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FAST NONPARAMETRIC MAXIMUM LIKELIHOOD

DENSITY DECONVOLUTION

USING BERNSTEIN POLYNOMIALS

Zhong Guan

Indiana University South Bend

Abstract: We proposed a new maximum approximate likelihood method for de-

convoluting a continuous density on a finite interval in additive measurement error

models with a known error distribution. The proposed method uses an approximate

Bernstein polynomial model, that is, a finite mixture of specific beta distributions.

The change-point detection method is used to choose an optimal model degree.

Based on a contaminated sample of size n, under an assumption satisfied by, among

others, the generalized normal error distribution, the optimal rate of convergence

of the mean integrated squared error is proved to be O(n−1+5/k logn) if the un-

derlying unknown density admits an approximate Bernstein polynomial model of

degree m within χ2-divergence of order O(m−k), with k > 5. Simulations show

that the small-sample performance of the proposed estimator is better than that

of the deconvolution kernel density estimator. The proposed method is illustrated

using a real-data application.

Key words and phrases: Bernstein polynomial model, beta mixture model, de-

convolution, density estimation, kernel density, measurement error model, model

selection.

1. Introduction

Because nonparametric models specify almost nothing about a population

distribution, they are not wrong. Box (1976) describes how almost all non-

parametric and semiparametric models are not working models, and thus are

not useful. Therefore, all useful models are parametric, and they are useful

because they provide ways to retrieve information about the population. Non-

parametric density estimation is a difficult task in statistics. It is even more

difficult when the data are contaminated, which is common for big data. For

each fixed x on the support of a density f in a nonparametric model, the infor-

mation for the one-dimensional parameter f(x) is zero (see Bickel et al. (1998)).
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Ibragimov and Khasminskii (1983) also showed that there is no such nonpara-

metric model, even with smoothness assumptions, for which this information

is positive. Properly reducing the dimensionality from infinity to being finite

is necessary. To estimate an unknown smooth function as the nonparametric

component of a nonparametric and semiparametric model, as statisticians do in

empirical likelihood, we usually approximate it using a step function. Then, we

parameterize it using the jump sizes of the step function, which is actually a

parametric multinomial model. This approach gives an efficient estimate of the

underlying cumulative distribution function. Because this approximate model is

discrete, we have to use a kernel or some other method to smooth the “discrete

density” to obtain a “continuous” density estimate. Instead of approximating the

underlying distribution as a discrete distribution and then smoothing it, Guan

(2016) proposed using a Bernstein polynomial model, namely, a mixture of beta

distributions, to directly and smoothly estimate the underlying distribution using

a maximum approximate Bernstein likelihood method. This method parameter-

izes the underlying distribution using the coefficients of the Bernstein polynomial,

and differs from other Bernstein polynomial smoothing methods (Vitale (1975))

that use an empirical distribution to estimate these coefficients.

The extremely slow optimal rate of convergence of the nonparametric decon-

volution kernel density estimate really limits its scope of application. The kernel

density is a technique used to smooth the empirical distribution, which is a dis-

cretization and a parametrization of the continuous underlying distribution. Any

infinite-dimensional nonparametric model is not a working model. In order to

solve a nonparametric statistical problem, we have to use an approximate finite-

dimensional model. A typical example is the empirical likelihood method, which

approximates the unknown underlying distribution function using a step function

with jumps only at the observed data. However, better smooth approximations

exist and can be used as approximate finite-dimensional models for estimating

the density directly.

Based on an independent and identically distributed (i.i.d.) sample x1, . . . , xn,

without measurement errors, from a population with density f , the kernel den-

sity f̃K(x) = (nh)−1
∑n

j=1Kh(x− xj) is the convolution of the scaled kernel

Kh(·) = K(·/h)/h and the empirical density. It has expectation E{f̃K(x)} =

(Kh ∗ f)(x) =
∫
Kh(x− y)f(y)dy. Thus f̃K is an “unbiased” estimator of the

convolution (Kh ∗ f), rather than f . No matter how the kernel K and the band-

width h are chosen, there is always trade-off between the bias and the variance. In

this context, Guan (2016) proposed a new nonparametric maximum likelihood es-
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timate for a density that is assumed to be a smooth function with a positive lower

