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S1. Proof of Theorems

In this part, we write ∆βk = βk − β∗ and vk = e− wk for k = 1, 2, . . ..

S1.1 The proof of Theorem 2

To get the conclusion of Theorem 2, we need the following two lemmas.

Lemma 1. For any β ∈ Rp, it holds that 1
2n
‖Z̃β‖2 ≥ 1

2n
‖Xβ‖2 + 1

2
βTDβ.



Supplementary Material 1

Proof. From Σ̃ = 1
n
Z̃TZ̃ and Σ̃ = ε̂I + ΠSp+(Σ̂− ε̂I), for any β ∈ Rp, we get

1

2n

∥∥Z̃β∥∥2
=

1

2n
‖Xβ‖2 +

1

2
βT(Σ̃− Σ̂)β +

1

2
βT(Σ̂− Σ)β

=
1

2n
‖Xβ‖2 +

1

2
βTΠSp+(ε̂I − Σ̂)β +

1

2
βTDβ

≥ 1

2n
‖Xβ‖2 +

1

2
βTDβ

where the inequality is by the positive semidefiniteness of ΠSp+(ε̂I − Σ̂).

Lemma 2. Suppose that for some k ≥ 1 there exists an index set Sk−1 ⊇ S∗

such that maxi∈(Sk−1)c w
k−1
i ≤ 1

2
. Then, whenever λ ≥ 8‖ε̃‖∞, it holds that

‖∆βk(Sk−1)c‖1 ≤ 3‖∆βkSk−1‖1,

1

2n

∥∥Z̃∆βk
∥∥2 ≤

(
‖ε̃Sk−1‖+ λ

√∑
i∈S∗(v

k−1
i )2

)∥∥∆βkSk−1

∥∥.
Proof. From the optimality of βk and the feasibility of β∗ to (3.1), we have

1

2n

∥∥Z̃βk − ỹ∥∥2
+ λ

p∑
i=1

vk−1
i

∣∣βki ∣∣ ≤ 1

2n

∥∥Z̃β∗ − ỹ∥∥2
+ λ

p∑
i=1

vk−1
i

∣∣β∗i ∣∣
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which, by ∆βk= βk − β∗ and ε̃= 1
n
Z̃T(ỹ − Z̃β∗), can be rearranged as

1

2n

∥∥Z̃∆βk
∥∥2 ≤ 〈ε̃,∆βk〉+ λ

∑
i∈S∗

vk−1
i

(∣∣β∗i ∣∣− ∣∣βki ∣∣)− λ ∑
i∈(S∗)c

vk−1
i

∣∣βki ∣∣
≤ 〈ε̃,∆βk〉+ λ

∑
i∈S∗

vk−1
i

∣∣∆βki ∣∣− λ ∑
i∈(Sk−1)c

vk−1
i

∣∣∆βki ∣∣ (S1.1)

≤
∑
i∈Sk−1

∣∣ε̃i∣∣∣∣∆βki ∣∣+
∑

i∈(Sk−1)c

∣∣ε̃i∣∣∣∣∆βki ∣∣
+ λ

∑
i∈S∗

vk−1
i

∣∣∆βki ∣∣− λ ∑
i∈(Sk−1)c

vk−1
i

∣∣∆βki ∣∣
≤ (λ+‖ε̃‖∞)

∥∥∆βkSk−1

∥∥
1

+
(
‖ε̃‖∞−λ/2

)∥∥∆βk(Sk−1)c

∥∥
1

where the second inequality is using Sk−1 ⊇ S∗, and the last one is due

to vki ≤ 1 for i ∈ S∗ and mini/∈Sk−1 vk−1
i ≥ 1

2
. From λ ≥ 8‖ε̃‖∞ and

1
2n

∥∥Z̃∆βk
∥∥2 ≥ 0, we obtain the first inequality. For the second inequality,

by using inequality (S1.1) and mini/∈Sk−1 vk−1
i ≥ 1

2
, it follows that

1

2n

∥∥Z̃∆βk
∥∥2 ≤

p∑
i=1

|ε̃i||∆βki | −
1

2
λ
∑

i∈(Sk−1)c

∣∣∆βki ∣∣+ λ
∑
i∈S∗

vk−1
i

∣∣∆βki ∣∣
≤
∑
i∈Sk−1

∣∣ε̃i∣∣∣∣∆βki ∣∣+ λ
∑

i∈S∗ v
k−1
i

∣∣∆βki ∣∣
≤ ‖ε̃Sk−1‖

∥∥∆βkSk−1

∥∥+ λ
√∑

i∈S∗(v
k−1
i )2

∥∥∆βkSk−1

∥∥,
where the second inequality is due to λ ≥ 8‖ε̃‖∞.

The proof of Theorem 2: Define Sk−1 := S∗ ∪ {i /∈ S∗ : wk−1
i > 1

2
}

for each k ∈ N. We first argue that if |Sl−1| ≤ 1.5s for some l ∈ N, and
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consequently the following inequality holds

∥∥∆βl
∥∥ ≤ 2(‖ε̃‖∞

√
1.5s+ λ

√
s)

κ− 24s‖D‖max

≤ (2 +
√

6/8)λ
√
s

κ− 24s‖D‖max

. (S1.2)

Since Sl−1 ⊇ S∗ with |Sl−1| ≤ 1.5s and λ ≥ 8‖ε̃‖∞, from Lemma 2 we have

1

2n

∥∥Z̃∆βl
∥∥2 ≤

[
‖ε̃Sl−1‖+ λ

√∑
i∈S∗(v

l−1
i )2

] ∥∥∆βlSl−1

∥∥,
∣∣(∆βl)TD∆βl

∣∣ ≤ ‖D‖max‖∆βl‖2
1 = ‖D‖max

(
‖∆βlSl−1‖1 + ‖∆βl(Sl−1)c‖1

)2

≤ 16‖D‖max‖∆βlSl−1‖2
1 ≤ 16|Sl−1|‖D‖max‖∆βlSl−1‖2

≤ 24s‖D‖max‖∆βlSl−1‖2. (S1.3)

