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Table 1: The square root multiplied by 100 of the mean integrated squared error. f̂P,
the parametric estimator; f̂B, the proposed estimator; f̂F, the inverse Fourier estimator;
f̃K, the kernel density estimator based on the uncontaminated data, based on 1000
Monte Carlo runs with x1, . . . , xn being generated from normal and mixture normal
distributions and errors ε1, . . . , εn from N(0, σ2

0) and L(0, σ0). In the parametric models
the variances are assumed to be known. M = {10, 11, . . . , 100} and n = 200.

X ∼ N(0, 1) X ∼ 0.6N(−2, 1) + 0.4N(2, 0.82)
σ0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

ε ∼ N(0, σ2
0)

f̂P 2.72 2.93 3.17 3.48 3.68 4.09 4.31 4.75 5.45 6.35

f̂B 3.81 4.07 4.36 4.75 5.08 5.71 6.05 6.60 7.45 8.51

f̂F 7.47 8.93 11.04 13.80 16.63 6.96 11.56 13.44 15.37 17.20

f̃K 6.23 6.27 6.31 6.16 6.24 6.23 6.36 6.23 6.26 6.34
ε ∼ L(0, σ0)

f̂P 2.78 3.14 3.62 3.78 4.51 4.26 4.71 5.46 6.38 7.56

f̂B 3.87 4.30 5.00 5.44 6.38 5.88 6.41 7.28 8.34 9.64

f̂F 11.69 17.39 22.97 27.59 31.42 10.32 15.03 18.19 22.40 25.94

f̃K 6.23 6.09 6.12 6.33 6.23 6.34 6.24 6.34 6.31 6.26

Framingham Data

The Framingham data is from a study on coronary heart disease (Carroll
et al., 2006) and consist of measurements of systolic blood pressure (SBP)
in 1,615 males, Y1 taken at an examination and Y2 at an 8-year follow-up
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Table 2: The square root multiplied by 100 of the mean integrated squared error. f̂P,
the parametric estimator; f̂B, the proposed estimator; f̂F, the inverse Fourier estimator;
f̃K, the kernel density estimator based on the uncontaminated data, based on 1000 Monte
Carlo runs with x1, . . . , xn being generated from the nearly normal distribution NN(4)
and errors ε1, . . . , εn from the normal N(0, σ2

0) and Laplace L(0, σ0). We assume the
normal distribution N(µ, σ2) with known variance σ2 = 1/48 as the parametric model.
M = {2, 3, . . . , 100} and n = 200.

X ∼ NN(4), ε ∼ N(0, σ2
0) X ∼ NN(4), ε ∼ L(0, σ0)√

3σ0 0.05 0.10 0.15 0.20 0.25 0.05 0.10 0.15 0.20 0.25

f̂P 8.34 8.61 9.13 9.94 10.60 8.50 9.34 10.13 11.15 11.73

f̂B 16.49 19.71 24.11 29.13 34.43 17.30 22.41 27.72 33.08 37.86

f̂F 20.09 49.60 80.42 95.17 95.80 21.47 26.65 31.80 37.09 41.22

f̃K 15.90 15.89 15.94 15.92 15.69 16.04 16.28 16.01 15.96 16.28

Table 3: The square root multiplied by 100 of the mean integrated squared error. f̂P,
the parametric estimator; f̂B, the proposed estimator; f̂F, the inverse Fourier estimator;
f̃K, the kernel density estimator based on the uncontaminated data, based on 1000 Monte
Carlo runs with x1, . . . , xn, n = 100, being generated from the beta distribution with
shapes (3.5, 5.5) and errors ε1, . . . , εn from the normal N(0, σ2

0) and Laplace L(0, σ0).

We used the method of moment estimators to obtain f̂P. M = {2, 3, . . . , 100}
X ∼ beta(3.5, 5.5), ε ∼ N(0, σ2

0) X ∼ beta(3.5, 5.5), ε ∼ L(0, σ0)
σ0/σ 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

f̂P 16.55 19.25 21.60 24.72 27.17 15.42 17.04 18.81 21.80 29.56

f̂B 13.62 15.61 17.40 21.12 25.49 13.68 15.10 19.77 26.65 34.60

f̂F 23.42 54.53 83.99 88.71 88.92 24.51 27.66 31.63 35.33 38.48

f̃K 20.35 20.85 20.46 20.38 20.94 20.69 20.50 20.07 20.85 20.22
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examination after the first. At the ith examination, the SBP was measured
twice, Yi1 and Yi2 (i = 1, 2), for each individual. Assuming normal error εi
with mean zero for each individual, then εi and ε̃i = (Yi1 − Yi2)/

