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Table 1: The square root multiplied by 100 of the mean integrated squared error. fp,
the parametric estimator; fg, the proposed estimator; fr, the inverse Fourier estimator;
fx, the kernel density estimator based on the uncontaminated data, based on 1000

Monte Carlo runs with z1,...,x, being generated from normal and mixture normal
distributions and errors €1, . .., &, from N(0,03) and L(0,00). In the parametric models
the variances are assumed to be known. M = {10, 11,...,100} and n = 200.
X ~N(0,1) X ~ 0.6N(—2,1) + 0.4N(2,0.8?)
o) 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
e ~ N(0,02)
fp 2.72 2.93 3.17 3.48 3.68 4.09 4.31 4.75 5.45 6.35
fB 3.81 4.07 4.36 4.75 5.08 5.71 6.05 6.60 7.45 8.51

fr 747 893 11.04 13.80 16.63 6.96 11.56 13.44 15.37 17.20
fx 623  6.27 6.31 6.16 6.24 6.23 6.36 6.23 6.26 6.34

g~ L(O, 0'0)
fp 278 314 362 3.78 451 426 471 546 6.38  7.56
fB 3.87 430 500 544 6.38 5.88 641 728 834 9.64
fe 1169 17.39 22,97 27.59 31.42 10.32  15.03 18.19 2240 25.94
fx 623 609 612 633 6.23 634 624 634 631 6.26

Framingham Data

The Framingham data is from a study on coronary heart disease (Carroll
et al 2006) and consist of measurements of systolic blood pressure (SBP)
in 1,615 males, Y] taken at an examination and Y5 at an 8-year follow-up
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Table 2: The square root multiplied by 100 of the mean integrated squared error. fp,
the parametric estimator; fB, the proposed estimator; fF, the inverse Fourier estimator;
fK, the kernel density estimator based on the uncontaminated data, based on 1000 Monte
Carlo runs with z1,...,z, being generated from the nearly normal distribution NN(4)
and errors €1,...,¢&, from the normal N(0,03) and Laplace L(0,0¢). We assume the
normal distribution N(u, 0?) with known variance 02 = 1/48 as the parametric model.
M ={2,3,...,100} and n = 200.

X ~ NN(4), &~ N(0,02) X ~ NN(4), &~ L(0,00)
V30 005 010 0.5 020 0.25 005 010 0.15 020 025
fp 834 861 913 994 10.60 850 9.34 10.13 11.15 11.73

fB 16.49 19.71  24.11 29.13 34.43 1730 2241 2772 33.08 37.86
pr 20.09 49.60 80.42 95.17 95.80 21.47 26.65 31.80 37.09 41.22
fx 1590 15.89 1594 1592 15.69 16.04 16.28 16.01 15.96 16.28

Table 3: The square root multiplied by 100 of the mean integrated squared error. fp,
the parametric estimator; fB, the proposed estimator; fp, the inverse Fourier estimator;
fK7 the kernel density estimator based on the uncontaminated data, based on 1000 Monte
Carlo runs with z1,...,z,, n = 100, being generated from the beta distribution with
shapes (3.5,5.5) and errors ¢1,...,&, from the normal N(0,02) and Laplace L(0,09).
We used the method of moment estimators to obtain fp. M = {2,3,...,100}

X ~ beta(3.5,5.5), &~ N(0,02) X ~ beta(3.5,5.5), &~ L(0,09)

