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Supplementary Material

This is a supplement to the paper “Varying-Coefficient Panel Data
Model with Interactive Fixed Effects”, in which it contains the numeri-
cal studies, proofs of Theorems 1-6 and Corollary 1, and Lemmas 1-7 and
their proofs. In addition, we introduce the estimation procedure for a spe-
cial model, namely, varying-coefficient panel-data model with additive fixed

effects.

S1 Appendix A: Numerical studies

In Appendix A, some simulation examples and a real data are analyzed to

augment the derived theoretical results in the main context.
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S1.1 Choice of smoothing parameters

We develop a data-driven procedure to choose the smoothing parameters
Ly, for k = 1,...,p, where Ly control the smoothness of fi(u). In prac-
tice, various smoothing methods can be applied to select the smoothing
parameters, such as the cross validation (CV), the generalized cross valida-
tion (GCV), or the Bayesian information criterion (BIC). Following Huang
et al. (2002), we propose a modified “leave-one-subject-out” CV to auto-
matically select the smoothing parameters L; by minimizing the following

CV score:

N
CV => (Vi = RAT) Mp o (Y; - RATY), (A1)

i=1
where (=9 and F&9 are the estimators defined by solving the nonlinear
equations (2.7) and (2.8) from data with the ith subject deleted. In fact,
the CV score in (A.1) can also be viewed as a weighted estimate of the true
prediction error. The performance of the modified “leave-one-subject-out”

CV procedure will be evaluated in the next section.

To determine the number r of the factors, we adopt BIC in Li et al.

(2016):

BIC(r) = In(V (r,4,)) + ?”<N i T]sz =1 Lt In (NN—l—TT)’ (A.2)

where 4, is the estimator of v, and V(r,4,) is defined as

Vi) = 37 3 m( S¥-Rai-RAT ). (4
o=r+1 i=1

In (A.3), po(A) denotes the p-th largest eigenvalue of a symmetric matrix

A by counting multiple eigenvalues multiple times. We set ry.. = 8, and
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choose the number r of the factors by minimizing the objective function

BIC(r) in (A.2), that is, 7 = arg ming<,<,,. BIC(r).

S1.2 Simulation studies

In this section, we conduct simulation studies to assess the finite sample

performance of our proposed methods.

Example 1 (Varying-coefficient model). In this example, we generate

data from the following model:

Yie = Xie1S1(Uit) + Xie2B2(Uir) + N Fy + €t (A4)

where \; = (M, A\i2)™, Fy = (Fy, Fro)™, Bi(u) = 2 — bu + 5u?, Ba(u) =
sin(um), Uy = wit +w; -1, and wy are 1.i.d. random errors from the uniform
distribution on [0, 1/2]. As the regressors X;;; and X;; 5 are correlated with
i, Fy, and their product A\ F}, we generate them according to

X1 =1+ N EF 0N+ 0 F 401, X =1+ NEF 4+ 0N+ 0 F 4 1o,

where ¢« = (1,1)7, the effects \;;, Fij, j = 1, 2, 1 and 1,2 are all inde-
pendently from N(0,1). Lastly, the regression error ¢; are generated i.i.d.

from N(0,4).

As a standard measure of the estimation accuracy, the performance of

the estimator 3(-) will be assessed by the integrated squared error (ISE):

ISE(G) :/{Bk(u) B fwdu, k=1, 2

We further approximate the ISE by the average mean squared error (AMSE):

AMSE(3;) = NTZZ& it) U, k=1,2 (A5
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Throughout the simulations, we use the cubic B-splines as the basis func-
tions. Thus Ly = I + m + 1, where [, is the number of interior knots and
m = 3 is the degree of the spline. For simplicity, we use the equally spaced
knots for all numerical studies. To implement the estimation procedure,
we select Ly by minimizing the modified “leave-one-subject-out” CV score
in (A.1), and determine the number r of the factors using the BIC-type
criterion (A.2).

For comparison, we compute the AMSEs in (A.5) by three estimation
procedures, and report their numerical results in Table 1 based on 1000
repetitions. The column with label “IE” denotes the infeasible estimators,
which are obtained by assuming observable F;. The column with label
“IFE” denotes the interactive fixed effects estimators obtained by our pro-
posed procedure in Section 2. Finally, the column with label “LSDVE”
denotes the least squares dummy variable estimators, which are obtained
under the false assumption with additive fixed effects in model (A.4) by
applying the least squares dummy variable method (see Section S4 for de-

tails).

Table 1: Finite sample performance of the estimators for model (A.4).

TE TFE TSDVE
N T AMSE(8;) AMSE(8;) AMSE(j3;) AMSE(f,) AMSE(5;) AMSE(/3,)

100 15  0.0091 0.0092 0.0102 0.0103 0.0947 0.0918
100 30  0.0045 0.0044 0.0047 0.0048 0.0878 0.0909
100 60  0.0021 0.0020 0.0022 0.0022 0.0844 0.0829
100 100 0.0012 0.0012 0.0013 0.0013 0.0830 0.0822
60 100 0.0020 0.0020 0.0021 0.0022 0.0848 0.0838
30 100  0.0043 0.0042 0.0047 0.0048 0.0864 0.0873
15 100  0.0082 0.0083 0.0102 0.0102 0.0946 0.0910
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From Table 1, we note that both the infeasible estimators and the inter-
active fixed effects estimators are consistent, and the results of the latter are
gradually closer to those of the former as both N and T increase. However,
the least squares dummy variable estimators of the coefficient functions are
biased and inconsistent. One possible reason is that the interactive fixed
effects are correlated with the regressors and cannot be removed by the
least squares dummy variable method. In addition, AMSEs decrease sig-
nificantly as both N and T increase for the infeasible estimators and the

interactive fixed effects estimators.

u

Figure 1: Simulation results for model (A.4) when N = 100, T" = 60.
In each plot, the solid curves are for the true coefficient functions, the
dash-dotted curves are for the interactive fized effects estimators (IFE),
the dashed curves are for the infeasible estimators (IE), the dotted curves
are for the least squares dummy variable estimators (LSDVE).

Figure 1 presents the estimated curves of 3;(-) and fs(+) from a typical
sample, in which the typical sample is selected such that its AMSE is equal
to the median of the 1000 replications. It is also found that the infeasible
estimators and the interactive fixed effects estimators are close to the true
coefficient functions, whereas the least squares dummy variable estimators

are biased.
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To construct the 95% pointwise confidence intervals for 8;(-) and Sa(-)
using the residual-based block bootstrap procedure in Section 4, we generate
1000 bootstrap samples based on the typical sample, and we choose the
block length [ by the criterion | = T%%. The 95% bootstrap pointwise
confidence intervals of 51(-) and (5() are given in Figure 2. Overall, the

proposed residual-based block bootstrap procedure works quite well.

251
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Figure 2: 95% pointwise confidence intervals for B(-) when N = 100, T =
60. In each plot, the solid curves are for the true coefficient functions, the
dashed curves are for the interactive fixed effects estimators, the dash-dotted
curves are for the 95% pointwise confidence intervals based on bootstrap
procedure.

Our next study is to investigate the performance of our proposed meth-
ods when the fixed effects are additive. Letting A\; = (u;,1)” and F; =
(1,&)7, we have ATFy = p; + &. We then consider the following varying-

coefficient panel-data model with additive fixed effects:

Yie = Xit1S1(Uie) + Xie2B2(Ust) + p1i + & + €t (A.6)

where 1 (u), fa(u), Uy, and €, are the same as those in model (A.4). The
regressors X;; 1 and X;; o are generated according to X1 = 3+2p;4+2& 411
and Xit,? =3 + 2,[% + 2€t + nit,27 Where 7’]7;157]' ~ N(O, 1), ] = 1, 2, and the
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fixed effects are generated by

N
w; ~N(O,1), i=2,...,N and MlZ_ZMz‘y
=2

T
ftNN(O,]_), t:2,,T al’ld glz—zgt
t=2

With 1000 repetitions, we report the simulation results in Table 2, Figure
3 and Figure 4, respectively. To be specific, Table 2 presents the finite
sample performance of the estimators for model (A.6) with additive fixed
effects, Figure 3 displays the estimated curves of the three estimators for
the coefficient functions, and Figure 4 displays the 95% bootstrap pointwise
confidence intervals for 51(-) and fs(-) when N = 100 and 7" = 60.

Table 2: Finite sample performance of the estimators for model (A.6) with
additive fixed effects.