√
2 have

the same distribution. Q-Q plots suggest that the mixture normal models
λiN(0, σ2

i1) + (1 − λi)N(0, σ2
i2) fit better than single normals. After fitting

ε̃i with this mixture normal model we obtained λ1 = 0.6592, (σ11, σ12) =
(5.45, 10.67), λ2 = 0.8227, and (σ21, σ22) = (6.40, 12.55). We estimated the
densities of Yi based Ȳi = (Yi1+Yi2)/2 = Xi+ ε̄i, where ε̄i = (εi1+εi2)/2 has
a population error distribution λiN(0, σ2

i1/2) + (1−λi)N(0, σ2
i2/2), i = 1, 2.

The Bernstein polynomial density estimates are obtained on interval [a, b] =
[70, 270] using the optimal degree m̂ = 35 selected from M = {5, 6, . . . , 100}.
The kernel density estimate f̂F is produced by R package decon (Wang

and Wang, 2011). The parametric estimate f̂P was obtained by maximum
likelihood method using the log-normal model with the estimated mixture
normal error distributions. We also calculated kernel density estimate ψ̃K

by ignoring measurement errors. Figure 1 shows that the difference between
f̂B, f̂F, and ψ̃K are noticeable.
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Figure 1: Left (right) panel: Density deconvolution of the systolic blood pressure at

the first(second) examination based on Framingham data, f̂F is the inverse Fourier

transform estimate(solid); f̂B is the proposed estimate using Bernstein polynomial with

m = 35(dashed); f̂P is the parametric estimate using lognormal model; ψ̃K is the kernel
estimate ignoring measurement errors (dotted).
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Proof of Proposition 1

Proof. By Cauchy-Schwarz inequality, for any function p (not necessarily
density)

[p ∗ g(y)]2 ≤f ∗ g(y)

∫
p2(x)

f(x)
g(y − x)dx. (S0.1)

Applying (S0.1) with p = h− f

χ2(h ∗ g‖f ∗ g) =

∫
[(h− f) ∗ g(y)]2

f ∗ g(y)
dy ≤

∫∫
[h(x)− f(x)]2

f(x)
g(y − x)dxdy

=

∫
[h(x)− f(x)]2

f(x)
dx = χ2(h‖f).

Thus, part (i) is true. For part (ii) we have χ2(h∗ g‖f ∗ g) = 0 iff h∗ g(y) =
f ∗ g(y) almost everywhere. Then, the characteristic functions of h and f
are identical. This means that h and f are identical almost everywhere.

Proof of Theorem 1.

Proof. By Theorem 1 of Lorentz (1963) we have f0(x) − Pm(x) = Rm(x),
where Pm(x) is a polynomial with positive coefficients and |Rm(x)| ≤ C0(f)
m−(r+α)/2, 0 ≤ x ≤ 1. So f(x) − Qm̃(x) = Rm̃(x), where Qm̃(x) = xa(1 −
x)bPm(x) =

∑m̃
i=0 ai·βm̃i(x) is a polynomial of degree m̃ = m+a+b with pos-

itive coefficients, Rm̃(x) = xa(1−x)bRm(x), and |Rm̃(x)| ≤ C0(f)m−(r+α)/2,

0 ≤ x ≤ 1. For large m, ρm̃ :=
∫ 1

0
Rm̃(x)dx ≤ C0(d, f)m−(r+α)/2 < c0 < 1.

Because f(x) and βm̃i(x) are densities on [0, 1],
∑m̃

i=0 ai = 1 − ρm̃ > 0.

Normalizing ai we obtain fm̃(x;p0) = Qm̃(x)/(1 − ρm̃) =
∑m̃

i=0 p0iβm̃i(x),
where p0i = ai/(1− ρm̃). Noticing that f0(x) ≥ b0 > 0, we have

|fm̃(x;p0)− f(x)|/f(x) = (1− ρm̃)−1 |Rm̃(x)/f(x) + ρm̃|
= (1− ρm̃)−1 |Rm(x)/f0(x) + ρm̃|
≤ (1− c0)−1C0(f)(1/δ0 + 1)m−(r+α)/2.

Therefore, (A.2.) is implied. (A.1.) is implied by (A.2). The proof is
complete.
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Proof of Theorem 2.