oo/o 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
fr 16.55 19.25 21.60 24.72 27.17 1542 17.04 1881 21.80 29.56
/B 13.62 15.61 17.40 21.12 25.49 13.68 15.10 19.77 26.65 34.60
fp 23.42 54.53 83.99 88.71 88.92 24.51 27.66 31.63 3533 38.48
fx 2035 20.85 20.46 20.38 20.94 20.69 20.50 20.07 20.85 20.22
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examination after the first. At the ¢th examination, the SBP was measured
twice, Y;; and Yjs (i = 1,2), for each individual. Assuming normal error ¢;
with mean zero for each individual, then ; and & = (Yi; — Yi2)/v/2 have
the same distribution. Q-Q plots suggest that the mixture normal models
ANN(0,0%) + (1 — \)N(0,0%) fit better than single normals. After fitting
g; with this mixture normal model we obtained A; = 0.6592, (011, 012) =
(5.45,10.67), Ay = 0.8227, and (091, 092) = (6.40,12.55). We estimated the
densities of Y; based Y; = (Vi1 +Yj0)/2 = X;+&;, where &; = (g;1+¢;2)/2 has
a population error distribution A\;N (0,03 /2) + (1 —X;)N(0,0%/2),i =1, 2.
The Bernstein polynomial density estimates are obtained on interval [a, b] =
[70,270] using the optimal degree 1 = 35 selected from M = {5,6,...,100}.
The kernel density estimate fF is produced by R package decon (Wang
and Wang) 2011)). The parametric estimate fp was obtained by maximum
likelihood method using the log-normal model with the estimated mixture
normal error distributions. We also calculated kernel density estimate gk
by ignoring measurement errors. Figure[ljshows that the difference between
fB, fr, and Yk are noticeable.
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Figure 1: Left (right) panel: Density deconvolution of the systolic blood pressure at
the first(second) examination based on Framingham data, fy is the inverse Fourier
transform estimate(solid); fB is the proposed estimate using Bernstein polynomial with
m = 35(dashed); fp is the parametric estimate using lognormal model; 1/;K is the kernel
estimate ignoring measurement errors (dotted).
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Proof of Proposition 1

Proof. By Cauchy-Schwarz inequality, for any function p (not necessarily
density)

g <7 900) [ 5 gty ~ i (501)

f(z)
Applying (50.1) with p=h — f

Xz(h*guf*g):/[(h ff *9(y dy_// g(y—x)dxdy

) =R,
- [ FE = )

Thus, part (i) is true. For part (ii) we have x*(h*g||f*g) = 0 iff h*xg(y) =
f * g(y) almost everywhere. Then, the characteristic functions of h and f
are identical. This means that h and f are identical almost everywhere. [J

Proof of Theorem 1.

Proof. By Theorem 1 of Lorentz (1963) we have fo(x) — P, (z) = Rn(z),
where P,,(x) is a polynomial with positive coefficients and | R, (z)| < Co(f)
m~ 492 0 < < 1. S0 f(z) — Qa(x) = Ri(x), where Qs (7) = 2%(1 —
2)° P, (x) = ZZO a;-Biwi() is a polynomial of degree m = m-+a+b with pos-
itive coefficients, Ry (x) = z%(1— x)bR (z), and |Rp ()| < Co(f)m~ /2,
0 <z < 1. For large m, py : fo r)dr < Co(d, fm=+)/2 < ¢y < 1.
Because f(z) and [:(z) are den81t1es on [0,1], S a; = 1 — pg > 0.
Normalizing a; we obtain fi(2;p0) = Qam(z)/(1 — pa) = Sor o DoiBimi (),
where po; = a;/(1 — ps). Noticing that fo(z) > by > 0, we have

|[fi(@po) = f(@)|/f(x) = (L= pi) " [Rin(2)/ f (%) + pi]
= (1= pa) | Bn(@)/ fo(2) + pal
S (]_ — Co)_100<f)(]_/50 + 1)m_(r+a)/2.

Therefore, (A.2.) is implied. (A.1.) is implied by (A.2). The proof is
complete. O
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Proof of Theorem 2.