By combining the last two inequalities with Lemma 1, it then follows that

1

2n

∥∥X∆βl
∥∥2− 12s‖D‖max‖∆βl‖2 ≤

[
‖ε̃Sl−1‖+ λ

√∑
i∈S∗(v

l−1
i )2

] ∥∥∆βlSl−1

∥∥.
Notice that ∆βl ∈ C(S∗) since Sl−1 ⊇ S∗ with |Sl−1| ≤ 1.5s. Together with

the κ-REC of Σ on C(S∗), it is immediate to obtain

1

2

(
κ− 24s‖D‖max

)
‖∆βl‖2 ≤

[
‖ε̃Sl−1‖+ λ

√∑
i∈S∗(v

l−1
i )2

] ∥∥∆βlSl−1

∥∥
(S1.4)

≤
[
‖ε̃‖∞

√
|Sl−1|+ λ

√
s
]∥∥∆βl

∥∥
≤
[
‖ε̃‖∞

√
1.5s+ λ

√
s
]∥∥∆βl

∥∥.
This, by ‖ε̃‖∞ ≤ 1

8
λ, implies that the inequality (S1.2) holds.
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Next we show that |Sk−1| ≤ 1.5s for all k ∈ N. When k = 1, this

inequality holds automatically since S0 = S∗ implied by w0 ≤ 1
2
e. Now

assume that |Sk−1| ≤ 1.5s for k = l with l ≥ 1. From the above argument,

we have ‖βl− β∗‖ ≤ (2+
√

6/8)λ
√
s

κ−24s‖D‖max
. Notice that i ∈ Sl\S∗ implies i /∈ S∗ and

wli ∈ (1
2
, 1]. By equation (5.10), the latter implies ρl|βli| ≥ 1. Consequently,

√
|Sl\S∗| ≤

√∑
i∈Sl\S∗(ρl|βli|)2 ≤ ρl‖βl − β∗‖

≤ (2 +
√

6/8)ρlλ
√
s

κ− 24s‖D‖max

≤
√

0.5s (S1.5)

where the last inequality is by ρlλ ≤ ρ3λ ≤ 2(κ−24s‖D‖max)

5
√

2
. Thus, |Sl| ≤ 1.5s.

Hence, |Sk−1| ≤ 1.5s for all k ∈ N, and the error bound follows from (S1.2).

S1.2 The proof of Theorem 3

To achieve the conclusion of Theorem 3, we need the following lemma.

Lemma 3. Let F k and Λk be the sets in (4.6). Then, for each k ∈ {0}∪N,

√∑
i∈S∗(v

k
i )2 ≤

√∑
i∈S∗ max(IΛk(i), IFk(i)).

Proof. Fix an arbitrary i ∈ S∗. If i ∈ F k, from vki = 1 − wki ≤ 1 we have

vki ≤ IFk(i). If i /∈ F k, from vki = 1 − wki and (3.3), it follows that vki =

max
(
0,min(1,

2a−(a+1)ρk|βk
i |

2(a−1)
)
)
, and hence vki ≤ I{i: ρk|βk

i |≤2a/(a+1)}(i) ≤ IΛk(i).

Thus, for each i, it holds that (vki )2 ≤ vki ≤ max(IΛk(i), IFk(i)). From this,

it is immediate to obtain the desired result.
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The proof of Theorem 3: Write Sk−1 := S∗ ∪ {i /∈ S∗ : wk−1
i > 1

2
} for

each k ∈ N. Since the conclusion holds automatically for k = 1, it suffices

to consider the case k ≥ 2. From the proof of Theorem 2, we know that

|Sk−1| ≤ 1.5s for all k ∈ N. Moreover, by using (S1.5) and ρk ≥ 1,

∥∥ε̃Sk−1

∥∥ ≤ ∥∥ε̃S∗∥∥+
√
|Sk−1\S∗|

∥∥ε̃∥∥∞ ≤ ∥∥ε̃S∗∥∥+
ρk−1λ

8

√
|Sk−1\S∗|. (S1.6)

By using inequality (S1.4) and Lemma 3, it follows that

‖βk − β∗‖ ≤ 2

κ− 24s‖D‖max

[
‖ε̃Sk−1‖+ λ

√∑
i∈S∗(v

k−1
i )2

]
≤ 2

κ−24s‖D‖max

[
‖ε̃Sk−1‖+ λ

√∑
i∈S∗ max(IΛk−1(i), IFk−1(i))

]
≤ 2

κ−24s‖D‖max

[
‖ε̃Sk−1‖+ λ

√∑
i∈S∗ max

(
IΛk−1(i),

∣∣|βk−1
i
| − |β∗i |

∣∣2(ρk−1)2
)]

≤ 2

κ−24s‖D‖max

(
‖ε̃Sk−1‖+ λ

√
max

(∑
i∈S∗IΛk−1(i), (ρk−1)2‖∆βk−1‖2

))
where the third inequality is by the definition of F k−1. Together with (S1.6),

‖βk − β∗‖ ≤ 2

κ−24s‖D‖max

[∥∥ε̃S∗∥∥+ λ
√∑

i∈S∗IΛk−1(i) +
9ρk−1λ

8

∥∥∆βk−1
∥∥]

≤ 2

κ−24s‖D‖max

(∥∥ε̃S∗∥∥+ λ
√∑

i∈S∗ IΛk−1(i)
)

+
1√
2
‖βk−1 − β∗‖

where the second inequality is using ρk−1λ ≤ ρ3λ ≤ 2(κ−24s‖D‖max)

5
√

2
. The

desired result follows by solving this recursion with respect to ‖βk − β∗‖.

S1.3 The proof of Theorem 4

We need the following two lemmas with ∆β̂k = βk − βLS for k = 1, 2, . . ..
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Lemma 4. Suppose that for some k ≥ 1 there exists an index set Sk−1 ⊇ S∗

such that maxi∈(Sk−1)c w
k−1
i ≤ 1

2
. Then, whenever λ ≥ 6‖εLS‖∞, it holds that

‖∆β̂k(Sk−1)c‖1 ≤ 3‖∆β̂kSk−1‖1.