E TFE TSDVE
N T AMSE(S;) AMSE(f,) AMSE(j3,) AMSE(j3,) AMSE(j3,) AMSE(3,)

100 15  0.0102 0.0102 0.0267 0.0260 0.0083 0.0083
100 30  0.0048 0.0048 0.0224 0.0216 0.0040 0.0040
100 60  0.0022 0.0023 0.0192 0.0198 0.0020 0.0019
100 100  0.0013 0.0013 0.0171 0.0176 0.0011 0.0011
60 100 0.0022 0.0022 0.0214 0.0226 0.0019 0.0019
30 100  0.0046 0.0045 0.0271 0.0281 0.0040 0.0040
15 100  0.0089 0.0090 0.0340 0.0343 0.0083 0.0083

Table 2 and Figure 3 show that the infeasible estimators, the interactive
fixed effects estimators, and the least squares dummy variable estimators
are all consistent. Our proposed interactive fixed effects estimators remain
valid even for the varying-coefficient panel-data model with additive fixed
effects. However, they are less efficient than the least squares dummy vari-

able estimators. Finally, the 95% bootstrap pointwise confidence intervals
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Figure 3: Simulation results for model (A.6) with additive fized effects when
N =100, T'=60. In each plot, the solid curves are for the true coefficient
functions, the dash-dotted curves are for the interactive fixed effects estima-
tors, the dashed curves are for the infeasible estimators, the dotted curves
are for the least squares dummy variable estimators.

for the typical estimates of (;(-) and [5(-) in Figure 4 demonstrate the

validity and effectiveness of our proposed methods.
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Figure 4: 95% pointwise confidence intervals for B(-) when N = 100, T =
60. In each plot, the solid curves are for the true coefficient functions, the
dashed curves are for the interactive fixed effects estimators, the dash-dotted
curves are for the 95% pointwise confidence intervals based on bootstrap
procedure.

Example 2 (Lagged dependent variables case). In this example, we

consider the following varying-coefficient panel-data model with lagged de-
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pendent variables as follows:
Yie = Yiio1a(Us) + X151 (Uit) + Xt 252(Uir) + N[ Fy + €3, (A7)

where i =1,... N, t =2,...,T, a(u) = cos(um), X1, Xit2, Un, A\i, and
F, are generated as in model (A.4). Table 3 presents the results for model
(A.7), and the estimated results show that the proposed method works well
even for model (A.7) with lagged dependent variables.

Table 3: Finite sample performance of the estimators for model (A.7).

59

E TFE
N T AMSE(&) AMSE(j3;) AMSE(S,) AMSE(a) AMSE(j;) AMSE(f,)

100 15 0.0114 0.0109 0.0105 0.0124 0.0117 0.0118
100 30  0.0073 0.0068 0.0069 0.0082 0.0078 0.0075
100 60  0.0039 0.0035 0.0033 0.0041 0.0041 0.0039
100 100  0.0022 0.0023 0.0024 0.0026 0.0027 0.0025
60 100 0.0038 0.0036 0.0032 0.0040 0.0043 0.0038
30 100 0.0071 0.0072 0.0067 0.0084 0.0078 0.0078
15 100 0.0112 0.0108 0.0106 0.0125 0.0116 0.0115

Example 3 (Partially linear varying-coefficient model). In this exam-

ple, we generate data from the following model:
Yie = Xit161(Uir) + Xit 202 + Xir 383 + A\ Fy + €, (A.8)

where 1 (u) = sin(um), B =3, 3 = 2.5 and X3 = 2+ N Fr+0" N\ + 0 F +
Nit.3 With ;.3 ~ N (0, 1). The regression error ¢; is generated as AR(1) for
each fixed ¢ such that ¢;; = 0.7¢; ;1 +¢€;, where € isi.i.d. N(0,1). Further,
we use the other settings in model (A.4). The summary of simulation results

is reported in Table 4.

Table 4 indicates that, although there is serial correlation in the error

terms, the interactive fixed effects estimators are gradually closer to the
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Table 4: Finite sample performance of the estimators for model (A.8).

IE

IFE

N T AMSE(S1) Mean(fB2) SD(B2) Mean(83) SD(83) AMSE(f:) Mean(f2) SD(82) Mean(j3s) SD(33)

100 15 0.0109 2.9891 0.0960 2.4872 0.0891 0.0152 3.2104 0.1269 2.6517 0.1174
100 30  0.0069 3.0096 0.0715 2.5081 0.0712 0.0106 3.1017 0.0922 2.5953 0.0918
100 60  0.0044 2.9912 0.0482 2.5066 0.0473 0.0058 3.0192  0.0541 2.5153 0.0536
100100 0.0028 3.0051 0.0256 2.5039 0.0237 0.0030 3.0079 0.0363 2.4966 0.0344
60 100 0.0032 3.0068 0.0325 2.5052 0.0331 0.0037 3.0087 0.0391 2.5074 0.0395
30 100 0.0051 3.0079 0.0433 2.5068 0.0442 0.0060 3.0098 0.0494 2.5091 0.0497
15 100 0.0092 3.0091 0.0558 2.4917 0.0563 0.0097 3.0112 0.0607 2.5135 0.0618

infeasible estimators as both N and T increase. However, for small T, the
estimators are inconsistent. The simulation results are consistent with the

theoretical results.

To demonstrate the power of the test, for model (A.8), we consider
the null hypothesis Hy: fa(u) = 3, B3(u) = 2.5, against the alternative
hypothesis Hy: So(u) = 3 + co(2 — bu + 5u?), B3(u) = 2.5 + ¢ cos(mu),
where ¢y determines the extent that [;(u) varies with u. We set ¢y =
0, 0.06, 0.12, ..., 0.66. If ¢y = 0, the alternative hypothesis becomes the
null hypothesis. For sample size N=100 and 7" = 60, we generate 1000
samples under Hy, and use 1000 bootstrap replications for the bootstrap
procedure in Section 6. Figure 5 reports the estimated power function

curves with the significance level oy = 0.05.

From Figure 5, we have the following results. (1) The size of our test
is close to the nominal 5% when the null hypothesis holds (¢y = 0). This
demonstrates that the bootstrap estimate of the null distribution is approx-
imately correct. (2) When the alternative hypothesis is true (¢o > 0), the

power functions increase rapidly as ¢y increases. These results show that
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Figure 5: The simulated power function for sample size N = 100 and T =
60.

the proposed test statistic performs well.

S1.3 Application to a real dataset

We apply our proposed methods to a real dataset from the UK Met Of-
fice that contains the monthly mean maximum temperatures (in Celsius
degrees), the mean minimum temperatures (in Celsius degrees), the days of
air frost (in days), the total rainfall (in millimeters), and the total sunshine
duration (in hours) from 37 stations. For this dataset, one main goal is
to investigate the impact of other factors on the mean maximum temper-
atures across different stations. Li et al. (2011) analyzed the effect of the
total rainfall and the sunshine duration on the mean maximum tempera-
tures. By contrast, we take into account the days of air frost. Data from 21
stations during the period of January 2005 to December 2014 are selected
while, as the record values for the other stations missed too much, we drop

them from further analysis.
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Because there exists the seasonal variation in this dataset, our first step
is to remove the seasonality from the observations. We impose the additive
decomposition on time series objects and then subtract the seasonal term
from the corresponding time series objects. Let Yj; be the seasonally ad-
justed monthly mean maximum temperatures in the tth month in station i,
Xit,1 be the seasonally adjusted monthly days of air frost, X;; 2 be the sea-
sonally adjusted monthly total rainfall, and X, 3 be the seasonally adjusted
monthly total sunshine duration. To analyze the dataset, we consider the

following varying-coefficient panel-data model with interactive fixed effects:
Yit = Xit,lﬁl (t/T) + Xitygﬁg(t/T) + Xitjg/ﬁg(t/T) + )\Z—Ft + Eity (Ag)

where 1 <17 <21, 1 <t <120, and the multi-factor error structure \] F} +
g 18 used to control the heterogeneity and to capture the unobservable

common effects.

Note that the objectives of the study are to estimate the trend effects
of the days of air frost, the monthly total rainfall and the sunshine duration
over time. To achieve the goals, we fit model (A.9) using the cubic splines
with equally spaced knots, and select the numbers of interior knots for
the unknown coefficient functions by minimizing the modified “leave-one-
subject-out” CV score in (A.1). Moreover, the number r of the factors
is determined according to the BIC-type criterion (A.2). The estimated
curves and 95% bootstrap pointwise confidence intervals of 3;(+), fa(+) and

Ps(+) are plotted in Figure 6 based on the proposed methods.