Proof. The approximate Bernstein log likelihood is
((fm) =€) =Y log[thm(yi; ).
i=1
Define the log-likelihood ratio R(p) = ¢(f) — ¢(p), where
= log () = > _log(f * 9)(u:)-
i=1 i=1
Because log(1+42) =3 -, (—1 )k’“Z |z] < 1, we have
A\
log(z) = loga+ Z k= (T) + Ry, |z —al <ay(S0.2)
where Ry = Y 7 ,(—1)FF12 (%)k Clearly,

wof[)

Consider subset A,,(€,) of S,, so that, for ally € R, |, (y; p)—¢(y)|/¥(y) <
€n < 1,0 < €, \( 0 slowly, as n — o0, e.g., ¢, = 1/log(n + 2). Clearly
Po € A (e,) for large m, A, (€,) is nonempty. By (S0.2)) we have

r—a r —a

2
), |z —al|/a — 0.

_ Z [ _ —Z )} + 0(Rpun(p)), a.s.,

where Ry (p) = 321, Z7(p), and Zi(p) = [Vm(yi; p) — ()] /1 (yi), i € I
Because E[Z;(p)] = 0, 02[Z;(p)] = E[Z2(p)] = D?*(p), by the law of iterated
logarithm(LIL) we have, for all p € A,,(€,),

S Zi(p)/olZi(p)] = O(/nloglogn).  a.s..

By the Kolmogorov’s strong law of large numbers we have, for all p €

Am(En),
R(p) = gD2(p> — O(D(p)y/nloglogn) + o(nD*(p)), a.s..  (S0.3)
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If D*(p) = r, = logn/n for some p € A,,(e,) then, by (S0.3), there is an
n > 0 such that R(p) > nlogn, a.s.. At p = po, 1fm = C’n we have
DX(po) = X*(Un o) [9) = O(m™) = O(n~1). By (S03) again we have
R(po) = O(Vloglogn), a.s.. Therefore, similar to the proof of Lemma 1 of
Qin and Lawless| (1994), we have

A 2 1
DQ(ﬁ) — / [¢m(yap) ¢(y)] dy < Ogn’ a.s.,
Sy ¥(y) n
and p € A,,(¢,). The proof is complete. m

In order to prove Theorem 3 we need the following lemma.

Lemma 1. If f € C™[0,1] and f(z) > by > 0 on [0,1], then, for m large
enough, there exists fp,(x;po) that fulfills both (A1) and (A2) and with
coefficients satisfying 0 < co < (m ~+ 1)py < ¢1 < 0.

Proof. |Lorentz (1963)) proved that, under the conditions of his Theorem 1,

for r =0,1,2,..., there exist polynomials of the form, using his notations,
Q@)= { )+ Zf“ 5 —m v n>} buk () (S0.4)
k=0

such that for each function with first » continuous derivatives
f(x) = Q1 ()] < CrATw, (An);
C! depends only upon r. The 7,;(z,n) are some polynomials in x and n,
independent of f, in = of degree 4, in n of degree [i/2] = [i/2].
Assuming that f(x) > by > 0, [Lorentz| (1963) then proved that Qf (z)
is a polynomial with positive coefficients of degree n + r (see Remark (a)

of Lorentz, (1963)). ‘
Assuming that (%) are all bounded as in Theorem 1 of Lorentz

(1963), we know that, for r > 2, Qu.(v,n"1) == 337, (n) TM(SB n) is
a polynomial of degree r with coefﬁments ki = O(n~ =0,...,7. By
Remark (a) of Lorentz (1963)), for large n,

T

FEY + Que(z,nt) = Z[f(%) + aglby (),

where, uniformly in k € {O, coo,n}y



DENSITY DECONVOLUTION

Thus, for large n, we have

Q@) = Z{f(%)JFZakjbrj(x)}bnk(ﬂ?)

k=0 Jj=0
= (i () + D> ansby(2)bui(),
k=0 k=0 j=0
where
n n—+r

f(%)bnk<x> = Z ntr oDtk (2)
k=0

k=0

with coeflicients

anﬂ,,jzz(")n(j;)")f(%)> min f(z), j=0,....,n+r (S0.5)

