. Convergence of Un and Vn under null, fixed, and local alternative

hypotheses

To obtain asymptotic distributions under the null (1.3) , we make the fol-

lowing mild conditions.

Condition A. Let fη(2)

(1)

(·) denote the density function of η
(2)
(1) = η1 − η2. Here,

fη(2)

(1)

(·) is bounded in a neighborhood around zero, with fη(2)

(1)

(0) > 0 and

fη(2)

(1)

(y)− fη(2)

(1)

(0) = o(1) as y → 0.

Condition B. The matrix Σ = E{g(x)g(x)T} is positive definite.

Condition C.

1. E(η2) <∞ and E{m2(x)} <∞;

2. There exists some γ1 > 0 such that E(1+‖xi‖2+‖xj‖2){1+‖g(xk)‖2+γ1
+ ‖g(xl)‖2+γ1} <∞, for 1 ≤ i, j, k, l ≤ 4.

To derive the asymptotic distributions under the fixed alternative (1.4), we

impose the following additional conditions. Define the error under a model mis-

specification as ε = Y − g(x)Tβ0 = m(x)− g(x)Tβ0 + η.

Condition D.

1. fε(2)(1)

(·) is bounded in a neighborhood around zero, where fε(2)(1)

(·) is the

density function of ε
(2)
(1) = ε1 − ε2.

2. E(ε2) <∞.

These moment assumptions in Conditions A-D are slightly stronger than

those stated in Székely, Rizzo and Bakirov (2007). This is the price we pay for

dealing with the regression effect on the limiting behavior of dCov. In addition,

our conditions are formally related to, but essentially different from those of

Sen and Sen (2014). For example, their Conditions 3(d), 4c(ii), and 4c(iv) are

not applicable under our framework because the kernel induced by dCov is not

differentiable.

Let {φi(·)}∞i=1 and {λi}∞i=1 denote the orthonormal eigenfunctions and the

eigenvalues {λi}∞i=1, respectively, defined in relation to the kernel h
(2)
0 (z1, z2),

where

h
(2)
0 (z1, z2) = Cη(η1, η2)Cx(x1,x2),
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with zi = (ηi,xi), for i = 1, 2, Cη(η1, η2) = |η1−η2|−E(|η1−η2| | η1)−E(|η1−η2| |
η2)+E(|η1−η2|), and Cx(x1,x2) = ‖x1−x2‖−E(‖x1−x2‖ | x1)−E(‖x1−x2‖ |
x2) + E(‖x1 − x2‖). Further, define

Λ = −E [{g(x1)− Eg(x1)}{g(x2)− Eg(x2)}T‖x1 − x2‖] , and

h
(1)
1 (z1) = 4{1− 2Fη(η1)}E[{g(x1)− g(x2)}Cx(x1,x2) | x1],

where Λ is a positive-definite matrix, because it is simply the martingale differ-

ence divergence matrix (Lee and Shao (2018)) between g(x) and x, and Fη is the

distribution function of η.

Theorem 1.

1. Assume that the null hypothesis (1.3) holds. Under Conditions A, B, and

C, as n→∞, nUn converges in distribution to

∞∑
i=1

λi(Z2
i − 1) +N TΣ−1W + 2fη(2)

(1)

(0)WTΣ−1ΛΣ−1W, (3.6)

where each Zi is i.i.d. N(0, 1), and (Zi,N ,W) ∈ R2d+1 are jointly Gaus-

sian random variables with E(Zi, N , W) = 02d+1, var(Zi) = 1, var(N ) =

var{h(1)1 (z1)}, var(W) = var{g(x1)η1}, cov(Zi,N ) = cov{φi(z1), h(1)1 (z1}),
cov(Zi,W) = cov{φi(z1), g(x1)η1}, and cov(N ,W) = cov{h(1)1 (z1},g(x1)η1}.
In addition, nVn converges in distribution to

∞∑
i=1

λiZ2
i +N TΣ−1W + 2fη(2)

(1)

(0)WTΣ−1ΛΣ−1W. (3.7)

2. Assume that the fixed alternative (1.4) holds. Under Conditions A, B,

C 2, and D, as n → ∞, both n1/2{Un − dCov2(ε1,x1)} and n1/2{Vn −
dCov2(ε1,x1)} converge in distribution to a Gaussian random variable with

mean zero and variance 4var[E{Cε(ε1, ε2)Cx(x1, x2)|ε1,x1}+%T

1Σ
−1g(x1)ε1],

with %1 = −E[{g(x1)− g(x2)}Cx(x1,x2)I(ε1 > ε2)].

The second statement in Theorem 1 asserts that both Un and Vn converge

in probability to dCov2(ε1,x1) > 0 under the alternative (1.4). Therefore, both

nUn and nVn converge in probability to ∞ under the alternative (1.4). The

first statement in Theorem 1 asserts that nUn = Op(1) and nVn = Op(1) under

the null hypothesis (1.3). That is, our tests are consistent against any fixed

alternative.
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In addition to testing the null (1.3) against the fixed alternative (1.4), we

test for local departures from the null. The results can be used to evaluate the

asymptotic power of the statistics Un and Vn. Consider the local alternatives

H1n : m(x) = g(x)Tβ0 + n−1/2`(x), (3.8)

where `(x) 6∈ Mβ and E{| `(x) |} <∞. To obtain the next assertion, we impose

the following regularity assumptions.

Condition E. There exists some γ2 > 0 such that E{|`(x)|2+γ2} <∞.

Write %0` = E{g(x)`(x)} ∈ Rd, %1`
def
= −E{g(x1)−Eg(x1)}{`(x2)−E`(x2)}‖

x1 − x2‖ ∈ Rd, and %2`
def
= −E{`(x1)− E`(x1)}{`(x2)− E`(x2)}‖x1 − x2‖ ∈ R.