The estimated trend curve in Figure 6 shows that the estimate of 5 (-)
is almost flat, thus we assume that the effect of X, ; is time-invariant and

test the constancy of the coefficient function /31(-). Based on the proposed



VARYING-COEFFICIENT PANEL DATA MODEL S13

air frost

2005 2010 2015
rainfall

2005 2010 2015

O 1
2005 2010 2015

Figure 6: The estimated curves and 95% pointwise confidence intervals of
B1(+), P2(+) and B3(-). In each plot, the solid curves are for the interac-
twe fized effects estimators, the dashed curves denote the 95% pointwise
confidence intervals.

bootstrap test procedure, we generate 1000 bootstrap samples and obtain
the p-value of the test is 0.133 at the significance level 5%. This motivates us
consider the following partially linear varying-coefficient panel-data model

with interactive fixed effects:

Yie = Xit 101 + Xir2Bo(t/T) + Xt sfs3(t/T) + N[ Fy + e, (A.10)

We apply the proposed estimation procedure in Section 5 to model
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Figure 7: The estimated curves and 95% pointwise confidence intervals of
Ba(+) and B3(-) in model (A.10) . In each plot, the solid curves are for
the interactive fized effects estimators, the dashed curves denote the 95%
pointwise confidence intervals.

(A.10) and obtain that the estimate of 51 is —0.1915, which means there is
a negative effect of monthly days of air frost on monthly mean maximum
temperatures. The estimated curves and 95% bootstrap pointwise confi-
dence intervals of fy(+) and f3(-) are given in Figure 7. From Figure 7, we
can see that the estimated curves of 55(-) and f3(+) are all oscillating over
time, and the effect of the monthly total sunshine duration is obviously
above zero, which shows that the monthly total sunshine duration has an

overall positive effect on the monthly mean maximum temperatures.
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S2 Appendix B: Proofs of theorems

We provide the proofs of Theorems 1-6 and Corollary 1 in Appendix B.

For the ease of the presentation, let C' denote some positive constants
not depending on N and T', but which may assume different values at each
appearance. In the proof, we use the following properties of B-spline (see
de Boor (2001)): (1) By(u) > 0 and 1% By(u) = 1, for u € U and
k=1,...,p. (2) There exist constants 0 < M;, My < oo, not depending on
Ly, such that

Ly L ) L
MLy 3 < / [ZWBM(U)} du < ML 4,
=1 U= =1
for any sequence {yu € R:1=1,..., L;}.

From Assumptions (A1)—(A4) and Corollary 6.21 in Schumaker (1981),

there exists a constant M > 0 such that

Ly,
Br(u) = Z%ZBM (u) + Rex(u),
=1
sup |Re(u)] < ML, k=1,...,p (B.1)

ueU

Let €; = (i1, ..., eir)" withey = 7| Rep(Uir) Xy g, and ¥y = (37, ..., %))"
with ¥ = (Y1, -+, Ve, )" ThenY; = RA+F°\+e;+e;, fori=1,... N.
We use the following facts throughout the paper: ||F°|| = Op(T"/?), | Ri|| =
Op(T'/?) for all 4, and (NT)"* SN | Ri||> = Op(1). Note that | F|| =
T'/2\/r. For ease of notation, we define dy; = min[v'N,vT] and (14 =
- L ?*. Following the notation of Huang et al. (2004), we write a,, < b,

if both a,, and b,, are positive and a, /b, and b, /a, are bounded for all n.
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Proof We only give the proof of ||R;|| = Op(T"/?), and omit the proofs of
IFO| = Op(T"?) and (NT)™' 321, | Ri||* = Op(1).

E(IR|?) = B(n(RE))=E (Zm !!2>
= (ZiZXfthkl zt) i y iE(Xfthkz(Uzt))

t=1 k=1 [=1 t=1 k=1 I=1

By Assumption (A1), we have E(Xt B2,(Us )) < CE (B,gl(Uit)). More-
over, by the properties of B-spline, we can get that

Ly Ly 2
> Bi(u) < (Z Bkl(“)) =1
=1 =1
Then we have E(||R;||?) = O(T), which implies that ||R;|| = Op(T"/?), for

S2.1 Proof of Theorem 1

Without loss of generality, we assume that 3(-) = 0. Then Y; = FO\; + ¢;,
fort=1,..., N. By Lemma 2, we have

N
1
Onr(v. F) = NT 2 (Y: — Rvy)"Mp(Y; — Ry)
N
(1 ) FOMpFO\ [AA

N N
2 2
———"Y R]MpF°\;— —=~" Y R]Mrge;

N N
9 1
—EjTFOTM , —EjTM -
T 2N FE Tt NT - €1 MFEi

=1

= Qnr(7,F) +op(1),
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uniformly over bounded ~ and over F' such that F"F /T = I, where

N N 0T 0 T
oo - ¢ () [(227) ()

=1

N
2
S — TE TMpFO);.
NT ! - Ri MpE"A

Let n = vec(MpF?), and

N
1 ) ATA 1 ]
A = NT ;_1 R/ MpR;, A;= ( N X ]T> , Az= NT E (A] @ MrR;).

Then,

Qnr(v. F) = ~ Ary+n A — 29" Ay
= ~T(A; — ATAT Ay + (7 — T AFA; ) Ay (n — AT Agy)
= ~"D(F)y + 67 A0,

where 0 = n— Ay Az7y. By Assumption (A5), D(F) is a positive-definite ma-
trix and A, is also a positive-definite matrix, which show that @ nr(v, F) >
0. By the similar argument as in Bai (2009), it is easy to show that QVNT(’)/, F)
achieves its unique minimum at (0, F°H) for any r X 7 invertible matrix H.

Thus, Bk(), k=1,...,p, are uniquely defined. This completes the proof of
part (i).
The proof of (ii) is similar to that of Proposition 1 (ii) in Bai (2009).

To save space, we do not present the detailed proof. O
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S2.2 Proof of Theorem 2

N Ly, ~ Ly,
Since fr(u) = > AuBri(u) and Br(u) = > Y Br(u), by the properties of
=1 =1
B-spline and (C.2), we have

18:() = Be()IZ, < 2018k() — B2, + ML,
and
18:(:) = Be(13, = 1 — Welldr = L 1A — Fll® k=1,...,p,(B.2)

where ||[vell% = YT Hivk, and Hy, = (hij)r,xz, is a matrix with entries

= J,; Bri(u) By;j(u)du. Summing over k for (B.2), we obtain that

18() = B3, = Z!m Fell? =< LA — 1%

k=1

By (2.7) and Y; = Ry + F°\; + ¢, + €;, fori = 1,..., N, we have

N N
¥-5= (Y RIMR)) ST RIMA(FON + e+ e),

i=1 =1

or equivalently,

(ﬁ RIMgR:) (4 - 7)

N N N
S RIMpF°N\ +> R[Mge;+» R Mge;. (B.3)

i=1 i=1 i=1
We first deal with the third term of the right hand in (B.3). By Assumption
(A1) and (C.2), and using the similar proofs to Lemma A.7 in Huang et al.
(2004), and Lemmas 2 and 3, it is easy to show that

H Z RI Mpe;

2

— Op (L ng> (B.4)
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For the first term of the right hand in (B.3), by noting that MFF =0, we
have MpF° = Ma(F° — FH'). By (B.3), we have

F'—FH '=—(B,+By+---+ By5)G, (B.5)

where H = (A"A/N)(FF /T)Vt, G = (FOF/T)"Y(ATA/N)~" is a ma-
trix of fixed dimension and does not vary with ¢, and By, ..., Bi5 are defined

in Lemma 3. By (B.5), we have
1 | X
T 0 - T . 0 grpr—1yy.
— E RIMsF")\; = NT l._El R/ Mu(F" — FH ")\

N
]' T
=1
=: J1+J2+"'+J15.

It is easy to see that J;—Ji5 depend on B;—Bj; respectively. For J;, we have

N N ~\ ! -1
1 1 ~ FUF ATA

= —— My | —— (¥ =N F"F i

N N —1

1 - - (ATA N

= N2T (R; MFRJ‘) )‘j < N ) /\i] =)

i=1 j=1

1 N

% > > RiMpRjai;| (% —7),

i=1 j=1

~|

where a;; = AT(A"A/N)~');. For J;, we have

N
1 . -
hi= =5 ;1: R} MB1G; = op(||5 — ).