( . T 0<z<1
i=0 J

Let V,,»; be a random variable having hypergeometric distribution. Then

Qntr :E[f(%)], j=0,....,n+r

Thus
< i ™ (1 ik i
Z Z akjbrj(x)bnk(x) = Z Aj ( > (k,) it (1 _ ZE)n+T J
k=0 j=0 k=0 j—0 J
n T ag r\ (7
=D %bnﬂ,ﬁk(z)
k=0 j=0 j+k
n+r n r n
I=j+k Z alkJ_kTSi;k) (k) bn_i_r,l( )
=0 k=0 ( l )
Consequently
n+r
Q{LT‘(x) = Z Cn-ﬁ-r,kbn-i-r,k(m)a (806)

k=0
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where
n Ak j i i n
Cnr,j = Ongrj + Z %T)k)(k)
k 0 j
n ak,'—k(-i )(n)
J j
- ()Sj_>[f( )+a’lj z] ]‘:O,...,njtr.
=0 ( J )
Because o
L)
=0 (";"7")
we have, for 7 =0 n+r,
(D)
Cntr,j < Z (njr) f(g) + OIEH%X ‘a”_l‘
1=0 j =

min f(z) +O(n™") < ¢uppy < max f(z) +O(n™1).

z€0,1] z€[0,1]

Therefore, for all large n and some 1 > 0,

CnJrr,j Z O4n+r,j + O<n71)
> min f(z) +O(n™")

0<z<l1
> 1 ) =0,... )
> norgnxlglf(x) >0, 7=0,....,n+r

Combining the above with the proof of Theorem 1, we can easily see that
poi(m + 1) = Coirj /(1 = ppyr) 2 nming<z<t f(2)/(1 = potr) = co > 0,

m = n + r. Similarly, pe;(m + 1) < ¢;.
O
Proof of Theorem 3.
Proof. The following identities are useful in this proof that, for a # 0 and
x #0,
1 1 — 1 — 1l/a—x\2
1_1,a “”:_(H“ ""C)Jr_(“ “”) (S0.7)

T a ax a a T a
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Define an empirical Fisher information matrix

. o 955 (p)
[ Ti _
Tnlp) = )] = = | =5,
where
7vz)mz yl ¢my yl) ..
J” g , i,5 €.
ylap) / 0

In order to estimate the order of R, =Z,.(f,9)(®—po), we need to estimate

Ry, = T (po)( — po) and R, — R,,.
Define le( ) = V() /(Y). Then E[V,;(Y)] = 1 and o2, =
02 [Vi(Y)] = 72, — 1. Thus, the LIL ensures that, for all ¢ € I

N0 =gt Z Vini(yj) = 1+ O(omi/loglogn/n), a.s. (S0.8)
=1

It is necessary and sufficient (Redner and Walker, |1984)) for p to maximize
{(p) that Sr(,in( p) < 1,4 € I, with equality when p; > 0, where Sf%(p) =
nt Y e (3) /(52 P).. Thus we have, for all i € T2

55 () = pi. (S0.9)

Estimation of R,: First, we estimate the differences S, — Sé%(po) and

Sr(;i)n(po) — 1.
For each i € If", by (A.1.) and the first equation of (S0.7))

Vi (Y;)
S()(po) Z jZ/ po)
m 7

Po) _ 0 12)80),(po),  (S0.10)
Then, we have, for all i € ]16”,
Ry = Spn(po) = ¥4, = O(B0,n ')

= O(n"Y%) + O(omin/loglogn/n), a.s. (S0.11)

Combining through we obtain, a.s., for all 7 € T,
Ry = S5, (po) — 1 = O(oymin/loglogn/n) + O(n~"7?). (50.12)
Secondly, we obtain an asymptotic expression for R,, and use it to get

an estimate. By (50.9)) and (S0.7) again, we have, for all i € I},

pi = DiS mn (Po) — P Z J” (po)(B; — pjo) + an (50.13)
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where, by (3),