Theorem 2. Suppose that Conditions A, B, C, and E hold. Under the local

alternative (3.8), as n→∞, nUn converges in distribution to

∞∑
i=1

λi(Z2
i − 1) + {N − 4%1`fη(2)

(1)

(0)}TΣ−1(W + %0`) (3.9)

+2fη(2)

(1)

(0)(W + %0`)
TΣ−1ΛΣ−1(W + %0`) + 2fη(2)

(1)

(0)%2`,

and nVn converges in distribution to

∞∑
i=1

λiZ2
i + {N − 4%1`fη(2)

(1)

(0)}TΣ−1(W + %0`) (3.10)

+2fη(2)

(1)

(0)(W + %0`)
TΣ−1ΛΣ−1(W + %0`) + 2fη(2)

(1)

(0)%2`.

By direct calculation, we have

2fη(2)

(1)

(0)%2` + 2fη(2)

(1)

(0)%T

0`Σ
−1ΛΣ−1%0` − 4fη(2)

(1)

(0)%T

1`Σ
−1%0`

= −2fη(2)

(1)

(0)E[{%T

0`Σ
−1g(x1)− `(x1)}{%T

0`Σ
−1g(x2)− `(x2)}Cx(x1,x2)]

def
= 2fη(2)

(1)

(0)∆`.

Obviously, ∆` is the squared martingale difference divergence (Shao and Zhang

(2014)) between {%T

0`Σ
−1g(x) − `(x)} and x. According to Theorem 1 of Shao

and Zhang (2014), it follows that ∆` ≥ 0. Because `(·) is a nonlinear function,

that is, pr{`(x1) = %T

0`Σ
−1g(x1)} < 1, we have ∆` > 0. In addition, observing

∆a` = a2∆` for an arbitrary constant a, we can show that our proposed tests

have power tending to one under local alternatives of order less than n−1/2.
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3.3. The bootstrap and its consistency

Part I of Theorem 1 describes the asymptotic distributions of Un and Vn;

their consistency can be deduced from Part II of Theorem 1. However, the asymp-

totic distributions are not practical for determining the critical values of the test

statistics because they depend on the infinitely many nuisance parameters λi in

a complicated way. Therefore, we propose computing the critical value using a

bootstrap method. The proposed bootstrap procedure is closely related to the

work of Leucht and Neumann (2009), who provide a bootstrap approximation

for degenerate U -type and V -type statistics of degree two in an i.i.d. setup. Nev-

ertheless, the i.i.d. situation is violated in regression models. Thus we follow the

idea devised in Sen and Sen (2014) for non-i.i.d. cases:

Step 1. Calculate the residuals ηin = Yi−g(xi)
Tβn (i = 1, . . . , n) and generate

an i.i.d. bootstrap sample {η̂∗in,xin}ni=1 of size n from the measure prn =

prn,ηn × prn,x, where prn,ηn and prn,x are the empirical distributions of ηin
and xi, respectively.

Step 2. Denote Yin = g(xin)Tβn + η∗in and compute the bootstrapped least-

squares estimator β∗n using the bootstrap sample (Yin,xin). Further, com-

pute the bootstrap residuals η∗∗in = Yin − g(xin)Tβ∗n.

Step 3. Compute the bootstrap test statistics U∗n and V ∗n , with (ηin,xi) re-

placed by (η∗∗in ,xin), for i = 1, . . . , n. Given the data, we approximate the

distributions of nUn and nVn using the conditional distributions of nU∗n and

nV ∗n , respectively.

We now impose slightly stronger conditions than those applied to Theorem 1.

Higher-order moments are used to verify the uniform integrability of some class of

random variables, which is needed in the proof. To demonstrate the consistency

of the bootstrap, we first assume that m(·) does not necessarily belong to Mβ.

Condition F. There exists some γ3 > 0 such that E(|ε|2+γ3) < ∞ and

E{‖g(x)‖4+γ3 } <∞.

Theorem 3. Suppose the conditions for Theorem 1 hold and that Condition F is

satisfied. Conditional on the observed data almost surely, regardless of the model

misspecification, nU∗n converges in distribution to

∞∑
i=1

λ̃i(Z̃2
i − 1) + Ñ TΣ−1W̃ + 2fε(2)(1)

(0)W̃TΣ−1ΛΣ−1W̃, (3.11)
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where Z̃i are i.i.d. N(0, 1). Furthermore, (Z̃i, Ñ , W̃) ∈ R2d+1 are jointly Gaus-

sian random variables with mean zero and covariance defined as in (Zi,N ,W)

of Theorem 1, where zi = (ηi,xi) is replaced with z̃i = (ε̃i,xi). Here, ε̃i is inde-

pendent of xi and has the same distribution as εi = m(xi) − g(xi)
Tβ0 + ηi. In

addition, nV ∗n converges in distribution to

∞∑
i=1

λ̃iZ̃2
i + Ñ TΣ−1W̃ + 2fε(2)(1)

(0)W̃TΣ−1ΛΣ−1W̃. (3.12)

From Theorem 3, it follows that under the null hypothesis (1.3), εi = ηi.

That is, if (1.3) holds, nU∗n and nV ∗n converge in distribution to
∑∞

i=1 λi(Z2
i −1)+

N TΣ−1W+2fη(2)

(1)

(0)WTΣ−1 ΛΣ−1W and
∑∞

i=1 λiZ2
i +N TΣ−1W+2fη(2)

(1)

(0)WT

Σ−1 ΛΣ−1W, respectively, conditional on the observed data almost surely. Re-

call that we reject the null hypothesis for large values of Un and Vn. Therefore,

from part I of Theorem 1, the p-values of the tests based on nUn and nVn,

denoted by

pvalueU = pr{nU∗n > nUn | xi, Yi, i = 1, . . . , n}, and

pvalueV = pr{nV ∗n > nVn | xi, Yi, i = 1, . . . , n},

respectively, asymptotically follow the uniform distribution on (0, 1) in distribu-

tion under the null hypothesis (1.3). Consequently, the proposed bootstrap tests

based on nU∗n and nV ∗n have a correct asymptotic level.