For J3, we have

N N
E‘]TF

1 T g o
Ty = s S0 S RIMR, (T> M- 7).

i=1 j=1




520 S. Y. FENG, G. R. LI, H. PENG AND T. J. TONG

By Lemma 3 and some elementary calculations, we have

T7'e7F = T 'e]F°H+T 'e}(F — FH)
= Op(T™'2) + T~20p(|5 = F|) + Op(833) + Op (GLET2)
Using the above result and the similar argument as the proof of Lemma 2,

it is easy to verify that J; = op(||¥ — 7||). Similarly, we can obtain that
Js = op(|[¥ —4]|). For Jy, we have

1
J4:_N2TZ

i=1 7

T

N N R RJTF
RIMpF (v =) G\i.

=1
Noting that MzF® = Mz(F° — FH'), and using Lemma 3 (i), that is,
T2 B — FH| = Op(I5 — Fl) + Op(634) + Op(CLL2), we can obtain
that Jy, = op(||¥ —7||). For Js, noting that G is a matrix of fixed dimension
and does not vary with 7, and by MzF® = Mz (F° — FH™'), we have

1 LX e F
— T A 0 . J .
To =~y 0 O RIMGF AJ( 2 )GAZ

By (B.6) and Lemma 3, we have

N N N
]_ T 7~ . ]- 7 10 ]' T 0

= Op((NT)™'%) + (IN)""20p (|7 = 3]) + Op(N )
FNT20p(035) + N V20 (G117

= Op((NT)™"%) + Op(N™") + N~V20p(b37)
+N*1/20p( ;{f).
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By Lemma 3 (v), then

1/2

N
1 ~ .~ _
WZRZMF(F —F°H) = Op(||7 = 7I) + Op(d57) + Op(Cly )
=1

Moreover, the matrix G does not depend on ¢ and ||G|| = Op(1), then

1/2

Js = [Op(1F = F) + 0r(633) + 0r(¢17)]
x[OR((NT)12) + Op (N7 4+ N7V20p(533) + N1205 (17 )]
= op(Ily = FI) + 0p((NT) /%) + N~10p(333) + N~20p (63}

+NT0p (¢ ) + N7V208 (Gra)

For J7, we have

1 & a ATAN -1
N°T > RIMj [Z &N <T>
i=1 Jj=1

where a;; = A(ATA/N)~t);. For Jg, by Assumption (A8), and the same

i
a;; R Mpe;,
1

1
)‘i:_NzTZ

=1 j

Jr=—

N N

argument as in the Proposition A.2 of Bai (2009), and Lemma 5, we have

1 N N

i=1 j=1

1 N N R 1 A
= 5o 2 D RIMpQFGN — 5 3 D RIM(eje] — ) FG,

i=1 j=1

= Anr +Op(1/(TVN)) + (NT)™ [0p(|15 = F1) + Op(65) + Op (G117
1

N [OP(H‘Y =31 + Op(dr) + OP( zf)] g

where Ay = — 53 Yy Sy RIMpQ;FG);. For Jy and Jig, which

Js =

depend on 4 — ~. Using the same argument, it is easy to prove that Jy

and Jjy are bounded in the Euclidean norm by op(||¥ — 7||). For Ji,
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using MzF® = Mp(F° — FH™') again, and letting ﬁv/] = e;ﬁ’/T and
||ﬁ7]|| = |le;|lv/7/VT = Op( 1/2), and using Lemma 3 (v), we have

Ji = R M;F°), G
11 NQTZZIJZI ( T )
N N Tﬁ‘
= N L RIMpF ZAJ( )
—~ Op< 1/2) [OP(”'V v|\>+0P<5NT>+OP<iQQ>]'

For Jyo, similar to (B.4), we have

Ty = N2TZRTM [Ze]AT(ANA>

7j=1

Ai

1 N N
- ~1/2 ,1/2
= a7 2 > wRIMpe; = O (L7 ).

i=1 j=1
where a;; = AT(ATA/N)~1);. Using the similar argument, it is easy to see

that Jy3 = (NT)~Y20p(¢)/7).

For Ji4, by (B.6) we have

T

N N
1 . €]

i=1 j=1

N N T ;0
1 . eTF'H
= D :RiMﬁej( - )G)\i

i=1 j=1

N N T(E 0
1 (F — F'H
—a7 2 2 RiMze, (sf(#v GA;.

i=1 j=1

ﬁ)

Similarly, we can prove that the first term of the above equation is bounded
T-120p(¢;/2). For the second term, by a similar argument and Lemma

4, we can prove that the second term is bounded above by

Or (G ) [T720(15 = Al + Op(033) + Op (P T2 .
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For Ji5, by M F =0 and some simple calculations, we have

i i (%

i=1 j=1

J15 =

>FG)\ = op(Cra).

Summarizing the above results, we can obtain that

N
> RIMpF°\

=1

— ot Jr+ A+ 0p(I17 — 1) + on((NT) ) + O

1
NT

1
T\/N)
+N_1/2OP(5N2T)+OP< ~1/2 1/2) +Op ( 112 %2)

This leads to
| X
(ﬁ > R]MgR; + OP(l)) (¥ =) —
i=1

N
1 1
= — SN R Mpei+ Jo + Ayr + op(NT)"V2) + O (—)
NT 2 RiMpeict Jr-+ Awr +0p((NT)) 4+ 0p (707
+ N7Y20p(532) + Op <T‘1/2§1/2>+O ( 2 i{f)
Multiplying Ly(LyD(F))~" on each side of the above equation, and by

Lemma 6, we have

N

Y- = (LND<F)>_1%Z

L (L) i+ (VD)) O (L (NT) )

Ly
i+ —A
Eg; + T NT

N
1
R Mpo — = > i R} Mo
j=1

N

+(LND(F)) - f
+<LND(13‘)>7 OP<L T‘1/2C1/2) (LND(F‘)> 0P< LY? ;{f)

>+L N2 <L D(F)>_1 Op(657)

&T:_%ii(& _TVi)TFO (FO;FO> (AT ) ( Z&@) On1).
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and
N

> RIMQFG\;

i=1

with Q = %Z;Vd Q; and Q; = F(eje]). By Lemmas 1 and 7, it can
be shown that D(F) = D(F°) + op(1) and the minimum and maximum

1

Ayr = — (LND(F)>_1 ~

~

eigenvalues of LyD(F') are bounded with probability tending to 1. In
addition, by Lemma 1 and Lemma A.6 in Bai (2009), it is easy to verify

that Ayr = Op(1). Using the same argument for Lemma 2, we have

N 2

D(FU)*%Z

i=1

€;

N
1
]:

2

= OP(L?V(NT)_I)v

Ly &

NT <
=1

N
1
RZ—MFO — N Zain;MFO] g;
7j=1

uniformly for F°. By the above results, together with Lemma 1 and

SyrLylog Ly — 0 as N, T — oo, we have

19 =~ = Op(LN(NT)™Y?) + Op(LyT ™)+ Op(LyN~)

+Op (LNT_1/2 }Jf) + Op (L}f %2).

Summarizing the above results, we finish the proof of Theorem 2. [J

S2.3 Proof of Theorem 3

Note that B(u) — B(u) = B(u)™ (5 —7) + B(u)™5 — B(u). By (C.2), we have
|B(u)5 = Bu) | = Or(¢1).

By Assumptions (A1) and (A8), Lemma 1, and the properties of B-spline,
similarly to the proof of Corollary 1 in Huang et al. (2004), we can obtain
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that
N -1 N -1
u) (Z Z{Zi) YNT1 (Z Z{Zi) B(u) wy,
=1 =1
LN 2 LN
2 CW ZBM(U) 2 NT

Then, as L3 /NT — oo, we have sup ’Zfl/Q(B(u)Tﬁ — ,B(u))‘ = op(1).

uel

Invoking Lemmas 1 and 7, from the proof of Theorem 2, it is easy to

show that
~ ~ 0y —1 LN LN O
Y= = (InD(F)" 5D Ziei+ - (LvD(FY) ™ évr
+ (LyD(F*) ™ Ang + (LyD(F®)) ™" Op (L (NT)™?)
+ (LnD(F) " 0p (L), (B.6)

where
N

=R T B () (5) s (5 )

=1 j=1

and

N -1 -1
1 FURO\ ! ATA
Ayr = ——— 3" RIMpoQF° .