Proof. By the optimality of βk and the feasibility of βLS to (3.1), we have

1

2n

∥∥Z̃βk − ỹ∥∥2
+ λ

p∑
i=1

vk−1
i

∣∣βki ∣∣ ≤ 1

2n

∥∥Z̃βLS − ỹ
∥∥2

+ λ

p∑
i=1

vk−1
i

∣∣βLS
i

∣∣,
which, by ∆β̂k = βk− βLS and εLS = 1

n
Z̃T(ỹ− Z̃βLS), can be rearranged as

1

2n

∥∥Z̃∆β̂k
∥∥2 ≤ 〈εLS,∆β̂k〉+ λ

p∑
i=1

vk−1
i (|βLS

i | − |βki |)

=
∑
i/∈S∗

εLS
i ∆β̂ki + λ

∑
i∈S∗

vk−1
i (

∣∣βLS
i

∣∣− ∣∣βki ∣∣)− λ∑
i/∈S∗

vk−1
i

∣∣βki ∣∣
≤
∑
i/∈S∗

∣∣εLS
i

∣∣∣∣∆β̂ki ∣∣+ λ
∑
i∈S∗

vk−1
i

∣∣∆β̂ki ∣∣− λ∑
i/∈S∗

vk−1
i

∣∣βki ∣∣
where the equality is using εLS

i = 0 for i ∈ S∗ and βLS
i = 0 for all i /∈ S∗.

Now from Sk−1 ⊇ S∗ and vk−1
i = 1− wk−1

i ≥ 1/2 for i /∈ Sk−1, we obtain

1

2n

∥∥Z̃∆β̂k
∥∥2 ≤

∑
i/∈S∗

∣∣εLS
i

∣∣∣∣∆β̂ki ∣∣+ λ
∑
i∈S∗

vk−1
i |∆β̂ki | − λ

∑
i/∈Sk−1

vk−1
i

∣∣∆β̂ki ∣∣
≤

∑
i∈Sk−1\S∗

∣∣εLS
i

∣∣∣∣∆β̂ki ∣∣+ λ
∑
i∈S∗

vk−1
i

∣∣∆β̂ki ∣∣
+

∑
i∈(Sk−1)c

∣∣εLS
i

∣∣∣∣∆β̂ki ∣∣− 1

2
λ
∥∥∆β̂k(Sk−1)c

∥∥
1

(S1.7)

≤ max
(
‖εLS‖∞, λ

)∥∥∆β̂kSk−1

∥∥
1

+
(
‖εLS‖∞−

1

2
λ
)∥∥∆β̂k(Sk−1)c

∥∥
1

which along with the nonnegativity of 1
2n
‖Z̃∆β̂k‖2 implies the result.
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Lemma 5. Suppose that for some k ≥ 1 there exists Sk−1 ⊇ S∗ with

|Sk−1| ≤ 1.5s such that maxi∈(Sk−1)c w
k−1
i ≤ 1

2
, and that the matrix Σ satis-

fies the κ-REC on C(S∗) with κ > 24s‖D‖max. Then, when λ ≥ 6‖εLS‖∞,

∥∥∆β̂k
∥∥ ≤ 2

κ− 24s‖D‖max

(∥∥εLS
Sk−1

∥∥+ λ
√∑

i∈S∗(v
k−1
i )2

)
.

Proof. First of all, from equation (S1.7) and λ ≥ 6‖εLS‖∞, it follows that

1

2n

∥∥Z̃∆β̂k
∥∥2 ≤

∑
i∈Sk−1\S∗

∣∣εLS
i

∣∣∣∣∆β̂ki ∣∣+ λ
∑
i∈S∗

vk−1
i

∣∣∆β̂ki ∣∣
≤ ‖εLS

Sk−1‖‖∆β̂kSk−1‖+ λ
√∑

i∈S∗(v
k−1
i )2 ‖∆β̂kSk−1‖

where the second inequality is using Sk−1 ⊇ S∗. Together with Lemma 1,

1

2n

∥∥X∆β̂k
∥∥2 ≤

[
‖εLS

Sk−1‖+ λ
√∑

i∈S∗(v
k−1
i )2

]∥∥∆β̂kSk−1

∥∥− 1

2
(∆β̂k)TD∆β̂k.

Since Sk−1⊇ S∗ with |Sk−1|≤ 1.5s, using Lemma 4 and the same arguments

as for (S1.3) yields that −(∆β̂k)TD∆β̂k ≤ 24s‖D‖max‖∆β̂k‖2. Then,

1

2n

∥∥X∆β̂k
∥∥2−12s‖D‖max‖∆β̂k‖2 ≤

[
‖εLS

Sk−1‖+λ
√∑

i∈S∗(v
k−1
i )2

]∥∥∆β̂kSk−1

∥∥.
Since Σ satisfies the κ-RSC on the set C(S∗) with κ > 24s‖D‖max, we have

1

2
(κ− 24s‖D‖max)

∥∥∆β̂k
∥∥2 ≤

[
‖εLS

Sk−1‖+ λ
√∑

i∈S∗(v
k−1
i )2

]∥∥∆β̂kSk−1

∥∥.
This implies the desired result. The proof is then completed.
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The proof of Theorem 4: Let Sk−1 := S∗ ∪ {i /∈ S∗ : wk−1
i > 1

2
} for each

k ∈ N. We first prove that the desired inequalities holds by the induction

on k ∈ N. Since w0 ≤ 1
2
e, we have S0 = S∗ and |S0| = s. Notice that Σ

satisfies the κ-REC on C(S∗) with κ > 24s‖D‖max and λ ≥ 6‖εLS‖∞. The

conditions of Lemma 5 are satisfied. Along with εLS
S∗ = 0 and F 0 = S∗,

‖β1 − βLS‖ ≤ 2

γ

(
‖εLS
S0 ‖+λ

√∑
i∈S∗(v

0
i )

2
)

≤ 2

γ

(
‖εLS
S∗ ‖+λ

√
|F 0|

)
≤

2.03ρ0λ
√
|F 0|

γ
. (S1.8)

Since |βLS
i − β∗i | ≤ ‖ε̃†‖∞ for i ∈ S∗ by (4.8) and ρ1 ≥ γλ−1‖ε̃†‖∞, we have

|βLS
i − β1

i | ≥ |β∗i − β1
i | − |β∗i − βLS

i | ≥
1

ρ1

− ρ1λ

γ
≥ 9
√

3− 4

9
√

3ρ1

∀i ∈ F 1

where the last inequality is by 1 ≤ ρ1 ≤
√

4γ

9
√

3λ
. By the last two equations,

√
|F 1| =

√∑p
i=1IF 1(i) ≤ 9

√
3ρ1

9
√

3−4

√∑p
i=1|βLS

i − β1
i |2 ≤

18.27
√

3ρ1ρ0λ

(9
√

3−4)γ

√
|F 0|.