On the other hand, Theorem 3 also indicates that under the fixed alternative

(1.4) or the local alternative (3.8), we still have nU∗n = O∗p(1) and nV ∗n = O∗p(1),

where the probability is taken with respect to the bootstrapped space. From

part II of Theorem 1 and Theorem 2, it follows that under the fixed alternative

(1.4) or the local alternative (3.8), which decays at an order slower than n−1/2,

nUn → ∞ and nVn → ∞ in probability. That is, the corresponding p-values,

that is, pvalueU and pvalueV , converge in probability to zero. Therefore, the

bootstrap scheme is consistent and can detect alternatives that tend to the null

at the parametric rate n−1/2.

4. Simulations

In this section, we examine the finite-sample performance of the proposed

testing statistics Vn and Un, as defined in (3.3) and (3.4). Denote the V - and U -

types of test statistic by VT and UT, respectively. For comparison purposes, we
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consider four typical methods: the Kolmogorov-Smirnov (KS) and the Cramér-

von Mises (CvM) tests (Stute (1997)), the adaptive Neyman (AN) test (Fan and

Huang (2001)), and the HSIC-based test (Sen and Sen (2014)). The simulation

study is conducted using R. Specifically, we implement the KS and CvM tests

using the “IntRegGOF” library. We consider the AN test described in (2.1) of

(Fan and Huang (2001)) when noise is normal. The code required to implement

the HSIC-based test of Sen and Sen (2014) is available on their home page.

Following the suggestion of Sen and Sen (2014), we implement their method

using standardized variables and taking Gaussian kernels with unit bandwidths.

We also examine the sensitivity of the HSIC-based test with respect to the choice

of γ, which is denoted by HSIC(γ). HSIC(1) corresponds to the test proposed

by Sen and Sen (2014). Following the suggestion of a reviewer, we also consider

an HSIC test in which the parameter is chosen as the median of the pairwise

sample distances (mHSIC). Computations are based on 1,000 samples. In the

ith sample, 500 bootstrap samples were generated to compute the empirical p-

value, pi. The empirical size and power are computed as 1000−1
∑1000

i=1 I(pi ≤ α)

at a significance level of α.

Three data-generating models are considered. The first two models test

for multiple linear models, and the third model focuses on the univariate linear

model.

Model 1. In our first example, the data are generated from the quadratic

regression model

Y = X1 + aX2
2 + 2X4 + η, (4.1)

with the predictor vector x = (X1, X2, X3, X4), where the predictors X1, X2,

and X3 are normally distributed with mean zero and variance one. The pairwise

correlation between these three random variables are 0.5. The predictor X4

is binary, independent of X1, X2, and X3, and satisfies pr(X4 = 1) = 0.4 and

pr(X4 = 0) = 0.6. In addition, η follows a standardized normal distribution. This

model is adapted from Example 4 of Fan and Huang (2001). In this example, the

sample size is 100, the dimension of the predictor is four, and a = 0 corresponds

to the null hypothesis.

Table 1 clearly shows that under the null, the nominal levels α = 0.01, 0.05,

0.10 are reasonably approximated for the VT, UT, KS, CvM, mHSIC, and

HSIC(1) tests. Furthermore, the empirical sizes of the AN test tend to be

larger than the nominal levels. We further observe that the HSIC(1/
√

2) and

HSIC(1/
√

3) tests tend to give zero rejection rates and have almost no power
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Table 1. Empirical size and power of the VT, UT, KS, CvM, AN, and HSIC tests under
model (4.1) with different a and α when n = 100.

level test a = 0 a = 0.15 a = 0.25 a = 0.35 a = 0.45 a = 0.55

α = 0.01

VT 0.008 0.012 0.169 0.414 0.656 0.822

UT 0.007 0.010 0.143 0.327 0.557 0.750

HSIC(1) 0.013 0.033 0.105 0.275 0.483 0.669

HSIC(1/
√

2) 0.002 0.004 0.010 0.018 0.041 0.072

HSIC(1/
√

3) 0.000 0.000 0.000 0.000 0.000 0.001

mHSIC 0.008 0.032 0.061 0.124 0.217 0.318

KS 0.006 0.017 0.048 0.101 0.193 0.327

CvM 0.008 0.033 0.081 0.185 0.319 0.469

AN 0.033 0.031 0.051 0.134 0.295 0.551

α = 0.05

VT 0.053 0.157 0.424 0.699 0.879 0.958

UT 0.042 0.119 0.321 0.581 0.793 0.911

HSIC(1) 0.060 0.130 0.330 0.560 0.766 0.887

HSIC(1/
√

2) 0.029 0.044 0.073 0.127 0.198 0.287

HSIC(1/
√

3) 0.002 0.005 0.010 0.018 0.027 0.038

mHSIC 0.054 0.095 0.178 0.308 0.473 0.610

KS 0.046 0.092 0.163 0.276 0.455 0.637

CvM 0.049 0.119 0.250 0.410 0.589 0.770

AN 0.079 0.090 0.164 0.298 0.514 0.757

α = 0.10

VT 0.096 0.284 0.570 0.816 0.945 0.988

UT 0.079 0.212 0.470 0.714 0.884 0.956

HSIC(1) 0.113 0.257 0.467 0.712 0.868 0.953

HSIC(1/
√

2) 0.085 0.117 0.166 0.249 0.360 0.482

HSIC(1/
√

3) 0.036 0.038 0.052 0.073 0.100 0.124

mHSIC 0.105 0.180 0.289 0.457 0.640 0.765

KS 0.107 0.162 0.260 0.435 0.620 0.773

CvM 0.099 0.212 0.369 0.560 0.749 0.876

AN 0.123 0.159 0.244 0.397 0.634 0.837

in all cases. These findings suggest that the performance of the HSIC method

is adversely affected by some tuning parameters. Of course, the HSIC(1) test

works well and outperforms the mHSIC test in this example. As anticipated, as

a becomes large, the power of each test increases monotonically to one in this

quadratic regression model. In particular, the proposed tests VT and UT do sig-

nificantly better than the KS, CvM, mHSIC, and HSIC(1) tests. It is expected

that the KS and CvM tests underperform when the dimension of the predictor is

larger than one. This is because the indicators I(xj ≤ xi), involved in the com-

putation of the KS and CvM tests, are zero when the dimension of the predictor

vectors xi and xj is large.
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Table 2. Empirical size and power of the VT, UT, KS, CvM, AN, and HSIC tests under
model (4.2) with different a and α when n = 100 and d = 4.