bound on a known compact support. This method, unlike the traditional Bern-

stein polynomial smoothing method, approximately parameterizes the underlying

density f , after truncation and transformation to [0, 1], using a Bernstein-type

polynomial. This polynomial is actually a mixture fm(x,p) =
∑m

i=0 piβmi(x)

of beta densities βmi with shape parameters (i + 1,m − i + 1), for i ∈ Im0 , and

unknown mixing probabilities p = pm = (p0, . . . , pm); here, and in what fol-

lows, Inm = {m, . . . , n}, for integers m ≤ n. However, the Bernstein polynomial

smoothing method (e.g., see Vitale (1975); Tenbusch (1994)) uses an empirical

distribution to estimate f(i/m), for i ∈ Im0 , which, divided by m + 1, are the

coefficients of the classical Bernstein polynomials with degree of approximation

at best O(m−1), no matter how smooth f is. Lorentz (1963) has shown that

better coefficients pi exist such that fm(x,p) achieves a much better degree of

approximation. Like the empirical likelihood and even the bootstrap methods,

Guan’s (2016) method is a special case of the sieve method (Grenander (1981);

Wong and Shen (1995); Shen (1997)), in the sense that we are estimating a finite-

dimensional parameter in a dense subspace of the infinite-dimensional parameter

space. This new estimator has been shown to have an almost parametric rate of

convergence in the mean integrated squared error(MISE). Therefore, an acceler-

ated density deconvolution using the Bernstein polynomial model is expected.

In a noisy data situation, let X and ε be independent random variables

with densities f and g, respectively. We are interested in estimating the density

f based on the contaminated data y1, . . . , yn, which are i.i.d. observations of

Y = X + ε. This is an additive measurement error model with measurement

error ε. This is common in practice. A simple example is that of rounding

off errors with a known uninform distribution on [−0.5/10d, 0.5/10d], for some

integer d. Usually in this case, the errors are ignored if d is large. However, in

some situations, ignoring the measurement errors can result in serious bias in a

statistical inference.

The present study focuses on the additive measurement error model in which

the error density g is assumed to be known or can be estimated. The density ψ of

Y is the convolution of f and g; that is, ψ(y) = (f∗g)(y) =
∫
g(y−x)f(x)dx. Thus

y1, . . . , yn is a sample from ψ, which is a mixture of the translated g(y−x), with

unknown mixing density f(x). Based on the contaminated data, a nonparametric

estimator f̂F, also known as the deconvolution kernel density estimator, of f

(e.g., see Carroll and Hall (1988); Devroye (1989); Stefanski and Carroll (1990))

is obtained using the inverse Fourier transform with the aid of a kernel density
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estimation. Briefly, let ψ̂K be a kernel density estimate of ψ based on yi. Let F(ϕ)

denote the Fourier transform of ϕ. Because F(ψ) = F(g)F(f), we can estimate

F(f) using F(ψ̂K)/F(g) and obtain f̂F using the inverse Fourier transform.

The properties of the above deconvolution method have been studied exten-

sively by, among others, Zhang (1990), Fan (1991, 1992), and Efromovich (1997).

The kernel density deconvolution with heteroscedastic errors, that is, the εi have

different densities gi, is considered by Delaigle and Meister (2008). Without as-

suming that f has a compact support, the optimal rates of convergence for the

nonparametric deconvolution are extremely slow, especially for supersmooth er-

ror distributions, including the normal distribution (e.g., see Carroll and Hall

(1988); Fan (1991, 1992)). Specifically, assuming that f has k bounded deriva-

tives, Carroll and Hall (1988) proved that (i) if g is normal, then the best rate of

any estimator of f is O((log n)−k/2); (ii) if g is gamma with shape s, then the op-

timal rate is O(n−k/(2k+2s+1)); (iii) if g is double-gamma, that is, the absolute er-

ror is gamma with shape s, then the optimal rate is O(n−k/[2k+4(s−bs/2c)]), where

b·c is the floor function; and (iv) if g has compact support and infinitely many

derivatives, then the optimal rate is slower than O(n−η), for any η > 0. However,

if f has a compact support, then the density estimation based on the Bernstein

polynomial model and the uncontaminated data x1, . . . , xn can achieve an almost

parametric rate, such as O(log2 n/n) for the MISE (Guan (2017)). Guan (2016)