=1

Under the assumptions that %Ly log Ly — 0, L3 /NT — oo, and
T/N — ¢, we have

Ly
271/2B( )N (L D( )) fNT H 2 1/2 1/2W0
L 1~ -
2_1/2B(U)WN (LyD(F*) ™" Ay 25 71271200,

where WP and W2 are given in Theorem 3. Combining with Assumption

(A10), we finish the proof of Theorem 3. U
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S2.4 Proof of Theorem 4

Similarly to the argument of Bai and Ng (2006), it is easy to show that Wi
is consistent for W;. Similarly to the argument of Newey and West (1987)
and Bai (2003), we can obtain that W, is consistent for TW,. Thus, Theorem
4 follows. 0

S2.5 Proof of Corollary 1

Invoking (B.6), similarly to the proof of Theorem 2 in Bai (2009), we can

prove Corollary 1, and hence omit the details of proof. O

S2.6 Proof of Theorem 5

Since Q(v1, 0, F) = Q(~, F) attains the minimal value at (7, 5,14 17,0
e ,Bplzp)T, where Y1) = (47, . .. ,47)7- Similarly to the proof of Theorem



VARYING-COEFFICIENT PANEL DATA MODEL S27

2, invoking Lemmas 3-7 and 3.1 By (u) = 1, we can get that

SRR G - 5)
1 121 o ) T o X
= =7 ;‘z_zzmxw -0) - o7 Z ;EZMFXJ%'(@ - 9)
1 N 1 N N 1 N
z—;f . =1 j=1 . ]1\,[—1

NiT Z ZBZMFE]‘@M ('AY(I) - '7(1)) - N21T2 Z ZE:MFQJFGAZ

=1 j=1 i=1 j=1

+op(8 — 0) + op(3V —FW) + N7120p(532) + Op((ra)
+op((NT)™V2) + Op(T7V2¢)1D),

+

and

| NN B A | N A
+N2TZZXZ'MFXJ'@M(0—9)—WZZXiMijFGAi

i=1 j=1 i=1 j=1

+0p(0 — 0) + op(FV — 4W) + N7V20p(632) + Op((ra)
+op((NT)™Y2) + Op(TV2¢1D).

Let Z; = Mpo X;—% > ¥ | Mpo X ja;;and Z; = MpoR,—% 3% | MpoR,a;;,
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a simple calculation yields that

N
1
S Ziz,60 50
NT —
1 N N N
= Wz_lzz(e — 0) + WZZZEZ + WZR%MFOQ

+0P(’Y( '-35 1’) + NT20p(057) + Op(Cra)
+0p((NT)71/2) + Op(T 1/2C1/2) +Op(N 1/2C1/2) (B.7)

and

N N
= D> Y X MpoQ;F°GOX; + 0p(6 — 0)

i=1 j=1

AV — Ay 4+ N20p(55%) + Op((ra)
Hop((NT)"V2) + Op(TY2¢12) + Op(N~V2¢1D), (B.8)

where GO = (FO"F/T)"Y(A"A/N) " and V; = N 2N 0, X
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= N Z5T7— N T
Let & = ﬁ Yir1Z,Z;, = ﬁ > ZiZ;,

N N
_ 1 0
E1 = wagm D D RIMp OGO\,
=1 j=1
1 N N
1= g 2 D X Mo FOGON,
=1 j=1
N N T
=3 B e, (13 e,
i=1 j=1 t=1

Then we get

5(1)

(A -5

-

) = (240p(1) (O —0)+0p(6 —6)

N
1
+(@+0p(1)) ' o5 Y (ZTei + B Mpoe:)
i=1

+op(AW —FW) + N7V20p(637) + Op(Cra)

+0p((NT)™) + Op(T™2¢,/) + Op(NT¢L). (B.9)

Substituting (B.9) into (B.8), and a simple calculation yields that

~

(@ — T2 'V +0p(1))(0 — 0)
1 N

= — S (Ze;+ X Mpoe;) —Z, —Zp + (@' + 0p(1))Z,
NT —

N

- —_ - 1 T T
+U (D +op(1)Z, — U(& ! + 013(1))ﬁ ;(gi € + R Mpoe;)

FNV20p(63%) + Op(Cra) + op((NT)~?)
+Op(T7V2C2) + Op(N7V2¢)1).

529
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Thus we have

o= q@—lqﬂ +o0p(1))VNT(6 - 6)

=

1 _
= — Z (Z;— Z3 0V e+ —— > (X; — RO 'U) Mpoe,
VNT i=1 i=1

VNTE — U@+ op(1)E) — VNT(Es — U@ + 0p(1)),) + op(1).

By Assumption (A1) and (C.2), and using the similar proofs of Lemma A.7
in Huang et al. (2004), and Lemmas 2 and 3, it is easy to show that

N
H— Z (X — R®1U7) Mpoe,|| = 0p(1).

/N -

Using the central limits theorem, we can obtain that

N
Z ST e, L N(0,11,).

3\

In addition, by the law of large numbers, we have

[ R Ay

Invoking the Slutsky Theorem, we complete the proof of Theorem 5. O
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S2.7 Proof of Theorem 6

By a simple calculation, we have

N
1 A A A~ A A
RSS) = d (Vi - RAV - X0 - F* X)) (Y, - RAY - X,0 - F*)))
=1
N

(Y- Ry — F\i + Ry — R —X.:0 — F*\; + FA,)
1

.

i=

x(Y; — Ry — F\ + Ry — RAYV — X,0 — F*\! + F)\,)

N
1 ) .
_ P A1) )
RSS: + ;le(Rm R4 X0 (R~ — R4V — X,0)
1 N
tNT 1:1( PA)T(EA; — FA)
N
2 e o A
+ 57 > (Y;— R4 — FA) (R — RAV* — X,6)
=1
9 N
_ A — RAD —X,0) (B A — FA,
NT 2 (R — RAY ) (FA; )
2 & A ) )
—— N (Y; - Ry — F)\) (F*\' — F)\,).
NT iﬂ( Ry )T(FN; )

For the second term of the above equation, by the properties of B-spline,

we have

— S (RA-RAY - X,0) (R4~ RAY" ~X,0) = |B(w) - B2,

where B(u) = Ri& with 4 = (37, 5,117 e ,Bplzp)T. Then, under

H,, we have

18(u) = B(w)llz, < 1B(u) = Bz, + [1B(w) — Blu)||, = 0,
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where B(u) = (B1(u), ..., Bg(w), Byt1,-- -, Bp)7. For the third term, a simple

calculation yields that
F* X' — F)\ = F*X\' — FO\ + FO\ — F\,
FN\ —F)\ = (F'H—F)H '\, — F(\, — H')\),
F*\' —FO\ = (F* — FOHYH '\, + F*(\' — H™')\).
Invoking Proposition A.1 (ii) and Lemma A.10 in Bai (2009), Lemma 3

(i), and Assumptions (A6)—-(A7), we have <= (F*)\* FX\)(F*\r —

NT

F),) = op(1). Similarly, it is easy to show that

N
1 . X
W Z(Yz — Ry - F)‘Z)T(RZ':Y - &':7(1)* - X16> = 0P<1)7
=1
1 & ) .
~7 (Rfy — RAY* = X.0) (F*\: — F\) = op(1)

N
1 . . ..

On the other hand, under Hy, because ||B(u) — B(u)||L, > ||8(u) —
B(u)||z, — |8(w) — B(w)]||L,. As N — oo and T — oo, we have

18(u) = Bw)llz, > ZHﬁk ()], —op(1)
> ) inf [|B(u) — allz, — op(1).

Then, by the Cauchy-Schwarz inequality, a simple calculation yields that

p
RSSO - RSSl Z kzlaltlelﬂg ||,6’k(u) - CLHL2 + Op(l).
=q+
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It remains to show that, with probability tending to one, RSS; is

bounded away from zero and infinity. By some elementary calculations,

we have

RSS,

Thus, it suffices to show that, with probability tending to one, NT Z

-
I
A

(e, + e; + Ri(7 — &) + F°\; — F ;)"

3~ 3~
Mz

1

.
Il

ei+ Ri(¥ —4) + FO\ — F)

X

- 2
'Mz+

(e;+ e+ Ri(F—4)+ (F'H—-F)H ')\, — F(\, — H'\))"

1

.
Il

X

- 3
'Mz+

.
Il
—

~€Z‘ + Op(l).

zlz

is bounded away from zero and infinity. By Assumption (A8), we have

L ] N T N T
ar (ﬁ Z€Z—€Z‘> = WCOV <Zzg?p ZZSJQS)
=1

i=1 t=1 =1 s=1

N N T T
- N2T2 ZZZZC Zt’ JS — 0.

i=1 j=1 t=1 s=1

The Chebyshev inequality then implies that, as N — oo and T — oo,

1 & 1 &
—T;dei—E (W;e;@) —0

in probability. Since E(e%) is bounded away from 0 and infinity, the result

follows.