level test a = 0 a = 1.5 a = 3.5 a = 5.5 a = 7.5 a = 9.5

α = 0.01

VT 0.007 0.037 0.373 0.805 0.972 0.995
UT 0.006 0.034 0.357 0.791 0.965 0.996
HSIC(1) 0.006 0.008 0.078 0.344 0.733 0.930

HSIC(1/
√

2) 0.000 0.000 0.001 0.002 0.009 0.061

HSIC(1/
√

3) 0.000 0.000 0.000 0.000 0.000 0.000
mHSIC 0.014 0.037 0.206 0.588 0.841 0.950
KS 0.012 0.016 0.027 0.056 0.114 0.181
CvM 0.009 0.012 0.029 0.077 0.153 0.243
AN 0.026 0.031 0.050 0.103 0.310 0.668

α = 0.05

VT 0.046 0.140 0.601 0.942 0.996 1.000
UT 0.043 0.127 0.576 0.922 0.992 1.000
HSIC(1) 0.045 0.068 0.268 0.674 0.916 0.985

HSIC(1/
√

2) 0.005 0.005 0.009 0.059 0.184 0.383

HSIC(1/
√

3) 0.000 0.000 0.000 0.000 0.001 0.001
mHSIC 0.059 0.107 0.438 0.800 0.962 0.989
KS 0.061 0.063 0.108 0.190 0.299 0.442
CvM 0.051 0.056 0.119 0.237 0.408 0.554
AN 0.091 0.097 0.125 0.270 0.565 0.873

α = 0.10

VT 0.091 0.237 0.728 0.970 0.998 1.000
UT 0.087 0.209 0.691 0.958 0.997 1.000
HSIC(1) 0.092 0.159 0.429 0.805 0.964 0.995

HSIC(1/
√

2) 0.024 0.031 0.075 0.202 0.424 0.677

HSIC(1/
√

3) 0.000 0.001 0.002 0.004 0.013 0.030
mHSIC 0.108 0.176 0.577 0.884 0.978 0.994
KS 0.109 0.123 0.194 0.302 0.466 0.592
CvM 0.107 0.123 0.218 0.387 0.570 0.703
AN 0.139 0.140 0.198 0.393 0.683 0.923

Model 2. In our second example, we consider the interactive regression model

Y = 5X1 −X2
2 + aX1X2 + η, (4.2)

with the predictor vector x = (X1, . . . , Xd) (d ≥ 2), where x has independent

components, and each component is taken from a uniform distribution on the

unit interval. Here, η is drawn from normal distribution with mean zero and

variance one. We take n = 100 and d = 4, 2. This model is adapted from Model

1 of Sen and Sen (2014), where we omit the intercept term. The null hypothesis

holds when a = 0.

The simulation results are summarized in Tables 2 and 3. Our proposed
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Table 3. Empirical size and power of the VT, UT, KS, CvM, AN, and HSIC tests under
model (4.2) with different a and α when n = 100 and d = 2.

level test a = 0 a = 1.5 a = 3.5 a = 5.5 a = 7.5 a = 9.5

α = 0.01

VT 0.010 0.078 0.744 0.992 1.000 1.000
UT 0.009 0.077 0.726 0.991 1.000 1.000
HSIC(1) 0.006 0.045 0.342 0.813 0.982 1.000

HSIC(1/
√

2) 0.009 0.013 0.117 0.468 0.855 0.978

HSIC(1/
√

3) 0.005 0.006 0.035 0.198 0.551 0.854
mHSIC 0.007 0.050 0.523 0.953 0.997 1.000
KS 0.007 0.015 0.098 0.314 0.565 0.779
CvM 0.008 0.028 0.236 0.696 0.957 0.993
AN 0.027 0.029 0.046 0.118 0.318 0.694

α = 0.05

VT 0.047 0.247 0.903 0.999 1.000 1.000
UT 0.045 0.231 0.889 0.998 1.000 1.000
HSIC(1) 0.048 0.131 0.566 0.946 0.997 1.000

HSIC(1/
√

2) 0.037 0.070 0.291 0.723 0.961 0.995

HSIC(1/
√

3) 0.032 0.044 0.152 0.447 0.802 0.957
mHSIC 0.048 0.180 0.753 0.987 0.999 1.000
KS 0.045 0.090 0.311 0.632 0.878 0.969
CvM 0.049 0.132 0.506 0.901 0.992 1.000
AN 0.079 0.082 0.140 0.279 0.580 0.901

α = 0.10

VT 0.089 0.382 0.937 1.000 1.000 1.000
UT 0.087 0.362 0.928 1.000 1.000 1.000
HSIC(1) 0.112 0.233 0.690 0.975 0.999 1.000

HSIC(1/
√

2) 0.087 0.150 0.441 0.834 0.972 0.998

HSIC(1/
√

3) 0.077 0.096 0.272 0.615 0.896 0.978
mHSIC 0.105 0.294 0.855 0.992 0.999 1.000
KS 0.109 0.173 0.477 0.785 0.947 0.991
CvM 0.107 0.212 0.647 0.961 0.997 1.000
AN 0.130 0.152 0.214 0.391 0.700 0.952

tests clearly outperform the competing choices. The difference between VT and

UT is relatively small. For the VT, UT, KS, CvM, mHSIC, and HSIC(1) tests,

the empirical type-I error rates are very close to the nominal test levels. How-

ever, for the HSIC(1/
√

2) and HSIC(1/
√

3) tests (AN test), the empirical sizes

tend to be less (slightly larger) than the nominal levels. In this example, the

mHSIC test however performs slightly better than the HSIC(1) test does. These

observations indicate that the performance of the HSIC-based test depends sig-

nificantly on some tuning parameters. It is anticipated that the KS and CvM

tests behave poorly as the dimension of the predictor increases in all simulation

settings considered here.
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Table 4. Empirical size and power of the VT, UT, KS, CvM, AN, and HSIC tests under
model (4.3) with different a and α when n = 50.