showed a similar result under a differnt set of conditions. The kernel-type estima-

tors for analytic densities can attain this type of rate (Stepanova (2013)). Under

some regularity conditions, the best rate achievable by the parametric density

estimate is O(n−1). Juditsky and Lambert-Lacroix (2004) identified a minimax

rate of O(n−2k/(2k+1)) for the Hölder class of order k of univariate density func-

tions, even restricted to [0, 1] (see Ibragimov and Khasminskii (1981)). This is

also the minimax rate for Sobolev class densities (e.g., see Schipper (1996)). In

this study we consider a smaller class of density functions. For example, the den-

sity of a beta distribution with a non-integer shape is a member of the Hölder

class, but does not belong to the class we study. Even if the errors have a su-

persmooth error distribution, such as the normal distribution, we expect that a

nonparametric estimator of f based on the contaminated data y1, . . . , yn and the

Bernstein polynomial model to achieve a faster rate than O((log n)−η), η > 0.

Although Fan (1992) has shown that a nonparametric deconvolution with normal

errors can be as good as a kernel density estimate based on uncontaminated data

if the noise level decreases as the sample size increases, an accelerated denconvo-

lution is still desirable. Recently, Delaigle and Hall (2014) proposed an improved
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kernel method on f̂F to speed up the convergence, assisted by a “close to be-

ing correct” parametric guess of f . The assumption of a known error density

g is discussed by Horowitz and Markatou (1996), Efromovich (1997, 1999), and

Neumann (1997).

We show that, using Bernstein-type polynomial, we can approximate the

convolution density ψ in the additive measurement error model using a mixture

model of known components but unknown mixture proportions. Consequently,

we can estimate f using an approximate, maximum likelihood method. The

resulting density estimate attains a much better convergence rate. This method

differs from those in the literature, because it does not use Fourier transforms,

and it can be viewed as a nearly parametric approach to a nonparametric density

deconvolution. Like any finite-mixture model, this approximate model differs

from classical parametric models because the number of parameters, the degree

of the polynomial, is also unknown.

The remainder of the paper is organized as follows. In Section 2, we intro-

duce and validate the Bernstein polynomial model for a nonparametric density

estimation and density deconvolution. Methods for finding the maximum approx-

imate likelihood estimates using an expectation-maximization (EM) algorithm

and choosing the optimal degree m are also given in this section. Large-sample

results are presented in Section 2.4. Simulation studies are conducted in Section 3

to compare the finite-sample performance of the proposed method and that of its

competitors. We conclude this paper in Section 4. Additional simulation results,

a real-data application, and the proofs are given in the online Supplementary

Material.

2. Main Results

2.1. Approximate Bernstein polynomial model

Assume that the density f is continuous on [0, 1]. Then, we have (Bernstein

(1912, 1932))

f(u) ≈ Bf
m(u) =

1

m+ 1

m∑
i=0

f

(
i

m

)
βmi(u).

The best degree of approximation of f by Bf
m is O(m−1), no matter how smooth

f is. From Lorentz (1963), if f has a positive lower bound and has higher

continuous derivatives, then there exists a much better approximation P fm(u) =∑m
i=0 ciβmi(u), for ci ≥ 0. This is called a polynomial with positive coefficients,
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and enjoys a better degree of approximation than O(m−1). The coefficients ci
are refinements of those f(i/m)/(m + 1) in the classical Bernstein polynomial.

Therefore, we have an approximate Bernstein polynomial model,

fm(u;p) =

m∑
i=0

piβmi(u),

where p = (p0, . . . , pm)T ∈ Sm =
{

(p0, . . . , pm)T : pi ≥ 0,
∑m

i=0 pi = 1
}

, the

m-simplex. The density ψ can be approximated by

ψm(y;p) = (g ∗ fm)(y) =

m∑
i=0

piψmi(y),

where ψmi(y) = (g ∗ βmi)(y) =
∫ 1
0 g(y − x)βmi(x)dx, for i ∈ Im0 . Therefore, the

convolution ψ is approximately parameterized as a mixture of ψmi = g ∗ βmi, for

i ∈ Im0 .