O
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S3 Appendix C: Some lemmas and their proofs

In order to prove Theorems 1-6, we provide Lemmas 1-7 in Appendix

Lemma 1 Let ppi, and pmax be the minimum and maximum eigenvalues
of LyD(F') respectively. Then there exist two positive constants Ms and
M4 such that M3 S Pmin S Pmax S M4-

Proof The proof of Lemma 1 follows the same lines as Lemma A.3 in
Huang et al. (2004), Lemma 3.2 in He and Shi (1994), and Lemma 3 in
Tang and Cheng (2009). We hence omit the proof of Lemma 1. O

Lemma 2 Assume that assumptions (A1), (A2), (A4)-(A8) hold. We

have

1 N

— 3" R Mye,| = op(1),
| NT & e or(1)

1 N

— 3 N F Mpei|| = op(1),
|| v e or(1)

1 N

— Y €7 Prei|| = 0p(1).
|| N = e or(1)

Proof Using Pr = FF7/T, we have

1 N 1 N 1 N
NT ; RiMre; = 7 ; Riei— ; R] Pre;.

By Assumptions (A1) and (A8), together with the properties of B-spline,
it is easy to show that - SN Re; = Op((NT)~Y/2) = 0p(1). Now we
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show that sup w7 SN RIPre; = op(1). Note that
F
RIF
N Z < ) Z Fiew

| Ly
= thit .
Tt:l

By T-V2|[F|| = V7, we have T~ |R{F|| < T Ri||| FI| = /iT-2| Ry|.

iPFEi

(C.1)

By Cauchy-Schwarz inequality, (C.1) is bounded above by

[N T 1/2 N 2\ 1/2
ﬁ(ﬁ;f;”&t”?) Z

T

E Fiei

By T'2||R;|| = Op(1), the first term of the above expression is of order
Op(1). Similarly to the proof of Lemma A.1 in Bai (2009), it is easy to

show that the order of the second term is 0p(1) uniformly in F'.

t=1 s=1

— ( Z % Z Z Fth [Eit&‘s - E(Qt@s)])

t=1 s=1

A | XN
+tr (ﬁ Z Z FtFSTN ; E(sit5i8)> .

t=1 s=1

Note that 7~ Z |Fi||*> = [|[FTF/T| = r. By Cauchy-Schwarz inequality
and Assumptlon (A8) we obtain that

< Z T2 Z Z E 5215515 - (51'1&61'3)])

t=1 s=1

T

S(%iiﬂfﬂﬁﬂNQ%ZZ[

N

Sl

t=1 s=1 t=1 s=1 =1

= rN120p(1).

Z[&‘t&'s — E(Siteis)}]

1/2



536 S. Y. FENG, G. R. LI, H. PENG AND T. J. TONG

Next, by Assumption (A8)(ii), we have | N1 Zf\il Oiits| < 015, Where 0y 45 =

E(eieis). Again using the Cauchy-Schwarz inequality,

1 T T 1 N
tr (ﬁ Z Z EF;N ZZI E(£it£is>>

t=1 s=1

1 V21w
<ﬁ22||ﬂ||2|'ﬂ”2> (ﬁZZ@z)
t=1 s=1

1/2

IN

This shows that

== Op((NT)_l/z) == Op(l).

1 N
— )R] Mpe;
NT =1

sup
F

The proofs of the second and third results are similar to the proof of the

first one, and hence are omitted. O

Lemma 3 Assume that assumptions (A1)-(A9) hold. For ease of notation,
let H= (A"A/N)(FF/T)Vyk. We have

() TV2E - FPH| = Op(|4 = 311) + Op(03h) + Op (1)

(i) T-'F'7(F - FH) = Op(|% — 31I) + Op(0x3) + Op (<11,

(i) T-F"(F — F'H) = Op(|5 = 7)) + Op(333) + 0p (¢},

(v) T7R}(F — FH) = Op(|y — All) + Op(033) + 0p(¢117), for all

N

1 ) o )

() g S RIMp(F — FUH) = On((l4 —71) + 0n(533) + Op (7).
Jj=1

(vi) HH™ — (T F7F)™ = Op(|[5 - 7]) + Op(33) + Op (1),
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Proof (i) Note that FVyr = |55 >0 (YV; — RA)(Y; — RA)™| F and

sup |Reg(u)] < MLy%, k=1,...,p. (C.2)
ueU
In addition, noting that Y; = R~y + F\; +¢&; + e;, for i = 1,..., N, we
have the following expansion:

N

FVir = ) Ri(3-9)F - 7)7R7F+—ZR7 )N FF

=1

ZR’Y y)e TF+—ZF>\7 'y)TRT

1 .1 5
AVRIF+—) F\e[F+—> g\ F"F
Z el NT Z SETNT z; ©

N
e7 T 0 T 0T T
_Tzel F—i——Zel F+—ZF)\Z-)\iF F
=1 i=1
= B1+BQ+Bg+' +B167

where Big = = Son | FONNFYF = FO(ATA/N)(FO F/T). This leads

to
F—F°H = (B, +By+ -+ Bi5)Vyi. (C.3)

Noting that T~ V2||F|| = \/r and ||R;|| = Op(T"/?), we have

_ 1 R; - N .~
reim) < S (LY 50 = 0l - 31P) = ol - 3,

1
i

<|| )

7

1
N

M=1

T72By| < )\W —FNEFTE/T] = Op(I5 = Al).

=1
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Using the same argument, it is easy to show that TV/2||B)|| = Op(||[¥—7|)),
for | = 3, 4 and 5, and T~Y2||By|| = Op(dy%), for [ = 6, 7 and 8. For By,
using the same argument, and by (C.2) and Assumption (A1), we have

ront s (D -w1(12)

< Op(II5 —All) - M2,

T2 Bo|

IN

Similarly, we can prove that T-Y/2||By| = Op(||4 — 7)) - M(}/2. For By,

we have

3= 0n(a).

Similarly, it yields that 7-/2||Bya|| = Op(¢}7). For By, we have

on(iost)

Similarly, it yields that T-Y2|| By|| = Op(¢}/765}%). For Bys, we have

N
ey <7y ()
=1 \/_

N
_ 1
T2 Bus|| < WZ & TZ%
=1

N T
T-12||Bys| < NlT Zl (D e2)vr = 0r(Ca).

t=1
Following the same arguments as in the proof of Proposition A.1 in Bai

(2009), together with the above results, we have

TR E — F'H| = Op (|7 = ) + Op(05) + Or (¢117).

(ii) By (C.3), we have the following decomposition:

T'F(F — F°H) = T"'F (B, + By + - - - + By5)Vyys-
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Invoking the similar arguments as in the proof of Lemma A.3 (i) in Bai

(2009s) to the first eight terms, we can obtain that
T™'F" (B1+ By + -+ + Bs)Vyr = Op (|7 = All) + Or(dy7)-

For the other terms, we can show that T~'F ByVy; and T-1F° B,V
are of order Op(||¥ = (1), T~ F" B, Viik and T~ F' B,V are of or-
der Op( %2), T7YF' B3V and T~ FO" By, V7 are of order Op( ZIQCSX,IT),
and T_IFOTBL:,VA}} = Op((rq). This finishes the proof of (ii).

(iii) By (i) and (ii) and some elementary calculations, we have
IT™'F™(F — F°H)| < T7'|F—F°H|’ + |H|T™'|[F(F - F°H)|
= Op(Ily = Al) + Op(333) + 0p (G111).
(iv) The proof of (iv) is similar to that for (ii), and hence is omitted.
(v) Noting that My = I; — FF™/T, we have
LN
~T > RIM(F — FH)
j=1

N N r-
1 1 A 1 R'F SN
= —_N"_R(F-FH) - — ST lF(F - FH

N

Jj=1

= Il + IQ.