Proof. The approximate Bernstein log likelihood is

`(fm) = `(p) =
n∑
i=1

log[ψm(yi;p)].

Define the log-likelihood ratio R(p) = `(f)− `(p), where

`(f) =
n∑
i=1

logψ(yi) =
n∑
i=1

log(f ∗ g)(yi).

Because log(1 + z) =
∑∞

k=1(−1)k+1 zk

k
, |z| < 1, we have

log(x) = log a+
2∑

k=1

(−1)k+1 1

k

(
x− a
a

)k
+R2, |x− a| < a,(S0.2)

where R2 =
∑∞

k=3(−1)k+1 1
k

(
x−a
a

)k
. Clearly,

|R2| = O

(∣∣∣∣x− aa
∣∣∣∣3
)

= o

(∣∣∣∣x− aa
∣∣∣∣2
)
, |x− a|/a→ 0.

Consider subsetAm(εn) of Sm so that, for all y ∈ R, |ψm(y;p)−ψ(y)|/ψ(y) ≤
εn < 1, 0 < εn ↘ 0 slowly, as n → ∞, e.g., εn = 1/ log(n + 2). Clearly
p0 ∈ Am(εn) for large m, Am(εn) is nonempty. By (S0.2) we have

R(p) = −
n∑
i=1

[
Zi(p)− 1

2
Z2
i (p)

]
+ o(Rmn(p)), a.s.,

where Rmn(p) =
∑n

i=1 Z
2
i (p), and Zi(p) = [ψm(yi;p)− ψ(yi)]/ψ(yi), i ∈ In1 .

Because E[Zi(p)] = 0, σ2[Zi(p)] = E[Z2
i (p)] = D2(p), by the law of iterated

logarithm(LIL) we have, for all p ∈ Am(εn),

n∑
i=1

Zi(p)/σ[Zi(p)] = O(
√
n log log n), a.s..

By the Kolmogorov’s strong law of large numbers we have, for all p ∈
Am(εn),

R(p) =
n

2
D2(p)−O(D(p)

√
n log log n) + o(nD2(p)), a.s.. (S0.3)
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If D2(p) = rn = log n/n for some p ∈ Am(εn) then, by (S0.3), there is an
η > 0 such that R(p) ≥ η log n, a.s.. At p = p0, if m = Cn1/k we have
D2(p0) = χ2(ψm(·;p0)‖ψ) = O(m−k) = O(n−1). By (S0.3) again we have
R(p0) = O(

√
log log n), a.s.. Therefore, similar to the proof of Lemma 1 of

Qin and Lawless (1994), we have

D2(p̂) =

∫
Sψ

[ψm(y; p̂)− ψ(y)]2

ψ(y)
dy <

log n

n
, a.s.,

and p̂ ∈ Am(εn). The proof is complete.

In order to prove Theorem 3 we need the following lemma.

Lemma 1. If f ∈ C(r)[0, 1] and f(x) ≥ b0 > 0 on [0,1], then, for m large
enough, there exists fm(x;p0) that fulfills both (A1) and (A2) and with
coefficients satisfying 0 < c0 < (m+ 1)pi0 < c1 <∞.

Proof. Lorentz (1963) proved that, under the conditions of his Theorem 1,
for r = 0, 1, 2, . . ., there exist polynomials of the form, using his notations,

Qf
nr(x) =

n∑
k=0

{
f( k

n
) +

r∑
i=2

f (i)( k
n
)

1

ni
τri(x, n)

}
bnk(x) (S0.4)

such that for each function with first r continuous derivatives

|f(x)−Qf
nr(x)| ≤ C ′r∆

r
nωr(∆n);

C ′r depends only upon r. The τri(x, n) are some polynomials in x and n,
independent of f , in x of degree i, in n of degree [i/2] = bi/2c.

Assuming that f(x) ≥ b0 > 0, Lorentz (1963) then proved that Qf
nr(x)

is a polynomial with positive coefficients of degree n + r (see Remark (a)
of Lorentz, 1963).