level test a = 0 a = 1 a = 2 a = 3 a = 4 a = 5

α = 0.01

VT 0.007 0.028 0.071 0.198 0.386 0.613
UT 0.006 0.029 0.069 0.193 0.380 0.611
HSIC(1) 0.013 0.017 0.044 0.106 0.234 0.423

HSIC(1/
√

2) 0.013 0.016 0.028 0.067 0.143 0.267

HSIC(1/
√

3) 0.008 0.010 0.016 0.040 0.087 0.163
mHSIC 0.007 0.011 0.035 0.095 0.191 0.349
KS 0.009 0.017 0.031 0.065 0.134 0.228
CvM 0.012 0.017 0.038 0.088 0.207 0.325
AN 0.025 0.028 0.032 0.034 0.041 0.057

α = 0.05

VT 0.048 0.081 0.208 0.417 0.658 0.838
UT 0.048 0.086 0.197 0.405 0.644 0.830
HSIC(1) 0.063 0.081 0.136 0.275 0.488 0.668

HSIC(1/
√

2) 0.052 0.060 0.108 0.196 0.337 0.515

HSIC(1/
√

3) 0.047 0.059 0.081 0.135 0.237 0.380
mHSIC 0.049 0.069 0.118 0.238 0.416 0.605
KS 0.052 0.072 0.122 0.218 0.355 0.510
CvM 0.065 0.080 0.149 0.283 0.429 0.622
AN 0.076 0.079 0.083 0.097 0.112 0.157

α = 0.10

VT 0.109 0.147 0.318 0.559 0.775 0.911
UT 0.105 0.141 0.307 0.539 0.761 0.901
HSIC(1) 0.102 0.135 0.230 0.423 0.604 0.771

HSIC(1/
√

2) 0.108 0.122 0.192 0.294 0.456 0.626

HSIC(1/
√

3) 0.117 0.121 0.158 0.244 0.371 0.509
mHSIC 0.111 0.134 0.213 0.367 0.555 0.729
KS 0.110 0.132 0.214 0.336 0.500 0.650
CvM 0.121 0.148 0.246 0.386 0.563 0.731
AN 0.121 0.116 0.133 0.156 0.189 0.246

Model 3. In our last example, we consider the univariate regression model

Y = 5X1 + aX2
1 + η, (4.3)

where X1 follows a uniform distribution on the unit interval, and η is drawn from

a normal distribution with mean zero and variance one. This example is adapted

from Model 1 of Stute, Manteiga and Quindimil (1998). The sample size is 50,

and the null hypothesis is true if and only if a = 0.

Table 4 presents the empirical size and power associated with the VT, UT,

KS, CvM, AN, and HSIC tests for different a and α. From Table 4, in this

example with one-dimensional data, the proposed tests behave comparably well
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to existing methods, such as the well-known KS and CvM tests. A compari-

son with the mHSIC and HSIC(1) tests shows that, for this particular example,

the HSIC(1) test is slightly more effective than the mHSIC test. Slightly sur-

prisingly, in contrast to Models 1 and 2, the HSIC(1/
√

2) and HSIC(1/
√

3) tests

perform satisfactorily in this example. These results suggest that the HSIC-based

goodness-of-fit test depends on the data-generating process. How to choose the

optimal tuning parameters associated with the HSIC-based method seems to be

a difficult practical issue, and deserves a deeper study.

5. Discussion

Based on the popular dCov (Székely, Rizzo and Bakirov (2007)), we propose

two tests that determine the goodness-of-fit of linear models. Our tests can be

viewed as an extension of the independent test of no-effect model of Székely,

Rizzo and Bakirov (2007) to a test of the lack-of-fit of a regression model. Our

tests successfully break the curse of dimensionality found in some nonparametric

tests such as the KS and CvM tests (Stute (1997)), when the dimension of the

regressors is larger than one. Compared with the HSIC-based test (Sen and Sen

(2014)), our methods successfully avoid having to make subjective choices of pa-

rameters, such as bandwidths and kernels. Our simulations results demonstrate

the good behavior of the tests in small samples, as compared with that of other

well-known tests, such as the AN test (Fan and Huang (2001)).

Finally, we conclude by noting three potential topics for future research.

First, an interesting extension of our methodology would be to include a general

semi-parametric class. Second, it is possible to extend our methodology to in-

clude missing, censored, or dependent data. Third, when the number of useless

predictors included in the working model increases, it is useful to mitigate the

impact of the large dimensionality and, thus, obtain power enhancement tests

using techniques, such as projection pursuit and sufficient dimension reduction.

We are currently investigating these issues.

Supplementary Material

The online Supplementary Material contains proofs of Theorems 2–3 and the

second assertion of Theorem 1, as well as additional numerical results on some

aspects of limiting distributions and a real data set.
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Appendix

A. Some Technical Proofs

Lemmas 1 and 2 will be used repeatedly in the proof of main results. Lemma

1 is employed to deduce the Euclidean (Pakes and Pollard (1989, Def. 2.7)) pro-

perty of a class of functions and directly extracted from Lemma 2.13 of Pakes

and Pollard (1989). Lemma 2 states a uniform convergence result for U -statistics

indexed by parameters and is a direct consequence of Corollary 8 of Sherman

(1994).

Lemma 1. Let F = {F(·, t) : t ∈ T } be a class of functions on X indexed by

a bounded subset T of Rd. If there exists a C > 0 and a nonnegative function

φ(·) such that |F(x, t) − F(x, t′)| ≤ φ(x)‖t − t′‖C for x ∈ X and t, t′ ∈ T , then

F is Euclidean for the envelope |F(·, t0)|+Mφ(·), where t0 is an arbitrary point

of T , M = {2d1/2 sup
T
‖t − t0‖}C and we say that F has an envelope L(·) if

sup
F∈F
|F(·, t)| ≤ L(·).