Since I; is an average of %R]T(F — FYH) over j, it is easy to verify that

I = Op(l4 — A1) + Op(653) + Op(C112). For I, by (iii) we have

1 < |||
I — ST YF™(F — FOH
| L] NjEl o val ( i

1/2

= Op(I7 =7l + Op(0x7) + OP( Ld )
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This completes the proof of (v).
(vi) By (ii), we have
FUF/T — (F"F°/T\H
Or(I15 = 1) + Op(333) + Op (G117) (C.4)
By (iii) and the fact that F7F /T = I,, we have
I, = (FTF°/T)H = Op(|[5 = F) + Op(057) + Op( 1/2) (C.5)
Left-multiplying by H™ in (C.4), and using the transpose for (C.5), we have
I = H*(FF/T)H = Op(|5 = F]) + Or(033) + 0p (G117,

which shows that (vi) holds. O

Lemma 4 Assume that assumptions (A1)—(A9) hold. We have

(i) T7'ej(F—F'H)=T"20p(|% —7l) + Op(dy7)
+ 0p< ;{fT—W), forallj=1,...,N,

(i) ﬁésgf(ﬁ—l’ofﬂ =T20p(I% = A1) + N""20p(I5 = Al
+Op(NV2) + Op(633) + Op( 1/2>
(1) f: J(F —F'H) = (TN)"20p(|4 = All) + Op(N7")
- N20p(033) + N 7200 (17
Proof (i) By (C.3), we have

T'el(F — F'H) =T"'€](By+ By + -+ + Bis)Vyp- (C.6)



VARYING-COEFFICIENT PANEL DATA MODEL 541

Invoking the similar arguments as in the proof of Lemma A.4 (i) in Bai

(2009s) to the first eight terms, we can obtain that
T} (By+ By + -+ Bs)Vyg = T720p(|4 = A) + Op(dy7)-

For the other terms in (C.6), similarly to the proof of (i) in Lemma 3, we
only need to show that the dominant terms T~e7 By, Vy and T~ '€ B1oVyy

are the same order as OP(C%QT”/Q). For T*1€§Bllvj\7%, we have

)h%Wﬂmw_kT Vﬁwamﬂuiy = 0p (G 2).

This leads to T-Y/2 |7 FO|| = Op(1). Similarly, ||T*155312V1\7%“ = Op(CPT112),
Thus, we finish the proof of (i).

(i) By FO— FH' = —(By + By + - - - + By5)G, we have

(FH™'— F°%) = (By + By + -+ By5)G
T\/_ZE ) T\/_ZE 1 2 15)

= ap+---+aps.

Next we derive the orders of the fifteen terms, respectively. For the first

four terms, we have

< _1/2
ol < T KM(NEZH
= TR0p(7 - A1),

11 o
ay = WWZZ€§Ri(v—7)Ai( i

T\
M=
Fjﬂ
E
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N N T
lasll < 72160 | 2 | S0 D ekt
N S IVNT & 4

= T7°0p(|% - ),

las < TG Al =~

N TA
V()

J
= T720p(l7 = AN

For as, let W; = RTF/T. Tt is easy to verify that |W;||> < ||Ry||2/T =
Op(1). Further,

1 1 N N
@ = N 2 2 ST~ AW
j=1 i=1
_ ! li(Li%)( 1 igztﬁ 7)Tm)G
\/NT N \/szl

1 1 N N
7 10 T T
a = s—= > & F°) Ne[FG
NT Nj:l i=1
1 1 N N 1 1 N N
= ———— ) F° NeF'HG 4+ —— sT.F0§ Nel(F — FH)G
NTZ\/N; J ; ’ NTQN/N; o= i )
=! Q1 t Gs.2.

By the proof of Lemma A.4 in Bai (2009s), ag; = Op(T"*N~1/2). Also,
, NI 1N
ago =T | — aF | — Y \el(F — F°H)G.
A ) 5T 2

By (i) of Lemma 3 and some elementary calculations, we have
N A
] 1 e IE = FOH]|
< T7V20p(1)—= AT e || —m—
lag2ll < r(D ; AT e T

772 |0p (I = F) + Op(6) + Op (G1) |

G
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Since a7 and ag have the same structures as a; and ag in Bai (2009s), we
can prove that a; = Op(N7Y2) and ag = Op(T™') + Op((NT)~/?) +
N=20p(17 = Al) + Op(d5T) 4+ Op( %2)] For ag, by (C.2) we have

N

1 1
lag|l < ﬁﬁz

=1

T

ry_ely = AlGl

t=1

T—1/2

| N
T 2 2 cah
NT =3
= 1720p(5 - 71611,
Similarly, a1 = T-20p(||5 — F/|¢}7). For ay1, we have

1 N T 1 N
Mo IET PP

i=1

A
3

lau |

T
el
t=1

R L ATAN-
= eSS (5)
1 o 1 - 1 on )| /Aamay -
- 13T ()| 69

= 0P< %2)
N oz —~ 1/2
For a3, let W, = €] F/T. Then we have |W;| = |le||v/7/VT = Op(())

and

1 1< 1 & 1 &~
a13 = ﬁfz (ﬁZ%t) (\/—N;&tufz)

Finally, we can obtain that

14 = Nﬁl/zOp( 11122) and a15 = Op(CLd).
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Summarizing the above results, we finish the proof of (ii).

(iii) Part (iii) follows immediately from (ii) by noting that the presence
of \; does not alter the results. O

Lemma 5 Assume that assumptions (A1)-(A9) hold. We have

N2TQZZRTM eje] — Q) FGA;

i=1 j=1

= Op(L/(TVN)) + (NT) ™2 |0p(I15 = FI) + Op(33}) + Op (¢11F)|

\/_1N [OP(H'Y ) + Op(554) + 0P< 1/2)}

Proof Some elementary calculations yield that

+

N2TQZZRTM gje] — Q) FG\

=1 j5=1

N N
1 Y Ree i
= W Rz (Ejej — Q])FG)\Z

i=1 j=1

1 LK FF
o LR (T

i=1 j=1

= I+1I.

For the first term, by some basic calculations we have

N

N
- NQTQZZRZT e;e] — Q) FPHG;

=1 ]:1

N2T2 Z Z R (eje] — Q,)(F — F'H)G);

=1 j=1

= Il —|— ]2.

For Iy, invoking Lemma A.2 (i) in Bai (2009) and Assumption (A8)(iv), it



VARYING-COEFFICIENT PANEL DATA MODEL 545

is easy to show that

N N T T
1 T
L= N2T?2 ZZ{ZZth 5]155]5_ 5]t€j5)]F0 HG/\}
i=1 j=1 t=1 s=1
1 1< N
= — — — Ry s— F s }HGAz
TVvN N { N 2 phtilese; (je8s) I

i=1 j=1

Let
1
s = YD Rulesejs — Elegiegs)] = Op(1).
NT j=1 t=1
Then we have
N T
— 0 T
\/— Z Z (Fs— FOH) GA;.

By Cauchy-Schwarz inequality and Lemma 3 (i), we have

IN

T T
1 /2,1 . 1/2
(Tz oo 1?) (TZ |£,— FOH]|?)

= Or(ll¥ - 'Y||)+Op(5NT)+OP< 1/2>

ISRl

This leads to

I = (NT)™2 [0 = A1) + Or(035) + O0r (¢ |

For the second term, by the similar proof of Lemma A.4 (ii) in Bai
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(2009), we have

IN

111

N ~ N
1 R'F N 5
NZH T H‘ ZF(EJ‘%—QJ‘WH
i=1 j=1

N
_ op(l)H 2 Z Fr(eje] — Q) F

 OMIYTY £ (VT Onlly =7l + Or(3xh) +0p (1)
1

+= (0013 -1+ Opto) +0p(2)]

Summarizing the above results, we finish the proof of Lemma 5. U

Lemma 6 Assume that assumptions (A1)—(A9) hold. We have

N T 1 N
Z RZ—MF — N al]R;MF] E;
i=1 7=1

g+ N7'&p + N720p(15 = F|1)

E‘H Z‘H
~ ~

N 1 N
> | BiMpo — 5 D ai Ry Mpo

i=1 j=1

+(NT)"Y20p(|5 = 7)) + N~ 1/2OP(5NT)+N 120, ( 1/2>

where
N T

1 N —V))"FO (FOFO\ ' /ATA\ ! 1
GVT— NZZ ( T > (N) /\j <ngit€jt>:OP(1)a

i=1 j=1

with V; = N1 Z a; R

1 N
Proof For the term NT > RI(Mp — Mg)e;, we consider the following
i=1
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decomposition:
Mpo — My = Pp — Ppo
= T"YWF—F°H)H F + T~ (F — F°H)(F — F'H)"
+T'F°H(F — F°H)"
_i_TleO[HHT o (TﬁlFOTFO)il]FOT7

for any invertible matrix H. Therefore, we have

N ~ N A
1 RI(F —F°H) .o 1 RI(F—FH) - .,
= Z . H F"¢; + Z = (F — F°H)e

NT NT
1 <~ R{F°H 1 <~ R]F°
F FOH ; () HH™ — T—IFOTFO -1 FOT ;

=: 81+ So+ S3+ S4.