Together with (S1.8) and 1 = ρ0 < ρ1 ≤ ρ3, we conclude that the desired

inequalities holds for k = 1. Now, assuming that the conclusion holds for

k ≤ l − 1 with l ≥ 2, we prove that the conclusion holds for k = l. For

this purpose, we first argue |Sl−1| ≤ 1.5s. Indeed, for i ∈ Sl−1\S∗, we have
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wl−1
i ∈ (1

2
, 1], which by (3.3) implies that ρl−1|βl−1

i | ≥ 1. Then,

√
|Sl−1\S∗| ≤

√
|F l−1| ≤ 18.27

√
3ρl−1ρl−2λ

(9
√

3−4)γ

√
|F l−2| ≤ · · ·

≤
( 18.27

√
3λ

(9
√

3−4)γ

)l−1

ρl−1ρ
2
l−2 · · · ρ2

2ρ1

√
|F 0|

≤

√(18.27
√

3(ρ3)2λ

(9
√

3−4)γ

)2l−2

|F 0| ≤

√( 8.12

9
√

3−4

)2l−2

|F 0| ≤
√

0.5s,

where the first inequality is due to Sl−1\S∗ ⊆ F l−1, the second is since the

conclusion holds for k ≤ l − 1 with l ≥ 2, the next to the last is using

ρ3 ≤
√

4γ

9
√

3λ
, and the last one is using 2l − 2 ≥ 2. The last inequality

implies that |Sl−1| ≤ 1.5s. Using Lemma 5 delivers that

‖βl − βLS‖ ≤ 2

γ

(
‖εLS

Sl−1‖+ λ
√∑

i∈S∗ (vl−1
i )2

)
≤ 2

γ

(
‖εLS

Sl−1\S∗‖+ λ
√∑

i∈S∗ IF l−1(i)
)

≤ 2

γ

(
‖εLS‖∞

√
|Sl−1\S∗|+ λ

√
|F l−1 ∩ S∗|

)
≤ 2λ

γ

(1

6

√
|F l−1\S∗|+

√
|F l−1 ∩ S∗|

)
≤ 2λ

γ

√
(1 +1/36)|F l−1| ≤ 2.03ρl−1λ

γ

√
|F l−1|,

where the second inequality is using εLS
S∗ = 0, Lemma 3 and ρl−1 ≥ ρ1 >

4a
(a+1) mini∈S∗ |βi|

, the fourth one is due to λ ≥ 6‖εLS‖∞, and the fifth one is

since 1
6
a + b ≤

√
(1 + 1

36
)(a2 + b2) for all a, b ∈ R. Now using the same

argument as those for k = 1, we have |βli − βLS
i | ≥ 9

√
3−4

9
√

3ρl
for all i ∈ F l, and
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hence
√
|F l| ≤ 18.27

√
3ρlρl−1λ

(9
√

3−4)γ

√
|F l−1|. Thus, we complete the proof of the

case k = l, and the desired inequalities hold for all k.

Note that (ρ3)2λ ≤ 4γ

9
√

3
and ρk ≤ ρ3 for all k ∈ N. So, it holds that

√
|F k| ≤

18.27
√

3ρkρk−1λ

(9
√

3−4)γ

√
|F k−1| ≤ · · · ≤

(18.27
√

3(ρ3)2λ

(9
√

3−4)γ

)k√
|F 0| < 1,

which implies that |F k| = 0 when k ≥ k. Together with the first inequality

obtained, we have βk = βLS when k ≥ k. From ρ3 ≤
√

4γ

9
√

3λ
and (4.8),

∣∣|β∗i | − |βLS
i |
∣∣ ≤ |β∗i − βLS

i | ≤ ‖ε̃†‖∞ ≤ ρkλγ
−1 ≤ 4

9
√

3ρk
∀i ∈ S∗. (S1.9)

This, along with mini∈S∗ |β∗i | ≥ 4a
(a+1)ρk

> 4
9
√

3ρk
, implies |βLS

i | > 0 for all

i ∈ S∗ (if not, one will obtain a
a+1
≤ 1

9
√

3
, a contradiction to a > 1), and

hence supp(βLS) = S∗. The last inequality also implies sign(βLS) = sign(β∗)

(if not, there exists i0 ∈ S∗ such that sign(βLS
i0

) = −sign(β∗i0) and then

|β∗i0 − β
LS
i0
| > |β∗i0| ≥ mini∈S∗|β∗i | > 4

9
√

3ρk
, a contradiction to (S1.9).) Thus,

βk = βLS and sign(βk) = sign(β∗) for all k ≥ k. We complete the proof.

S2. Additional Theoretical Results

In this part, we need the following assumption on the noise vector ε.

Assumption 1. Assume that εi (i = 1, . . . ,m) are i.i.d. sub-Gaussians,

i.e., there is σ>0 such that E[exp(tεi)] ≤ exp(σ2t2/2) for all i and t∈R.



Supplementary Material 11

S2.1 Additive errors case

In this part, we consider that the matrix X is contaminated by additive

measurement errors, i.e., Z = X+A, where A = (aij) is the matrix of mea-

surement errors and the rows of A are assumed to be i.i.d. with zero mean,

finite covariance ΣA and sub-Gaussian parameter τ 2. Following the line of

Loh (2014), we assume that ΣA is known. Now the unbiased surrogates of

Σ and ξ are given by Σ̂add = 1
n
ZTZ − ΣA and ξ̂add = 1

n
ZTy, respectively.