2.2. Maximum likelihood estimate

For a given m, the approximate Bernstein likelihood of y1, . . . , yn is defined

as

L (p) =

n∏
j=1

m∑
i=0

pi(g ∗ βmi)(yj) ≈
n∏
j=1

ψ(yj).

Thus, the approximate loglikelihood is `(p) =
∑n

j=1 log
∑m

i=0 pi(g∗βmi)(yj). The

maximizer p̂ of `(p) is called the maximum approximate Bernstein likelihood

estimator (MABLE) of p = (p0, . . . , pm)T, the unknown mixture proportions.

Then, we obtain an estimator f̂B(x) = fm(x; p̂) of f for an optimal degree m.

The consequent density estimator f̂B(x) is called the MABLE of f . It is not

surprising that f̂B outperforms the kernel density estimators, which do not take

advantage of the conditions imposed on f in this study.

The EM algorithm (Dempster, Laird and Rubin (1977); Wu (1983); Redner

and Walker (1984)) applies to find p̂, leading to the iteration

p
(s+1)
i = p

(s)
i S(i)

mn(p(s)), i ∈ Im0 ; s ∈ I∞0 , (2.1)

where

S(i)
mn(p) =

∂`(p)

∂pi
=

1

n

n∑
j=1

ψmi(yj)

ψm(yj ;p)
, i ∈ Im0 .



NONPARAMETRIC DENSITY DECONVOLUTION 897

Starting with positive initial p
(s)
i > 0, the convergence of p(s) = (p

(s)
0 , . . . , p

(s)
m )T

to p̂ as s → ∞ is guaranteed by Theorem 4.2 of Redner and Walker (1984). It

is also clear that the resulting f̂B(x) = fm(x; p̂) is a bona fide density, because

p̂ ∈ Sm.

In a nonparametric model, f is totally unspecified. If we have no informa-

tion about the support of f , we can only estimate f as a density with support

[x(1), x(n)], where x(1) and x(n) are the minimum and maximum order statistics,

respectively, of a sample of size n from f . If the support S of f differs from

[0, 1] and we can find a finite interval [a, b] ⊂ S, such that [y(1), y(n)] ⊂ [a, b]

and F (b) − F (a) ≈ 1, then we let y∗j = (yj − a)/(b − a) = x∗j + ε∗j , where

x∗j = (xj − a)/(b − a) and ε∗j = εj/(b − a). The densities of x∗j and ε∗j are

f∗(x) = (b − a)f [a + (b − a)x] and g∗(x) = (b − a)g[(b − a)x], respectively. Let

f̂∗B be an estimate of f∗ based on y∗j . Then, we can estimate f by f̂B(x) =

f̂∗B[(x − a)/(b − a)]/(b − a). Because xj = yj − εj and the error distribution

is known, we can choose (a, b) by properly extending (y(1), y(n)), for example,

(a, b) = (y(1) − ζσε, y(n) + ζσε), for some ζ > 0, where σε is the standard devia-

tion of the error ε.

2.3. Model degree selection

Denote the sample mean and variance of y1, . . . , yn as ȳ and s2, respectively.

Because µ0 = E(ε) = 0 and σ20 = E(ε2) are known, we estimate µ = E(X) and

σ2 = var(X) by µ̂ = ȳ and σ̂2 = s2 − σ20, respectively. As in Guan (2016),

we estimate the lower bound mb for m by m̂b = max{
⌈
µ̂(1− µ̂)/σ̂2 − 3

⌉
, 1}.

Based on m̂b we choose an appropriate m0 and a large positive integer K to

form M = {mi = m0 + i, i ∈ IK0 }. Denote `i = `(p̂mi
), for i ∈ IK1 . Be-

cause fm(u;pm) is nested in fm+1(u;pm+1) (Guan (2016)), ψm(u;pm) is in

ψm+1(u;pm+1). Thus, ui = `i− `i−1, for i ∈ IK1 , are nonnegative. From our real-

data analysis and extensive simulation studies we observed that for large K, the

optimal degree mq corresponds to a change-point q such that {uq+1, . . . , uK} have

a smaller mean and variance than those of {u1, . . . , uq}. We can treat u1, . . . , uK
as exponential observations. The change-point q can be estimated (see Csörgő

and Horváth (1997, Sec. 1.4)) by q̂ = arg max1≤q<K{R(q)}, where R(q) = K

log[(`K − `0)/K]−q log[(`q − `0)/q]− (K−q) log[(`K − `q)/(K − q)]. Having ob-

tained p̂m = (p̂0, . . . , p̂m)T, we can use p
(0)
i = [ip̂i−1 + (m− i+ 1)p̂i]/(m+ 1), for

i ∈ Im+1
0 , as the initial guess for iteration (2.1) for p̂m+1.
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2.4. Asymptotic results