Assuming that f (i)( k
n
) are all bounded as in Theorem 1 of Lorentz

(1963), we know that, for r ≥ 2, Q̃kr(x, n
−1) :=

∑r
i=2 f

(i)( k
n
) 1
ni
τri(x, n) is

a polynomial of degree r with coefficients cki = O(n−1), i = 0, . . . , r. By
Remark (a) of Lorentz (1963), for large n,

f( k
n
) + Q̃kr(x, n

−1) =
r∑
j=0

[f( k
n
) + akj]brj(x),

where, uniformly in k ∈ {0, . . . , n},

akj =

(
r

j

)−1 j∑
i=0

cki

(
r − i
j − i

)
= O(n−1), j = 0, . . . , r.
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Thus, for large n, we have

Qf
nr(x) =

n∑
k=0

{
f( k

n
) +

r∑
j=0

akjbrj(x)

}
bnk(x)

=
n∑
k=0

f( k
n
)bnk(x) +

n∑
k=0

r∑
j=0

akjbrj(x)bnk(x),

where

n∑
k=0

f( k
n
)bnk(x) =

n+r∑
k=0

αn+r,kbn+r,k(x)

with coefficients

αn+r,j =
n∑
i=0

(
n
i

)(
r
j−i

)(
n+r
j

) f( i
n
) ≥ min

0≤x≤1
f(x), j = 0, . . . , n+ r. (S0.5)

Let Vnrj be a random variable having hypergeometric distribution. Then

αn+r,j = E
[
f(

Vnrj
n

)
]
, j = 0, . . . , n+ r.

Thus

n∑
k=0

r∑
j=0

akjbrj(x)bnk(x) =
n∑
k=0

r∑
j=0

akj

(
r

j

)(
n

k

)
xj+k(1− x)n+r−j−k

=
n∑
k=0

r∑
j=0

akj
(
r
j

)(
n
k

)(
n+r
j+k

) bn+r,j+k(x)

l=j+k
====

n+r∑
l=0

n∑
k=0

ak,l−k
(
r
l−k

)(
n
k

)(
n+r
l

) bn+r,l(x).

Consequently

Qf
nr(x) =

n+r∑
k=0

cn+r,kbn+r,k(x), (S0.6)
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where

cn+r,j = αn+r,j +
n∑
k=0

ak,j−k
(
r
j−k

)(
n
k

)(
n+r
j

)
=

n∑
i=0

(
n
i

)(
r
j−i

)(
n+r
j

) f( i
n
) +

n∑
k=0

ak,j−k
(
r
j−k

)(
n
k

)(
n+r
j

)
=

n∑
i=0

(
n
i

)(
r
j−i

)(
n+r
j

) [f( i
n
) + ai,j−i], j = 0, . . . , n+ r.

Because
n∑
i=0

(
n
i

)(
r
j−i

)(
n+r
j

) = 1

we have, for j = 0, . . . , n+ r,

cn+r,j ≤
n∑
i=0

(
n
i

)(
r
j−i

)(
n+r
j

) f( i
n
) + max

0≤i≤n
|ai,j−i|

= αn+r,j +O(n−1),

min
x∈[0,1]

f(x) +O(n−1) ≤ cn+r,j ≤ max
x∈[0,1]

f(x) +O(n−1).

Therefore, for all large n and some η > 0,

cn+r,j ≥ αn+r,j +O(n−1)

≥ min
0≤x≤1

f(x) +O(n−1)

≥ η min
0≤x≤1

f(x) > 0, j = 0, . . . , n+ r.

Combining the above with the proof of Theorem 1, we can easily see that
p0i(m + 1) = cn+r,j/(1 − ρn+r) ≥ ηmin0≤x≤1 f(x)/(1 − ρn+r) := c0 > 0,
m = n+ r. Similarly, p0i(m+ 1) ≤ c1.

Proof of Theorem 3.

Proof. The following identities are useful in this proof that, for a 6= 0 and
x 6= 0,

1

x
=

1

a
+
a− x
ax

=
1

a

(
1 +

a− x
a

)
+

1

x

(a− x
a

)2
. (S0.7)
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Define an empirical Fisher information matrix

Ĵm(p) = [Ĵ ijm(p)] = −
[∂S(i)

mn(p)

∂pj

]
,

where

Ĵ ijm(p) =
1

n

n∑
l=1

ψmi(yl)ψmj(yl)

ψ2
m(yl;p)

, i, j ∈ Im0 .