We write Σ̃add := ε̂I + ΠSp+(Σ̂add − ε̂I) and ε̃add := ξ̂add − Σ̃addβ
∗.

Lemma 6. Let K := 2(λmax(ΣA) + ε̂)‖β∗‖1 and η = min
(
1, ε0

λmax(ΣA)+ε̂

)
.

Then, there exist universal positive constants C and c, and positive function

ζ̂ (depending only on β∗, τ 2, σ2 and λmax(ΣA)) such that

P{‖(Σ̃add − Σ)β∗‖∞ > K} ≤ Cp2 exp(−cnζ̂−1η2), (S2.1)

P{‖ε̃add‖∞ > K} ≤ Cp2 exp(−cns−2ζ̂−1η2). (S2.2)

Proof. From the expression of Σ̃add, it follows that

‖(Σ̃add − Σ)β∗‖∞ ≤ ‖(Σ̃add − Σ̂add)β∗‖∞ + ‖(Σ̂add − Σ)β∗‖∞

= ‖ΠSp+(ε̂I−Σ̂add)β∗‖∞ + ‖(Σ̂add − Σ)β∗‖∞

≤ ‖ΠSp+(ε̂I−Σ̂add)‖max‖β∗‖1 + ‖(Σ̂add − Σ)β∗‖∞.
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For a matrix Γ ∈ Sp+, it is not hard to check that λmax(Γ) ≥ ‖Γ‖max. Thus,

‖(Σ̃add − Σ)β∗‖∞ ≤ λmax

[
ΠSp+(ε̂I−Σ̂add)

]
‖β∗‖1 + ‖(Σ̂add − Σ)β∗‖∞

=
[
ε̂− λmin(Σ̂add)

]
‖β∗‖1 + ‖(Σ̂add − Σ)β∗‖∞. (S2.3)

Notice that λmin(Σ̂add) ≥ λmin( 1
n
ZTZ)−λmax(ΣA) ≥ −λmax(ΣA) implied by

(Horn and Johnson, 1990, Theorem 4.3.7). Together with (S2.3),

‖(Σ̃add − Σ)β∗‖∞ ≤ (ε̂+λmax(ΣA))‖β∗‖1 + ‖(Σ̂add − Σ)β∗‖∞.

By this and (Datta and Zou, 2017, Lemma 1) with ε = Kη
2‖β∗‖1 ≤ ε0, there

exist universal positive constants C, c and positive functions ζ (depending

only on β∗, τ 2, σ2 and λmax(ΣA)) such that

P{‖(Σ̃add − Σ)β∗‖∞ > K} ≤ P
{
‖(Σ̂add − Σ)β∗‖∞ > K/2

}
≤ P

{
‖Σ̂add − Σ‖max >

Kη

2‖β∗‖1

}
≤ Cp2 exp(−cnη2(λmax(ΣA) + ε̂)2ζ−1).

This shows that (S2.1) holds. Recall that ε̃add = ξ̂add − Σ̃addβ
∗. Hence,

‖ε̃add‖∞ ≤ ‖ξ̂add − ξ‖∞ + ‖ξ − Σβ∗‖∞ + ‖(Σ̃add − Σ)β∗‖∞.

By applying (Datta and Zou, 2017, Lemma 1) with ε = Kη0
3
≤ ε0 where

η0 = min(1, 1.5η
‖β∗‖1 ), we obtain

P
{
‖ξ̂add−ξ‖∞ ≥

K

3

}
≤ P

{
‖ξ̂add−ξ‖∞ ≥

Kη0

3

}
≤ Cp exp(−ncs−2K2η2

0ζ
−1),
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while P{‖ξ − Σβ∗‖∞ ≥ K/3} ≤ Cp exp(−ncσ−2K2) holds by (Datta and

Zou, 2017, Property B.2). Together with the last inequality and inequality

(S2.1), we obtain the inequality (S2.2).

Lemma 6 states that ‖(Σ̃add−Σ)β∗‖∞ and ‖ξ̂add‖∞ can be controlled by

‖β∗‖1. From the proof of (Datta and Zou, 2017, Theorem 1), we know that

there also exist universal positive constants C ′ and c′ and positive function

ζ̂ ′ (depending on β∗S∗ , τ 2 and σ2) such that for all ε ≤ min(ε0,
κ

64s
),

P
{
‖D‖max ≥ κ/(64s)

}
≤ C ′p2 exp(−nc′ε2(ζ̂ ′)−1). (S2.4)

Combining with Lemma 6 and Theorem 3, we have the following result.

Corollary 1. Suppose that Σ satisfies the κ-REC on C(S∗). If λ and ρ3 in

Algorithm 1 are chosen such that λ ≥ 8K and ρ3 ≤ κ
4
√

2λ
where K is the

constant same as in Lemma 6, then for all k ∈ N the following inequality

‖βk − β∗‖ ≤ 4
√
s λ

κ
(S2.5)

holds w.p. at least 1 − p2C exp(−cns−2ζ−1), where C and c are universal

positive constants and ζ is a positive function on β∗, τ 2, σ2, κ and λmax(ΣA).

Write G̃add := [Σ̃add](S∗)cS∗ [Σ̃add]−1
S∗S∗ . By recalling εLS = 1

n
Z̃T(ỹ−Z̃βLS)

and using the equality (4.8), it is not difficult to obtain the inequalities

‖εLS‖∞ ≤max(2, 1+s‖G̃add‖max)‖ε̃add‖∞, ‖ε̃†‖∞≤ s‖[Σ̃add]−1
S∗S∗‖max‖ε̃add‖∞.
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Along with Lemma 6, Theorem 4 and (S2.4), we obtain the following result.