Aol Dt (1)) [V (Y55 Do) — U (y:P))

= O(logn/n), a.s

n = P (y;; D) U7 (Y55 Po)
(S0.14)
Combining (50.12)) and (S0.13|), we have, for all = € If",
Di Z T (o) (B; — pjo) = Pilni + Rui, a.s. (S0.15)
j=0
Defining
A = dlag{ Z ‘/]\21] po p]() Z pjo)}, (8016)
Jj=0 J=0

~ ~ A~ ~ A

Y, = (Z0,.. ., %m)" Ry = (Rno, ..., Rum)®, and R, = (Rpo,. .., Rum)",

we have, in matrix form,

o (Po)(P — Po) = [IR, + R, — A, (p—py). (S0.17)
where Iy = diag(poo, - - - , Pmo) and I = diag(po, - - -, Pm). Because f(z) >

by > 0, by Lemma , 0<cop<(m+1)pyp < ¢y <oo. The ith component of
A,, can be written as

Z J” — Pjo)

o Z 02 m;l yzljo [V (Y15 D) — Y (Y15 D))

Thus, we have

[V (425 D) — U (Y15 P0)|
Z wm(ylaPO)

Z i (Y15 D) — (Y15 Do) |? v
V2, (Y15 Po)
= O(p V/logn/n).
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Therefore, we have an asymptotic expression R,, = IT;" [ﬂRn+1%n —A,(p—
Po)] and

R = (Zp; mz—logfg”)w(%f;%)
+@<Zp (f—1)zloi"). (S0.18)

Because 0 < ¢y < (m + )pig < ¢1 < 00, Yoo Pio-(Di/pio — 1)* = O(m?) =
O(n**). By (2), we have

IR.1? = 03 b P 4 o RE) ~ 0 (X5, s010

Estimation of R, —R,: First, we find an asymptotic expression of R,,.
It is easy to show that there is a constant ¢ > 0 such that v,,(y; po) >

cy(y) and -

|]A:7]l _ j:y]l(poﬂ _ Z ¢m1 12l wmj yl . Z wmz yl ¢mj yl)

2 (yr) 2. (y1; Po)
L+l O iy wm](yz)\wm(yz;po) — ()|
= 2 Z V3 (y1)
1 + cl 'Qbmz Ui 7vZJm] yl) —-1/2
= Z V2 (1) o)

= [%O(Tfl/z):
where 9 = 01 S0 Wby (41)Wm; (1) /102 (1) We have
RY =11 — Ji(py) = [10(n~?).

Let Wi;(V) = L2200l Then [ = n~t S, Wij(w) and L, (f, g) =

E[Z(f,9)] = [E{W;;(Y)}]. Define

05 = o {Wi; (Y /¢ — [LI(f, 9)).

By the LIL,

Rﬁj’ s f;{ — [ﬁ,{ =0 <gij\/loglogn/n> )
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We have
Jid(po) = [[1 + O(n~'/?)]

= [ + O(o;; Vioglogn/n)][1 + O(n~?)]
= I3[1 + O(n™"?)] 4+ O(g;jy/loglog n/n)[1 + O(n~"?)]
= I, + O(I%”_lﬂ) + O(0ij \/m).

Replacing jm(po) by Im n " we get

R, = yZ,(p — po) = IR, + R, — A, (p — po) — iR,  (S0.20)
where R, = (Rpo, ..., Run)" and

m

[Rin| <) [O(I3n~?) + O(0i1/loglog n/n)]|p; — piol
7=0

= Zl 15 — pioln™""*) + O 0i;|p; — pjol\/loglog n/n).
=0

Thus, we have R, = R,, — R,.
Secondly, we estimate R,,. By the Cauchy-Schwarz inequality

m

S Ilh; — pol </¢mi(y)[lwm(y;ﬁ)l + |¢m(y;Po)|]dy

=" - P(y)
co. / Yo ([ (3 B) — %y()y'f [m(y:p0) =0 W,
V2, [ ;) — 0(y))2  1Y7
=2 [/ iy | @) dy}
W2, [y p0) — 0()]? 17
U / @) dy}
=2+ TmlO(\/logn/n).
Because S,i(z) <m+1and f > by > 0,
i) < 1) [ty =t < "L [ sty -are =" o)