In order to estimate the order of Rn = Im(f, g)(p̂−p0), we need to estimate

R̄n = Ĵm(p0)(p̂− p0) and R̄n − Rn.
Define Vmi(Y ) = ψmi(Y )/ψ(Y ). Then E[Vmi(Y )] = 1 and σ2

mi ≡
σ2 [Vmi(Y )] ≡ τ 2mi − 1. Thus, the LIL ensures that, for all i ∈ Im0 ,

Σ(i)
mn ≡ n−1

n∑
j=1

Vmi(yj) = 1 +O(σmi
√

log log n/n), a.s. (S0.8)

It is necessary and sufficient (Redner and Walker, 1984) for p̂ to maximize

`(p) that S
(i)
mn(p̂) ≤ 1, i ∈ Im0 , with equality when p̂i > 0, where S

(i)
mn(p) =

n−1
∑n

j=1 ψmi(yj)/ψm(yj;p). Thus we have, for all i ∈ Im0 ,

p̂iS
(i)
mn(p̂) = p̂i. (S0.9)

Estimation of R̄n: First, we estimate the differences Σ
(i)
mn − S

(i)
mn(p0) and

S
(i)
mn(p0)− 1.

For each i ∈ Im0 , by (A.1.) and the first equation of (S0.7)

S(i)
mn(p0)− Σ(i)

mn = − 1

n

n∑
j=1

ψmi(yj)Zj(p0)

ψm(yj;p0)
= O(n−1/2)S(i)

mn(p0), (S0.10)

Then, we have, for all i ∈ Im0 ,

R̃∗ni ≡ S(i)
mn(p0)− Σ(i)

mn = O(Σ(i)
mnn

−1/2)

= O(n−1/2) +O(σmi
√

log log n/n), a.s. (S0.11)

Combining (S0.8) through (S0.11) we obtain, a.s., for all i ∈ Im0 ,

R̃ni ≡ S(i)
mn(p0)− 1 = O(σmi

√
log log n/n) +O(n−1/2). (S0.12)

Secondly, we obtain an asymptotic expression for R̄n and use it to get
an estimate. By (S0.9) and (S0.7) again, we have, for all i ∈ Im0 ,

p̂i = p̂iS
(i)
mn(p0)− p̂i

m∑
j=0

Ĵ ijm(p0)(p̂j − pj0) + R̂ni, (S0.13)



Zhong Guan

where, by (3),

R̂ni =
1

n

n∑
j=1

p̂iψmi(yj)

ψm(yj; p̂)

[ψm(yj;p0)− ψm(yj; p̂)]2

ψ2
m(yj;p0)

= O(log n/n), a.s.

(S0.14)
Combining (S0.12) and (S0.13), we have, for all i ∈ Im0 ,

p̂i

m∑
j=0

Ĵ ijm(p0)(p̂j − pj0) = p̂iR̃ni + R̂ni, a.s. (S0.15)

Defining

∆n = diag
{ m∑

j=0

Ĵ0j
m (p0)(p̂j − pj0), . . . ,

m∑
j=0

Ĵmjm (p0)(p̂j − pj0)
}
, (S0.16)

Σn = (Σ0, . . . ,Σm)T, R̃n = (R̃n0, . . . , R̃nm)T, and R̂n = (R̂n0, . . . , R̂nm)T,
we have, in matrix form,

Π0Ĵm(p0)(p̂− p0) = Π̂R̃n + R̂n −∆n(p̂− p0), (S0.17)

where Π0 = diag(p00, . . . , pm0) and Π̂ = diag(p̂0, . . . , p̂m). Because f(x) ≥
b0 > 0, by Lemma 1, 0 < c0 < (m+ 1)pi0 < c1 <∞. The ith component of
∆n can be written as

∆(i)
mn =

m∑
j=0

Ĵ ijm(p0)(p̂j − pj0)

=
1

n

n∑
l=1

ψmi(yl)

ψ2
m(yl;p0)

[ψm(yl; p̂)− ψm(yl;p0)].

Thus, we have

|∆(i)
mn| ≤ p−1i0

1

n

n∑
l=1

|ψm(yl; p̂)− ψm(yl;p0)|
ψm(yl;p0)

≤ p−1i0

(
1

n

n∑
l=1

|ψm(yl; p̂)− ψm(yl;p0)|2

ψ2
m(yl;p0)

)1/2

= O(p−1i0
√

log n/n).
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Therefore, we have an asymptotic expression R̄n = Π−10 [Π̂R̃n+R̂n−∆n(p̂−
p0)] and

‖R̄n‖2 = O
( m∑
i=0

p̂2i
p2i0
σ2
mi

log log n

n

)
+O

( 1

n

m∑
i=0

p̂2i
p2i0

)
+O

( m∑
i=0

p−2i0

( p̂i
pi0
− 1
)2 log n

n

)
. (S0.18)