According to the notations of Sherman (1994), given a random sample {zi}ni=1

with distribution on a set S, the k-order U -statistic indexed by θ is defined as

UknH(·,θ) = {n(n−1) · · · (n−k+1)}−1
∑

i1 6=i2 6=···6=ik H(zi1 , . . . , zik ,θ). The kernel

function H(z1, . . . , zk,θ) can be asymmetrical in (z1, . . . , zk).

Lemma 2. Let H a class of real-valued functions on Sk = S⊗· · ·⊗S. Supposing

(i) H be a class of degenerate functions on Sk, (ii) H(·,θ0) ≡ 0, (iii) H is

Euclidean for an envelope L satisfying E(L2) <∞ and (iiii) E|H(·,θ)| → 0, as

θ → θ0, then UknH(·,θ) = op(n
−k/2) uniformly over op(1) neighborhoods of θ0.

Proof of Theorem 1. Let us start by focusing on the statistic Un. Let I(·) be

the indicator function. By the identity (Knight (1998))

|x− y| − |x| = −y{I(x > 0)− I(x < 0)}+ 2

∫ y

0
{I(x ≤ z)− I(x ≤ 0)}dz,
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which is valid for x 6= 0, and the fact ηin − ηi = −g(xi)
T(βn − β0), it follows

|ηin − ηjn| = |ηi − ηj | − {g(xi)− g(xj)}T(βn − β0){I(ηi > ηj)− I(ηi < ηj)}

+2

∫ {g(xi)−g(xj)}T(βn
−β

0
)

0
{I(ηi − ηj ≤ z)− I(ηi ≤ ηj)}dz.

(A.1)

Define c(n,m) = nm/mm where nm = n(n− 1) · · · (n−m+ 1), and write x
(j)
(i) =

xi−xj and η
(j)
(i) = ηi−ηj . From Lemma 1 in Yao, Zhang and Shao (2018), it is easy

to show Un = {c(n, 4)}−1
∑

i<j<k<l h0(zin, zjn, zkn, zln), where zin = (ηin,xi)

and

h0(zin, zjn, zkn, zln) = 6−1
(i,j,k,l)∑
s<t,u<v

|η(tn)(sn)|
(
‖x(t)

(s)‖+ ‖x(v)
(u)‖

)
(A.2)

−12−1
(i,j,k,l)∑
(s,t,u)

|η(tn)(sn)|‖x
(u)
(s)‖ ∈ R.

By definition, combining (A.1) and (A.2), we decompose Un into three parts

Un = U0n + (βn − β0)
TU1n + U2n, (A.3)

where U0n = {c(n, 4)}−1
∑

i<j<k<l h0(zi, zj , zk, zl) with

h0(zi, zj , zk, zl) = 6−1
(i,j,k,l)∑
s<t,u<v

|η(t)(s)|
(
‖x(t)

(s)‖+ ‖x(v)
(u)‖

)

−12−1
(i,j,k,l)∑
(s,t,u)

|η(t)(s)|‖x
(u)
(s)‖ ∈ R, (A.4)

and zi = (ηi,xi), U1n = {c(n, 4)}−1
∑

i<j<k<l h1(zi, zj , zk, zl) with

h1(zi, zj , zk, zl) = 6−1
(i,j,k,l)∑
s<t,u<v

δ1st

(
‖x(t)

(s)‖+ ‖x(v)
(u)‖

)

−12−1
(i,j,k,l)∑
(s,t,u)

δ1st‖x(u)
(s)‖ ∈ Rd, (A.5)

and δ1st = −{g(xs)−g(xt)}{I(ηs > ηt)−I(ηs < ηt)}, U2n = {c(n, 4)}−1
∑

i<j<k<l



MODEL CHECKS THROUGH DISTANCE COVARIANCE 1073

h2(zi, zj , zk, zl) with

h2(zi, zj , zk, zl) = 6−1
(i,j,k,l)∑
s<t,u<v

δ2st

(
‖x(t)

(s)‖+ ‖x(v)
(u)‖

)
− 12−1

(i,j,k,l)∑
(s,t,u)

δ2st‖x(u)
(s)‖ ∈ R,

and

δ2st =

∫ {g(xs)−g(xt)}T(βn
−β

0
)

0
{I(ηs − ηt ≤ z)− I(ηs ≤ ηt)}dz

+

∫ {g(xt)−g(xs)}T(βn
−β

0
)

0
{I(ηt − ηs ≤ z)− I(ηt ≤ ηs)}dz.

Therefore, to obtain the asymptotic distribution of Un, it suffices to investigate

the asymptotic expansion of U0n, U1n, U2n and βn − β0.

In what follows, we first focus on the term U2n with the help of Lemmas 1 and

2 and the derivations on U0n, U1n, and βn − β0 are reported later. Clearly, U2n

does not belong to a class of degenerate functions on S4. Therefore, we further

decompose U2n into two parts

U2n = U21n + U22n, (A.6)

where U21n = {c(n, 4)}−1
∑

i<j<k<l h21(zi, zj , zk, zl) with h21(zi, zj , zk, zl) = 24−1∑(i,j,k,l)
(s,t,u,v){δ2st−E(δ2st|xs,xt)}(‖x(t)

(s)‖+‖x(v)
(u)‖−2‖x(u)

(s)‖), and U22n = {c(n, 4)}−1∑
i<j<k<l h22(zi, zj , zk, zl) with h22(zi, zj , zk, zl) = 24−1

∑(i,j,k,l)
(s,t,u,v){E(δ2st | xs,xt)}

(‖x(t)
(s)‖+‖x

(v)
(u)‖−2‖x(u)

(s)‖). We shall show that the kernel h21(zi, zj , zk, zl) of U21n

satisfies conditions (i)–(iiii) in Lemma 2. According to the smoothing property of

conditional expectation and the independence between η and x, we have E[{δ2st−
E(δ2st|xs,xt)}|zs] = 0 and therefore E[{δ2st − E(δ2st|xs,xt)}(‖x(t)