Corollary 2. Suppose that Σ satisfies the κ-REC on the set C(S∗). Write

K ′ = K max(2, 1 + s‖G̃add‖max) and K ′′ = Ks‖[Σ̃add]−1
S∗S∗‖max where the

constant K is same as the one in Lemma 6. If λ, ρ1 and ρ3 are chosen such

that λ ≥ 6K ′, ρ1> max
(

4a
(a+1) mini∈S∗ |β∗i|

, 5κK′′

8λ
) and ρ3 ≤

√
5κ

18
√

3λ
, then βk =

βLS and sign(βk) = sign(β∗) for k ≥ k̂ = d 0.5 ln(s)

ln[(9
√

3−4)5κλ−1]−ln[147
√

3(ρ3)2]
e w.p.

at least 1−Cp2 exp(−cns−2ζ−1), where C, c are universal positive constants

and ζ is a positive function depending on β∗, τ 2, σ2, κ and λmax(ΣA).

As remarked in the beginning of this subsection, when X is from the

Σx-Gaussian ensemble, with high probability there exists a constant κ > 0

such that Σ satisfies the REC on C(S∗). We see that if κ has a small value,

there is a great possibility for the choice range of ρ3 to be empty, and it

is impossible to achieve the sign consistency; and when κ is not too small,

say, 5κ
108
√

3K′
> 1, after k ≥ k̂ ≥ d0.5 ln(s)

ln(1.42)
e the iterate βk is sign-consistent.

S2.2 Multiplicative errors and missing data

In this part, we consider that the matrix X is contaminated by multiplica-

tive measurement errors, i.e. Z = X ◦M , whereM = (mij) is the matrix of

measurement errors and the rows of M are assumed to be i.i.d. with mean

µM , covariance ΣM and sub-Gaussian parameter τ 2. Similar to Datta and
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Zou (2017), in the sequel we need the following conditions

max
i,j
|Xij| ≤ cX , max

i,j
|Mij| ≤ cM , min

i,j
(ΣM)ij > 0, (µM)min > 0 (S2.6)

where cX and cM are universal positive constants. From Loh and Wain-

wright (2012), Σ̂mul = 1
n
ZTZ � (ΣM + µMµ

T
M) and ξ̂mul = 1

n
ZTy � µM

are the unbiased surrogates of Σ and ξ, where � denotes the elementwise

division operator. Let Σ̃mul := ε̂I+ΠSp+(Σ̂mul− ε̂I) and ε̃mul := ξ̂mul−Σ̃mulβ
∗.

Lemma 7. Let K̃ := 2
[
ε̂−min(λmin(Σ†M), 0)c2

M

]
‖β∗‖1 with Σ†M = E�(ΣM+

µMµ
T
M) where E is the matrix of all ones and η̃ = min

(
1, ε0

ε̂−min(λmin(Σ†M ),0)c2M

)
.

Then, there exist universal positive constants C̃, c̃ and positive function ζ̃

(depending on β∗, τ 2, σ2, λmin(Σ†M) and the constants in (S2.6)) such that

P{‖(Σ̃mul − Σ)β∗‖∞ > K̃} ≤ C̃p2 exp(−c̃nζ̃−1η̃2), (S2.7)

P{‖ε̃mul‖∞ > K̃} ≤ C̃p2 exp(−c̃ns−2ζ̃−1η̃2). (S2.8)

Proof. From the expression of Σ̃mul and the proof of Lemma 6, we have

‖(Σ̃mul − Σ)β∗‖∞ ≤
[
ε̂− λmin(Σ̂mul)

]
‖β∗‖1 + ‖(Σ̂mul − Σ)β∗‖∞. (S2.9)
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Next we provide a lower bound for λmin(Σ̂mul). Write ΣZ = 1
n
ZTZ. Then,

λmin(Σ̂mul) = λmin

[
ΣZ ◦ (Σ†M − λmin(Σ†M)I) + (ΣZ ◦ λmin(Σ†M)I)

]
≥ λmin

[
ΣZ ◦ (Σ†M − λmin(Σ†M)I)

]
+ λmin[ΣZ ◦ λmin(Σ†M)I]

≥ λmin(ΣZ)λmin(Σ†M − λmin(Σ†M)I) + λmin[ΣZ ◦ λmin(Σ†M)I]

≥ λmin[ΣZ ◦ λmin(Σ†M)I] ≥ min(λmin(Σ†M), 0) max
1≤j≤p

(ZT
j Zj/n)

≥ min(λmin(Σ†M), 0)c2
M

where the first inequality is using (Horn and Johnson, 1990, Theorem 4.3.1),

the second one is due to Σ†M−λmin(Σ†M)I � 0 and (Horn and Johnson, 1991,

Theorem 5.3.1), the fourth one is using the positive semidefiniteness of ΣZ ,

and the last one is due to Z = X ◦M and the first two relations in (S2.6).

Together with (S2.9) and the definition of K̃,

‖(Σ̃mul − Σ)β∗‖∞ ≤ (K̃/2) + ‖(Σ̂mul − Σ)β∗‖∞.

By (Datta and Zou, 2017, Lemma 2) for ε = K̃η̃
2‖β∗‖1 ≤ ε0, there are universal

positive constants C, c and positive functions ζ (depending on β∗, τ 2, σ2)

and the constants in (S2.6) such that

P{‖(Σ̃mul− Σ)β∗‖∞ > K̃} ≤ P
{
‖(Σ̂mul− Σ)β∗‖∞ >

K̃

2

}
≤ P

{
‖(Σ̂mul− Σ)β∗‖∞ >

K̃η̃

2

}
≤ P

{
‖Σ̂mul− Σ‖max >

K̃η̃

2‖β∗‖1

}
≤ Cp2 exp

(
− cn(ε̂−min(λmin(Σ†M), 0)c2

M)2η̃2ζ−1
)
.



Supplementary Material 17

Thus, we get (S2.7). From (Datta and Zou, 2017, Property B.2) and

‖ε̃mul‖∞ ≤ ‖ξ̂mul − ξ‖∞ + ‖ξ − Σβ∗‖∞ + ‖(Σ̃mul − Σ)β∗‖∞, it follows that

P{‖ξ − Σβ∗‖∞ ≥ K̃/3} ≤ Cp exp(−ncσ−2K̃2). Together with (Datta and

Zou, 2017, Lemma 2) and the inequality (S2.7), we obtain (S2.8).

By using Lemma 7 and the same arguments as those for Corollary 1

and 2, the following conclusions hold where G̃mul := [Σ̃mul](S∗)cS∗ [Σ̃mul]
−1
S∗S∗ .