Because 0 < c0 < (m + 1)pi0 < c1 < ∞,
∑m

i=0 p
−2
i0 (p̂i/pi0 − 1)2 = O(m4) =

O(n4/k). By (2), we have

‖R̄n‖2 = O
(
m2

m∑
i=0

σ2
mi

log log n

n

)
+O

( log n

n1−4/k

)
= O

( log n

n1−4/k

)
. (S0.19)

Estimation of R̄n − Rn: First, we find an asymptotic expression of Rn.
It is easy to show that there is a constant c > 0 such that ψm(y;p0) ≥

cψ(y) and

|Î ijm − Ĵ ijm(p0)| =

∣∣∣∣∣ 1n
n∑
l=1

ψmi(yl)ψmj(yl)

ψ2(yl)
− 1

n

n∑
l=1

ψmi(yl)ψmj(yl)

ψ2
m(yl;p0)

∣∣∣∣∣
≤ 1 + c

c2
1

n

n∑
l=1

ψmi(yl)ψmj(yl)|ψm(yl;p0)− ψ(yl)|
ψ3(yl)

≤ 1 + c

c2
1

n

n∑
l=1

ψmi(yl)ψmj(yl)

ψ2(yl)
O(n−1/2)

= Î ijmO(n−1/2),

where Î ijm = n−1
∑n

l=1 ψmi(yl)ψmj(yl)/ψ
2(yl). We have

R̄
(1)
ni = Î ijm − Ĵ ijm(p0) = Î ijmO(n−1/2).

LetWij(Y ) =
ψmi(Y )ψmj(Y )

ψ2(Y )
. Then Î ijm = n−1

∑n
l=1Wij(yl) and Im(f, g) =

E[Îm(f, g)] = [E{Wij(Y )}]. Define

%2ij = σ2{Wij(Y )} =

∫
ψ2
mi(y)ψ2

mj(y)

ψ3(y)
dy − [I ijm(f, g)]2.

By the LIL,

R̄
(2)
ni = Î ijm − I ijm = O

(
%ij
√

log log n/n
)
.
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We have

Ĵ ijm(p0) = Î ijm[1 +O(n−1/2)]

= [I ijm +O(%ij
√

log log n/n)][1 +O(n−1/2)]

= I ijm[1 +O(n−1/2)] +O(%ij
√

log log n/n)[1 +O(n−1/2)]

= I ijm +O(I ijmn
−1/2) +O(%ij

√
log log n/n).

Replacing Ĵm(p0) by Im in (S0.17) we get

Π0Rn = Π0Im(p̂− p0) = Π̂R̃n + R̂n −∆n(p̂− p0)− Π0R̄n, (S0.20)

where R̄n = (R̄n0, . . . , R̄nm)T and

|R̄in| ≤
m∑
j=0

[O(I ijmn
−1/2) +O(%ij

√
log log n/n)]|p̂j − pj0|

= O(
m∑
j=0

I ijm|p̂j − pj0|n−1/2) +O(
m∑
j=0

%ij|p̂j − pj0|
√

log log n/n).

Thus, we have R̄n = R̄n − Rn.
Secondly, we estimate R̄n. By the Cauchy-Schwarz inequality

m∑
j=0

I ijm|p̂j − pj0| ≤
∫
ψmi(y)[|ψm(y; p̂)|+ |ψm(y;p0)|]

ψ(y)
dy

≤ 2 +

∫
ψmi(y)[|ψm(y; p̂)− ψ(y)|+ |ψm(y;p0)− ψ(y)|]

ψ(y)
dy

≤ 2 +

[∫
ψ2
mi(y)

ψ(y)
dy

∫
[ψm(y; p̂)− ψ(y)]2

ψ(y)
dy

]1/2
+

[∫
ψ2
mi(y)

ψ(y)
dy

∫
[ψm(y;p0)− ψ(y)]2

ψ(y)
dy

]1/2
= 2 + τmiO(

√
log n/n).

Because βmi(x) ≤ m+ 1 and f ≥ b0 > 0,

ψmi(u) ≤ (m+1)

∫ 1

0

g(y−x)dx ≤ m+ 1

b0

∫ 1

0

f(x)g(y−x)dx =
m+ 1

b0
ψ(y).