For s1, noting that (F, — H™FO)"HTF? is scalar, we have

1 T 1 N T
S1 = \/?T ; F HTFO (WZZFtORisgit> .
d

Further, we can derive that
1/2 T N T 27 1/2
< P — F HTFO 2 H — = zs 7
[s1] < \/— ZH [ el T; \/—X::Z:: Eit
B 1 1/2
= [0p U =3 + 0r(03d) + Or (1) | O (1)
= OP((NT)’1/2).

Similarly, we can obtain that

Sy = \/_T2ZZF H™F°)(F, — HF") ( \/_ZRwelt>,

s=1 t=1
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and
1 Z TR ;N 2\ /2
e 1 Co LR A I E 9 3] 8 oL
VN AT t=1 T t=1 s=1 VN i=1
1 2 ~ -1 1/2 2
= 5 [0nU =31+ 0r(h) + 0p (GF) | 0r(1)
For sz, by some simple calculations we have
N
1 RZFO T( T —1 0\7T
53 = NT; ——HH(FH™ — F)e
N -1
1 RIF° (FOF° ”o i
- Ly ( T ) (FH' — FOYe,
i=1
N -1
1 R’ F° FO"F° .
() T FH—l . FO T
+NT; — |HH ( = ) ] ( )"e;
=! 831+ S3.2.

Let Q = HH™ — (FF°/T)~!. By Lemma 4 (iii) and Lemma 3 (vi), we

have

830 = <NT Z [ FH_ FO) ® <R{TFO>}> vec(Q)
- [(Tzv)-l/?opuw = 3]1) + Op(N~) + N720p(033) + N720p (¢} ) |
x| Op (Il = Al) + Or(633) + Or (G117 |

= N7'Op(|7 —AI) + N'0p(537) + N"V20p(d57) + N™ 10P( 1/2>

Similarly to the proof of ¢; in Lemma A.8 in Bai (2009s), we have
1= NNy + (VD)™ 205 (| - 31) + N~20,(6533) + N20p(c2).

where

e = % iiR{TF <F0;F0> (AT ) < Zm%) on).

=1 j=1




VARYING-COEFFICIENT PANEL DATA MODEL 549

For s4, note that Q = HH™ — (F°"F°/T)~!. Then,

N
1 . (RIF°
Sq4 = W o~ |:51F ® ( T >:| VeC(Q)

= \/% f: Y Flen® (RZTFO)] vee(Q)

=1 t=1

N
P(l)a

by the facts that vec(Q) = Op(||¥ — ) + Op(d53) + Op( 1/2) and

\/_ ZlgFO% ® (RZTFO) = Op(1).

~
~

I
S

In summary, we have

= N""%nr+ N"20p([7 = AI1P) + (NT) 20057 — A1)
FNT200(072) + N‘1/20p< 1/2 (C.7)

N

Let V; = N7' 3" a;;R;. Replacing R; with V;, by the same argument, we
j=1

have

N
NT Z T MFO — A)Ei
=1
= N7'Wxp + N20p(I1F = A17) + (NT)206(117 - A1)
FNT20p(033) + N20p (G, (C.8)

where 5, = Op(1) is defined as

S A EEEE () () ()

=1 j=1

Letting £y = ¥nt — Yip, and together with (C.7) and (C.8), we finish the
proof of Lemma 6. U
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Lemma 7 Assume that assumptions (A1)-(A9) hold. We have

D(F)™' — D(F")™! = 0p(1).

Proof Similarly to the proof of Lemma A.7 (ii) in Bai (2009), we can show
that

1P = PRl = Op(lI5 = 41 + Op(833) + Op (¢111). (C.9)

This leads to

~

D(F) — D(F")
RS 171 =
- ﬁ ZR’Z—(MF' - MFO)Ri - ? [m Z RZ—(MF — MFo)Rjaij}
=1 i=1 jfl
1

The norm of the first term in the above expression is bounded above by

N

L IR

R SN ERS o G [ NEt)
=1

i=1
Similarly, the order of the second term is also op(1). Noting that [D(F) +

op(1)]™* = D(F)~' + 0p(1), we complete the proof of Lemma 7. O

S4 Appendix D: Additive fixed effects model

In Appendix D, we also consider an important special case of model (1.2).
By letting A\; = (i, 1)™ and F; = (1,&)7, model (1.2) reduces to the varying-

coefficient panel-data model with additive fixed effects:

Vi = XI8(Uy) +pi+&+ey, i=1,... N, t=1,...,T. (D.1)
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Similar to (2.3), for the purpose of identification, we assume that

N T
Z,ui =0 and th = 0. (D.2)
i=1 t=1

Invoking (2.1), we have

p L

Yi =~ Z Z Vit Xtk B (Uie) + i + & + €t (D.3)
k=1 I=1

Note that, if we further assume that Zthl & =T, then ~ can be esti-
mated by the iteration procedure described in Section 2. However, we need
to estimate the fixed effects F; and \;, wherei=1,..., Nandt=1,...,T.
In order to avoid estimating the fixed effects F; and \;, we propose to re-
move the unknown fixed effects by a least squares dummy variable method
based on the identification condition (D.2). The estimation procedure is

described in what follows.

Let 15 denote an N x 1 vector with all elements being ones, ¥ =
Y7,....Y7) ., R=(R],...,Ry)", e = (e],...,ex)", b= (p2, ..., un)"
and & = (&, ...,&r)7. By the identification condition (D.2), we have

D= -1y Iya]"®1lp and S=1y® [-17r_1 Ir4]",

where ® denotes the Kronecker product. Then model (D.3) can be rewrit-

ten as the matrix form:
Y ~Ry+Dp+SE+e.
Next, we solve the following optimization problem:

min(Y — Ry —Dp — S€)"(Y — Ry — Du — S§). (D.4)

¥s1€

551
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Taking partial derivatives of (D.4) with respect to p and &, and setting

them equal to zero, we have
D' (Y —Ry—Du —S¢) =0,
S"(Y —Ry—-Dpu —S¢) =0.
By a simple calculation, we can obtain that

£ = (579)7'S"(Y —Ry),
(D'D)"'D" [Y — Ry — S(S7S)'S"(Y — Ry)] .

=
I

Replacing p and € in (D.4) by i and 3 respectively, the parameter v can
be estimated by minimizing (Y — R~vy)"T'(Y — R~), where I' = H(Iyr —
S(S™S)"'S7) and H = Iy — D(D™D)'D". Specifically, the least squares

estimator of ~ is
4 =(RTR) 'R'TY.

Then with the estimator ¥ = (%7, ...,%;])" of v, where ¥& = (Jx1, - - -, Var,)7

for k=1,...,p, we can estimate S;(u) by

Ly
ﬁk(u) :Z’V)/lekl(u), k= 1,...7]?.
=1

S5 Appendix E: Simulation studies

In Appendix E, we consider the following varying-coefficient panel-data

model with individual fixed effects:

Yie = Xit1S1(Uit) + Xie2B2(Uit) + i + i (E.1)
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where £y (u), B2(u), Uy, and €; are the same as those in model (7.2). The

regressors X;;; and X;; o are generated according to

Xitqg = 3+ 20 + Mg 1,

Xit2 = 3+ 200 + Nt 2,

where 7;;; ~ N(0,1), j =1, 2, and the fixed effects are generated by

N
MZNN<O,1), 222,,N and /le—Z/J,Z
1=2

With 1000 repetitions, we report the simulation results in Table 5 and

Figure 8, respectively.

Table 5: Finite sample performance of the estimators for model (E.1) with
additive fixed effects.

LSDVE
N T  AMSE(f;)) AMSE(f;) AMSE(B,)  AMSE(j,)
100 15 0.0115 0.0118 0.0093 0.0095
100 30 0.0048 0.0058 0.0044 0.0050
100 60 0.0024 0.0023 0.0021 0.0020
100 100 0.0012 0.0013 0.0011 0.0011
60 100 0.0024 0.0025 0.0020 0.0021
30 100 0.0052 0.0053 0.0047 0.0046
15 100 0.0127 0.0110 0.0108 0.0101

From Table 5 and Figure 8 we can see that the interactive fixed effects

estimators and the least squares dummy variable estimators are all con-

sistent. The interactive fixed effects estimators remain valid even for the
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B0

[o] 0.2 0.4 0.6 0.8 1
u u

Figure 8: Simulation results for model (E.1) when N = 100, T = 60. In
each plot, the solid curves are for the true coefficient functions, the dashed
curves are for the interactive fized effects estimators, the dash-dotted curves
are for the least squares dummy variable estimators.

general fixed effects model. However, they are less efficient than the least

squares dummy variable estimators.
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