Corollary 3. Suppose that Σ satisfies the κ-REC on the set C(S∗). If λ

and ρ3 are chosen such that λ ≥ 8K̃ and ρ3 ≤ κ
4
√

2λ
where K̃ is the constant

in Lemma 7, then for all k ∈ N the inequality (S2.5) holds w.p. at least

1 − Cp2 exp(−cns−2ζ−1) where C, c are universal positive constants and ζ

is a positive function on β∗, τ 2, σ2, κ, λmin(Σ†M) and the constants in (S2.6).

Corollary 4. Suppose that Σ satisfies the κ-REC one the set C(S∗). Write

K̃ ′ = K̃ max(2, 1+s‖G̃mul‖max) and K̃ ′′ = K̃s‖[Σ̃mul]
−1
S∗S∗‖max where K̃ is

same as in Lemma 7. If the parameters λ, ρ1 and ρ3 in Algorithm 1 are cho-

sen such that λ ≥ 6K̃ ′, ρ1 > max
(

4a
(a+1) mini∈S∗ |β∗i|

, 5κK̃′′

8λ
) and ρ3 ≤

√
5κ

18
√

3λ
,

then the result of Corollary 2 holds w.p. at least 1 − Cp2 exp(−cns−2ζ−1),

where C and c are universal positive constants and ζ is a positive function

depending on β∗, τ 2, σ2, κ, λmin(Σ†M) and the constants in (S2.6).
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S3. Implementation of GEP-MSCRA

In this part we pay our attention to the implementation of GEP-MSCRA.

We know that GEP-MSCRA consists of solving a sequence of weighted

`1-regularized LS, which can be equivalently written as

min
β,u∈Rp

{1

2
‖u‖2 +

∑m
i=1ωi|βi| : Z̃β − u = ỹ

}
, (S3.1)

where ωi = nλ(1 − wki ) for i = 1, . . . , p are the weights. There are some

solvers developed for (S3.1); for example, the SLEP developed by Liu, Ji

and Ye (2011) with the accelerated proximal gradient method in Nesterov

(2013), and the semismooth Newton ALM developed by Li, Sun and Toh

(2018). Motivated by the performance of the semismooth Newton ALM of

Li, Sun and Toh (2018), we apply it for solving the dual of (S3.1), i.e.,

min
ζ,η∈Rp

{
1

2
‖ζ‖2 + 〈ỹ, ζ〉+ δΛ(η) : Z̃Tζ − η = 0

}
with Λ = [−ω, ω]. (S3.2)

For a given µ > 0, define the augmented Lagrangian function of (S3.2) by

Lµ(ζ, η; β) :=
1

2
‖ζ‖2 + 〈ỹ, ζ〉+ δΛ(η) + 〈β, Z̃Tζ − η〉+

µ

2
‖Z̃Tζ − η‖2.

The iteration steps of the ALM for solving (S3.2) are described as follows.

Next we focus on the solution of the subproblem (S3.3). For any ζ ∈ Rp,

define Φj(ζ) := minη∈Rp Lµj(ζ, η; βj). After an elementary calculation,

Φj(ζ) =
µj
2

∥∥ΠΛ

(
Z̃Tζ+βj/µj

)
−
(
Z̃Tζ+βj/µj

)∥∥2
+

1

2
‖ζ‖2+〈ỹ, ζ〉.
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Algorithm 2 An inexact ALM for the dual problem (S3.2)
Initialization: Choose µ0 > 0 and a starting point (ζ0, η0, β0). Set j = 0.

while the stopping conditions are not satisfied do

1. Solve the following nonsmooth convex minimization inexactly

(ζj+1, ηj+1) ≈ arg min
ζ,η∈Rp

Lµj(ζ, η; βj). (S3.3)

2. Update the multiplier by the formula βj+1 = βj + µj(Z̃
Tζj+1 − ηj+1).

3. Update µj+1 ↑ µ∞ ≤ ∞. Set j ← j + 1, and then go to Step 1.

end while

It is easy to verify that (ζj+1, ηj+1) is an optimal solution of (S3.3) iff

ζj+1 = arg min
ζ∈Rp

Φj(ζ) and ηj+1 = ΠΛ

(
Z̃Tζj+1 + βj/µj

)
.

By the strong convexity of Φj, ζj+1 = arg minζ∈Rp Φj(ζ) iff ζj+1 satisfies

∇Φj(ζ) = ỹ + ζ + µjZ̃
[(
Z̃Tζ+βj/µj

)
− ΠΛ

(
Z̃Tζ+βj/µj

)]
= 0. (S3.4)

The system (S3.4) is strongly semismooth (see the related discussion in

Mifflin (1977); Qi and Sun (1993)), and we apply the semismooth Newton

method for solving it. Write h := Z̃Tζ+βj/µj. By (Clarke, 1983, Proposition

2.3.3 and Theorem 2.6.6), the Clarke Jacobian ∂∇Φj satisfies

∂(∇Φj)(ζ) ⊆ ∂̂2Φj(ζ) := I + µjZ̃
(
I − ∂ΠΛ(h)

)
Z̃T (S3.5)
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where ∂̂2Φj is the generalized Hessian of Φj at ζ. Since the exact charac-

terization of ∂∇Φj is difficult to obtain, we replace ∂∇Φj with ∂̂2Φj in the

solution of (S3.4). Let W ∈ ∂ΠΛ(h). By (Clarke, 1983, Theorem 2.6.6),

W = Diag($1, . . . , $p) with $i ∈ ∂ΠΛi
(hi) where

∂ΠΛi
(hi) =


{1} if |hi| < ωi;

[0, 1] if |hi| = ωi;

{0} if |hi| > ωi.

From the last two equations, each element in ∂̂2Φj(ζ) is positive definite,

which by Qi and Sun (1993) implies that the following semismooth Newton

method has a fast convergence rate.