(s)‖ + ‖x(v)
(u)‖ −

2‖x(u)
(s)‖)|zi] = 0 for i = s, t, u, v. That is, condition (i) in Lemma 2 holds. The fact

that δ2st = 0 when βn = β0 implies condition (ii) in Lemma 2 holds. For ease of

our derivations, write h21(zi, zj , zk, zl) = h21(zi, zj , zk, zl;βn). We shall use C to

denote a positive constant that do not depend on n and whose value may change

from place to place. By definition, Minkowski and Cauchy-Schwarz inequalities,

|h21(zi, zj , zk, zl;β1) − h21(zi, zj , zk, zl;β2)| ≤ C|
∫ {g(xi)−g(xj)}T(β1

−β
0
)

0 {I(ηi −
ηj ≤ z)−I(ηi ≤ ηj)−EI(ηi−ηj ≤ z)+I(ηi ≤ ηj)}dz−

∫ {g(xi)−g(xj)}T(β1
−β

0
)

0 {I(ηi−
ηj ≤ z) − I(ηi ≤ ηj) − EI(ηi − ηj ≤ z) + EI(ηi ≤ ηj)}dz|(‖xi‖ + ‖xj‖ +

‖xk‖ + ‖xl‖) ≤ 4C|{g(xi) − g(xj)}T(β1 − β2)|(‖xi‖ + ‖xj‖ + ‖xk‖ + ‖xl‖) ≤
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C‖g(xi) − g(xj)‖(‖xi‖ + ‖xj‖ + ‖xk‖ + ‖xl‖)‖β1 − β2‖. This, together with

Lemma 1 and Condition C2, implies condition (iii) in Lemma 2. Similarly, taking

β2 = β0 leads to E|h21(zi, zj , zk, zl;β1)| ≤ C‖β1−β0‖E{‖g(xi)−g(xj)‖(‖xi‖+

‖xj‖ + ‖xk‖ + ‖xl‖)}, which, together with Condition C2, indicates condition

(iiii) in Lemma 2. Consequently,

nU21n = op(1), (A.7)

uniformly over op(1) neighborhoods of β0. The condition E{‖g(x)‖2+γ} <∞ im-

plies max1≤i≤n ‖g(xi)‖= op(n
1/2), which yields max1≤s,t≤n |{g(xs)−g(xt)}T(βn−

β0)| ≤ 2‖βn − β0‖max1≤i≤n ‖g(xi)‖ = op(1)n1/2‖βn − β0‖, which implies

max
1≤s,t≤n

|{g(xs)− g(xt)}T(βn − β0)| ≤ 2‖βn − β0‖ max
1≤i≤n

‖g(xi)‖ = op(1), (A.8)

due to n1/2‖βn − β0‖ = Op(1) and Slutsky’s theorem. Let Fη(2)

(1)

and fη(2)

(1)

be the

cdf and pdf of η
(2)
(1) = η1 − η2. By Taylor’s expansion and Condition A, we have

uniformly over 1 ≤ s, t ≤ n,

E(δ2st|xs,xt) =

∫ {g(xs)−g(xt)}T(βn
−β

0
)

0

{
Fη(2)

(1)

(z)− Fη(2)

(1)

(0)
}
dz (A.9)

+

∫ {g(xt)−g(xs)}T(βn
−β

0
)

0

{
Fη(2)

(1)

(z)− Fη(2)

(1)

(0)
}
dz,

= {1 + op(1)}fη(2)

(1)

(0)(βn − β0)
T{g(xs)− g(xt)}.

{g(xs)− g(xt)}T(βn − β0)

From (A.6), (A.7) and (A.9), it is easy to show

nU2n = fη(2)

(1)

(0){n1/2(βn − β0)}TU
\
2n{n

1/2(βn − β0)}+ op(1), (A.10)

where U \2n = {c(n, 4)}−1
∑

i<j<k<l h
\
2(zi, zj , zk, zl) ∈ Rd×d with

h\2(zi, zj , zk, zl) = 6−1
(i,j,k,l)∑
s<t,u<v

{g(xs)− g(xt)}{g(xs)− g(xt)}T
(
‖x(t)

(s)‖+ ‖x(v)
(u)‖

)

−12−1
(i,j,k,l)∑
(s,t,u)

{g(xs)− g(xt)}{g(xs)− g(xt)}T‖x(u)
(s)‖.
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Together with (A.3), we get

nUn = nU0n + {n1/2(βn − β0)}T{n1/2U1n}
+fη(2)

(1)

(0){n1/2(βn − β0)}TU
\
2n{n

1/2(βn − β0)}+ op(1). (A.11)

It is observed that U0n is degenerate and U1n and U \2n are non-degenerate.

Define h
(2)
0 (zi, zj) = 6E{h0(z1, z2, z3, z4) | z1, z2} and h

(1)
1 (z1) = 4E{h1(z1, z2,

z3, z4) | z1}. According to Hoeffding decomposition in technical appendix of Yao,

Zhang and Shao (2018),

h
(2)
0 (zi, zj) = Cη(ηi, ηj)Cx(xi,xj). (A.12)

Similarly, it is straightforward to verify that h
(1)
1 (z1) = −2E[{g(x1) − g(x2)}{

2Fη(η1) − 1}Cx(x1,x2)|x1] − 2E[{g(x2) − g(x1)}{1 − 2Fη(η1))}Cx(x2,x1)|x1],

which further yields

h
(1)
1 (z1) = 4{1− 2Fη(η1))}E[{g(x1)− g(x2)}Cx(x1,x2)|x1], (A.13)

where Fη is the cdf of η. From the standard theory of U -statistics, invoking

Conditions C1-C2 entails

nU0n − n−1
∑
i 6=j

h
(2)
0 (zi, zj) = op(1), and

n1/2U1n − n−1/2
n∑
i=1

h
(1)
1 (zi) = op(1). (A.14)

Condition C2 also implies E[(‖xi‖+‖xj‖)‖g(xk)‖|g(xl)|}] <∞, 1 ≤ i, j, k, l ≤ 4.