Thus

%2ij <

∫
ψ2
mi(y)ψ2

mj(y)

ψ3(y)
dy ≤

(
m+ 1

b0

)2

I ijm(f, g),
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[ m∑
j=0

%ij|p̂j − pj0|
]2
≤

m∑
j=0

%2ij(p̂j + pj0) ≤
(
m+ 1

b0

)2 m∑
j=0

I ijm(p̂j + pj0)

= O(m2) +O(m2τmi
√

log n/n).

Therefore, we have

R̄in = O(n−1/2) +O(τmi
√

log n/n) +O
(
m(log n/n)1/4

√
τmi log log n/n

)
+O

(
m
√

log log n/n
)
,

and

‖R̄n‖2 = O(mn−1)+O
( m∑
i=0

τ 2milog n/n
)

+O
(
m2

m∑
i=0

τmi
√

log n log log n/n3/2
)

+O
(
m3 log log n/n

)
.

By (2) we have

‖R̄n‖2 = O(n−1+1/k) +O
(

log n/n1−2/k
)

+O
(√

log n log log n/n3/2−7/2k
)

+O
(

log log n/n1−3/k
)

= O
(
n−1+3/k log log n

)
.

Finally, combining this with (S0.19) and ‖Rn‖2 ≤ 2‖R̄n‖2 + 2‖R̄n‖2 we get
(6). For the integrated squared error, we have, a.s.,

(p̂− p0)
TIm(1, δ)(p̂− p0) = RT

nΩ̃m(f, g)Rn.

The proof is complete.

Proof of Theorem 4.

Proof. Because the largest eigenvalue λm of Ωm(f, g) is also the largest
eigenvalue of I−2m (f, g)Im(f, δ). Let w be the associated eigenvector satis-
fying wTw = 1. Then, we have

λm =
wTIm(f, δ)w

wTI2m(f, g)w
. (S0.21)

From f(x) = f0(x) ≥ b0 > 0, it follows that I ijm(f, δ) ≤ b−10 (m+ 1), ∀ i, j ∈
Im0 . Thus, by the Cauchy-Schwarz inequality we have

wTIm(f, δ)w ≤ b−10 (m+ 1)2. (S0.22)
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Denote, v = Im(f, g)w = (v0, . . . , vm)T. Then wTI2m(f, g)w = vTv =∑m
i=0 v

2
i ≥ (m+1)−1(

∑m
i=0 vi)

2 = (m+1)−1(1TIm(f, g)w)2. Define function
of x = (x0, . . . , xm)T,

H(x) =

∫
ψ0(y)ψm(y;x)

ψ(y)
dy,

where ψ0(y) = (1 ∗ g)(y) =
∫ 1

0
g(y− x)dx and ψm(y;x) =

∑m
i=0wiψmi(y) =∑m

i=0 xi
∫ 1

0
βmi(x)g(y − x)dx. By binomial theorem we have

wTI2m(f, g)w ≥ (m+ 1)H2(w). (S0.23)

Clearly H2(x) attains its minimum on the unit sphere at some x0 satisfying
xi0 = H(ei)/H(x0), i ∈ Im0 , where ei denotes the vector with a 1 in the
ith coordinate and 0’s elsewhere. Because H(ei) > 0 for all i ∈ Im0 , we can
assume that all xi0’s are positive. Since g is nonvanishing, nonincreasing
on (0,∞) and nondecreasing on (−∞, 0), for all x ∈ [0, 1],

g(y − x) ≥

 min{g(−1), g(1)}, if y ∈ (0, 1);
g(y − 1), if y ≤ 0;
g(y), if y ≥ 1.

There exists a constant C1 > 0 so that ψ(y) ≤ C1 for all y ∈ (−∞,∞).

Hence we have, for all i ∈ Im0 ,
∫ ψ0(y)ψmi(y)

ψ(y)
dy ≥ C0/C1, where

C0 = min{g2(−1), g2(1)}+

∫ −1
−∞

g2(y)dy +

∫ ∞
1

g2(y)dy > 0.

Consequently,

H(x0) ≥
C0

C1

m∑
i=0

xi0 ≥
C0

C1

m∑
i=0

x2i0 =
C0

C1

.

Combining this with (S0.21) through (S0.23) we obtain

λm ≤
m+ 1

b0H2(x0)
≤ C2

1(m+ 1)

b0C2
0

= O(m).

Similarly λ̃m = O(m). These combined with (4), (5), and (A.2.) ensure (7)
and (8). The proof is complete.
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