It is worthwhile to point out that due to the special structure of V l, the

computation work of solving the linear system (S3.6) is tiny; see the discus-

sion in (Li, Sun and Toh, 2018, Section 3.3). During the implementation

of the semismooth Newton ALM, we terminated the iterates of Algorithm

2 when max{εjpinf , ε
j
dinf , ε

j
gap} ≤ εj, where εjgap is the primal-dual gap, i.e.,

the sum of the objective values of (S3.1) and (S3.2) at (βj, ζj, ηj), and εjpinf

and εjdinf are the primal and dual infeasibility measure at (βj, ζj, ηj). By

comparing the optimality condition of (S3.3) with that of (S3.2), we defined

εjpinf :=
‖∇Φj(ζ

j)‖
1 + ‖ỹ‖

and εjdinf :=
‖βj − βj−1‖
µj−1(1 + ‖ỹ‖)

.
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Algorithm 3 A semismooth Newton-CG algorithm for (S3.4)
Initialization: Choose ϑ, ς, δ∈ (0, 1), % ∈(0, 1

2
) and ζ0 ∈Rp. Set l = 0.

while the stopping conditions are not satisfied do

1. Choose a matrix V l ∈ ∂̂2Φj(ζ
l). Solve the following linear system

V ld = −∇Φj(ζ
l) (S3.6)

with the conjugate gradient (CG) algorithm to find dl such that

‖V ldl +∇Φj(ζ
l)‖ ≤ min(ϑ, ‖∇Φj(ζ

l)‖1+ς).

2. Set αl = δml , where ml is the first nonnegative integer m for which

Φj(ζ
l + δmdl) ≤ Φj(ζ

l) + %δm〈∇Φj(ζ
l), dl〉.

3. Set ζ l+1 = ζ l + αld
l and l← l + 1, and then go to Step 1.

end while

We adopted a stopping criteria similar to those in Li, Sun and Toh (2018):

‖∇Φj(ζ
j+1)‖ ≤ δj min

(
0.1,max(εjdinf , ε

j
gap)
)

with
∑∞

j=0δj <∞.
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S4. ADMM Algorithm for CoCoLasso

This part includes our implementation for CoCoLasso (a convex conditioned

Lasso of Datta and Zou (2017)). They first solved the following PSD opti-

mization problem

Σ ∈ arg min
W�ε̂I

‖W − Σ̂‖max for some ε̂ > 0. (S4.1)

When the optimal solution Σ of (S4.1) is available, one may apply the

semismooth Newton ALM in Section S3 for solving

β = arg min
β∈Rp

{
1

2n
‖y − Zβ‖2 + λ‖β‖1

}
(S4.2)

with the Cholesky factor Z/
√
n of Σ and the vector y satisfying ZT

y = ZTy.

Therefore, we here focus on the computation of Σ. The problem (S4.1) can

be equivalently written as

min
W,B∈Sp

{
‖B‖max : W −B = Σ̂, W � ε̂I

}
, (S4.3)

whose dual, after an elementary calculation, takes the following form

min
Y ∈Sp+∩B

〈
Y, Σ̂− ε̂I

〉
with B :=

{
Y ∈ Sp : ‖Y ‖1 ≤ 1

}
. (S4.4)

Here, ‖Y ‖1 means the elementwise `1-norm of Y . Different from Datta and

Zou (2017), we use the ADMM with a large step-size τ ∈ (1,
√

5+1
2

) instead

of the unit one to solve (S4.3). From the numerical results in Sun, Yang
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and Toh (2016), the ADMM with a larger step-size has better performance.

For a given µ> 0, define the augmented Lagrangian function of (S4.3) by

Lµ(W,B; Γ) := ‖B‖max + 〈W −B − Σ̂,Γ〉+ (µ/2)‖W −B − Σ̂‖2
F .

The iterations of the ADMM for (S4.3) with a step-size are as follows.

Algorithm 4 ADMM for solving the problem (S4.3)

Initialization: Choose µ > 0, τ ∈ (1,
√

5+1
2

) and (W 0, B0,Γ0). Set k = 0.

while the stopping conditions are not satisfied do

1. Compute the following strongly convex minimization problem

W k+1 = arg min
W�ε̂I

Lµ(W,Bk; Γk). (S4.5)

2. Compute the following strongly convex minimization problem

Bk+1 = arg min
B∈Sp

Lµ(W k+1, B; Γk). (S4.6)

3. Update the multiplier by the formula

Γk+1 = Γk + τµ(W k+1 −Bk+1 − Σ̂).

4. Set k ← k + 1, and then go to Step 1.

end while

Due to the speciality of the constraint W − B = Σ̂, the convergence
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of Algorithm 4 can be directly obtained from (Fazel et al., 2013, Theorem

B.1) with S = T = 0. By the expression of Lµ(W,B; Γ), it holds that

W k+1 = ε̂I + ΠSn+

(
Bk − µ−1Γk + Σ̂− ε̂I

)
,

Bk+1 = (W k+1 + µ−1Γk − Σ̂)− Πµ−1B
(
W k+1 + µ−1Γk − Σ̂

)
(S4.7)

where the equality (S4.7) is obtained from proxf∗(G) + proxf (G) = G with

proxf (G) := arg minB∈Sp
{

1
2
‖B − G‖2

F + f(B)
}

for f(B) := µ−1‖B‖max.

Just like Datta and Zou (2017), we use the algorithm proposed in Duchi et

al. (2008) to compute the projection involved in (S4.7).

During our implementation of Algorithm 4, we adjust µ dynamically by

the ratio of the primal and dual infeasibility. By the optimality conditions of

(S4.3) and (S4.5)-(S4.6), we measure the primal and dual infeasibility and

the dual gap at (W k+1, Bk+1,Γk+1) in terms of εkpinf , ε
k
dinf and εkgap, where

εkpinf :=
‖µ(Bk+1 −Bk) + (τ−1− 1)(Γk+1− Γk)‖F

1 + ‖Σ̂‖F
,

εkdinf :=
‖Γk+1 − Γk‖F
τµ(1 + ‖Σ̂‖F )

and εkgap :=
|‖Bk+1‖max + 〈Γk+1, Σ̂− ε̂I〉|

max(1, 0.5(|Γk+1|+ |〈Γk+1, Σ̂− ε̂I〉|))
.
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