By careful calculations, EU \2n = E[{g(x1) − g(x2)}{g(x1) − g(x2)}T{‖x(2)
(1)‖ −

E(‖x(2)
(1)‖|x2)− E(‖x(2)

(1)‖|x1) + E(‖x(2)
(1)‖)}] = 2Λ, where

Λ = −E [{g(x1)− Eg(x1)}{g(x2)− Eg(x2)}T‖x1 − x2‖] . (A.15)

By the law of large numbers for U -statistics, we have U \2n → 2Λ in probabil-

ity. From Slutsky’s theorem and Conditions C2-C3, we have n1/2(β̂ − β0) =

n−1/2Σ−1
∑n

i=1 g(xi)ηi + op(1). Combination of these and Slutsky’s theorem en-

tails

{n1/2(βn − β0)}T{n1/2U1n}
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=

{
n−1/2

n∑
i=1

g(xi)ηi

}
T

Σ−1

{
n−1/2

n∑
i=1

h
(1)
1 (zi)

}
+ op(1), and

{n1/2(βn − β0)}TU
\
2n{n

1/2(βn − β0)}

= 2

{
n−1/2

n∑
i=1

g(xi)ηi

}
T

Σ−1ΛΣ−1

{
n−1/2

n∑
i=1

g(xi)ηi

}
+ op(1).

(A.16)

To obtain the desired result, we now need to decompose the term n−1
∑

i<j

h
(2)
0 (zi, zj). By (A.12) and Lemma 1.1 in technical appendix of Yao, Zhang and

Shao (2018), it is easy to check E{h(2)0 (zi, zj)
2} < CE{‖x‖2 +η2} <∞. By Mer-

cer’s theorem, we have h
(2)
0 (z1, z2) =

∑∞
i=1 λiφi(z1)φi(z2), where {φi(·)}∞i=1 are

orthonormal eigenfunctions, i.e., E{φi(z)φj(z)} = 1 if i = j and zero otherwise,

corresponding to the eigenvalues {λi}∞i=1 which are defined in connection with

h
(2)
0 (·, ·). Since h

(2)
0 (·, ·) is degenerate, E{ϕi(z)} = 0 for any i ≥ 1. Due to the or-

thogonality, E{h(2)0 (z1, z1)} =
∑∞

i=1 λi. By Slutsky’s theorem and the law of large

numbers, nU0n can be expressed as nU0n = (n− 1)−1
∑

i<j h
(2)
0 (zi, zj) + op(1) =

(n−1)−1
∑n

i,j=1K0(zi, zj)−(n−1)−1
∑n

i=1K0(zi, zi) =
∑∞

i=1 λi[{n−1/2
∑n

j=1 φi(

zj)}2 − 1] + op(1). Therefore, further combination of (A.11) and (A.16) yields

nUn = nU ‡n + op(1), where

nU ‡n =

∞∑
i=1

λi

[{
n−1/2

n∑
j=1

φi(zj)

}2

− 1

]

+

{
n−1/2

n∑
i=1

g(xi)ηi

}
T

Σ−1

{
n−1/2

n∑
i=1

h
(1)
1 (zi)

}
(A.17)

+2fη(2)

(1)

(0)

{
n−1/2

n∑
i=1

g(xi)ηi

}
T

Σ−1ΛΣ−1

{
n−1/2

n∑
i=1

g(xi)ηi

}
.

As the first term in (A.17) contains infinitely many λi and φi, we here follow

Theorem 5.5.2 of Serfling (1980) to finish the proof of the first assertion on Un. We

aim to show that E exp(ixnU ‡n)→ E exp(ixU ‡), n→∞, for each x, where U ‡ is

defined as in (3.6). Write nU ‡n,K = nU ‡n−
∑∞

i=K λi[{n−1/2
∑n

j=1 φi(zj)}2−1] and

U ‡K = U ‡ −
∑∞

i=K λi(Z2
i − 1). Due to the spectral decomposition of h

(2)
0 (z1, z2),

we have E(nU ‡n − nU ‡n,K)2 ≤ 2
∑∞

i=K λ
2
i → 0, as K →∞. For any ε > 0, by the

inequality | E exp(ixnU ‡n) − E exp(ixnU ‡n,K) |≤| x | {E(nU ‡n − nU ‡n,K)2}1/2 and
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by choosing and fixing K large enough,

| E exp(ixnU ‡n)− E exp(ixnU ‡n,K) |≤ ε, (A.18)

for all n sufficiently large. Similarly, using the inequality

| E exp(ixU ‡)− E exp(ixU ‡K) |≤| x | {E(Z2
1 − 1)2}1/2

( ∞∑
i=K

λ2i

)1/2

,

we obtain, by choosing and fixing K large enough,

| E exp(ixU ‡)− E exp(ixU ‡K) |≤ ε, (A.19)

for all n sufficiently large. For any fixed K, and by multivariate central limit

theorem,

| E exp(ixnU ‡n,K)− E exp(ixU ‡n,K) |≤ ε, (A.20)

for all n sufficiently large. Combining (A.18), (A.19) and (A.20), we have for any

x and any ε > 0

| E exp(ixnU ‡n)− E exp(ixU ‡) |≤ 3ε, (A.21)

for all n sufficiently large. That is, nU ‡n converges in distribution to U ‡.

On the other hand, similar to appendix of Székely, Rizzo and Bakirov (2007),

we can also show

Vn = n−2
n∑

i,j=1

ÂijB̂ij = n−4
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

h0(zin, zjn, zkn, zln), (A.22)

where h0(zin, zjn, zkn, zln) is defined as in (A.2). Combining the standard V -

and U -statistic theories, and the equation (6) in Sherman (1994) , we can obtain

nVn =
∑∞

i=1 λi{n−1/2
∑n

j=1 φi(zj)}2 + {n−1/2
∑n

i=1 g(xi)ηi}TΣ−1 {n−1/2
∑n

i=1

h
(1)
1 }+2fη(2)

(1)

(0){n−1/2
∑n

i=1 g(xi)ηi}TΣ−1ΛΣ−1{n−1/2
∑n

i=1 g(xi)ηi}+op(1).Ap-

ply arguments exactly similar to those for dealing with Un to finish the proof of

the first assertion. The remaining technical proofs are available in Supplementary

Material.
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