Thus

2 ( 1\ ..
gy < [t Y ‘“ (%) 1949,
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m—l—l G i7 /A
[Zgulpg Pgo} <ZQU pﬁpjo)_( b )ani(pﬁpjo)

7=0

= O(m?) + O(m*7ni\/logn/n).

Therefore, we have

Rin - O( _1/2 + O Tmz V log n/n (m log n/n)1/4 \/Tmz' log IOg ’n,/TL)
-|—(’)< V/log logn/n>

and

IR,||*> = O(mn™1)+O ( f: 72 log n/n) +(9<m2 f: Tmi\/10g nlog log n/n3/2>
=0 1=0

+(9(m3 log log n/n)
By (2) we have

R[> = O(n~'1/F) 4 O<log ”/nl_Q/k> + O( V/log nloglog n/n3/2_7/2k>

—I—O(log log n/nl_?’/k) = O(n_1+3/k log log n)
Finally, combining this with (S0.19) and ||R,[|?> < 2||R,||? + 2||R.||* we get

(6). For the integrated squared error, we have, a.s.,

(ﬁ - pO)TIm(la 5)(ﬁ - pO) = RZQmOC? g)Rn

The proof is complete. O

Proof of Theorem 4.

Proof. Because the largest eigenvalue A, of Q,,(f,g) is also the largest
eigenvalue of Z_2(f, 9)Z(f,9). Let w be the associated eigenvector satis-
fying w"w = 1. Then, we have
W', (f, 6w
" w2 (f, g)w
From f(z) = fo(z) > by > 0, it follows that I (f,0) < by'(m+1),Vi,j€
I5*. Thus, by the Cauchy-Schwarz inequality we have

TTo(f, 0)w < byt(m + 1)2 (S0.22)

(S0.21)



Zhong Guan

Denote, v = Z,,(f,9)w = (vg,...,v,)". Then w™Z%(f,g)w = v™v =
Sorovi > (m+1) MO0 v)? = (m+1)" 1L, (f, g)w)?. Define function
T

of x = (zg,...,xm)",
/ ¢0 ¢m dy,
where ¢o(y) = 1*9 = Jy 9y — 2)dv and Wy (y; @) = 370 withmi(y) =
oo Ti fol Brmi(x - x)dx. By binomial theorem we have
w2 (f, 9)w > (m+ 1) H*(w). (S0.23)

Clearly H?(x) attains its minimum on the unit sphere at some x satisfying
xio = H(e;)/H(xo), i € L', where e; denotes the vector with a 1 in the
1th coordinate and 0’s elsewhere Because H(e;) > 0 for all i € [}, we can
assume that all x;0’s are positive. Since g is nonvanishing, nonincreasing
on (0,00) and nondecreasing on (—o0,0), for all x € [0, 1],

min{g(—1),9(1)}, ify € (0,1);
gly—x) > 1 gly—1), if y <0;
9(y), ify > 1.

There exists a constant C; > 0 so that ¢(y) < C for all y € (—o0,0).
Hence we have, for all ¢ € I}, | %dy > (Cy/C, where

-1

Gw=mmw%—Dﬂ%U}+/qsf@ﬂy+zfﬁ%yWy>0

o0

Consequently,

Combining this with (S0.21)) through (S0.23|) we obtain

2
N < m+1 <C'1(m—|—1)
- b0H2<$0) - bQCg

= O(m).

Similarly A,, = O@(m). These combined with (4), (5), and (A.2.) ensure (7)
and (8). The proof is complete. O
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