2.4.1. Information matrices

The information matrix for model ψm(y;p) is Im(f, g) = [Iijm(f, g)], where

Iijm(f, g) =

∫
Sψ

ψmi(y)ψmj(y)

ψ(y)
dy, i, j ∈ Im0 ,

and Sψ = {y ∈ R : ψ(y) > 0}. The information matrix for fm(x;p) is Im(f, δ) =

[Iijm(f, δ)], where δ is the Dirac delta, and Iijm(f, δ) =
∫ 1
0 [βmi(x)βmj(x)/f(x)]dx,

for i, j ∈ Im0 . It is easy to see that Im(f, δ)−Im(f, g) is positive-definite; that is,

Im(f, δ) ≥ Im(f, g). Note that βmi(x) ≤ m+ 1. If f ≥ b0 > 0, then

Iijm(f, g) =

∫
Sψ

ψmi(y)ψmj(y)

ψ(y)
dy ≤ m+ 1

b0
, i, j ∈ Im0 . (2.2)

Define an approximate Fisher information Jm(p; f, g) = [J ijm(p; f, g)], where

J ijm(p; f, g) =

∫
Sψ

ψmi(y)ψmj(y)

ψ2
m(y;p)

ψ(y)dy, i, j ∈ Im0 .

At p = p0, Jm(p0; f, g) is an approximation of the “ultimate” Fisher information

Im(f, g), where p0 satisfies the Assumption 1 or 2 below.

2.4.2. Assumptions

We show our asymptotic results assuming fm(u;p) =
∑m

i=0 piβmi(u) 1s an

approximate model rather than an exact parametric model. We denote the chi-

square divergence (χ2-distance) between densities ϕ and ψ by

χ2(ϕ‖ψ) =

∫
Sψ

[ϕ(y)− ψ(y)]2

ψ(y)
dy ≡

∫
Sψ

[
ϕ

ψ
(y)− 1

]2
ψ(y)dy.

Proposition 1. For the divergence χ2(h ∗ g‖f ∗ g) between convolutions with

the same g, we have the following results. (i) χ2(h ∗ g‖f ∗ g) ≤ χ2(h‖f). In

particular, if g = δ, the Dirac delta, then χ2(h ∗ g‖f ∗ g) = χ2(h‖f). (ii) The

divergence D2(h‖f) = χ2(h ∗ g‖f ∗ g) is also a divergence of h from f ; that is,

χ2(h ∗ g‖f ∗ g) ≥ 0 and χ2(h ∗ g‖f ∗ g) = 0 iff h(x) = f(x), almost everywhere.

Define D2(p) = χ2(ψm(·;p)‖ψ) =
∫

(ψ2
m/ψ)(y)dy−1. We need the following

assumptions for the asymptotic properties of f̂B (proved in the appendix):

Assumption 1. There exist p0 ∈ Sm and k > 0 such that, uniformly in y such
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that ψ(y) > 0,
ψm(y;p0)− ψ(y)

ψ(y)
= O(m−k/2)

and, thus, D2(p0) = O(m−k).

Assumption 2. There exist p0 ∈ Sm and k > 0 such that, uniformly in x ∈
(0, 1),

fm(x;p0)− f(x)

f(x)
= O(m−k/2)

and, thus, χ2(fm(·;p0)‖f) = O(m−k).

Clearly, Assumption 2 is a stronger assumption, and implies Assumption 1

because ψm and ψ are convolutions of fm and f with g, respectively.

2.4.3. Sufficient conditions for Assumption 1 and Assumption 2

Let C(r)[0, 1] be the class of functions that have an rth continuous derivative

f (r) on [0, 1]. A function f is said to be α-Hölder continuous with α ∈ (0, 1]

if |f(x) − f(y)| ≤ C|x − y|α, for some constant C > 0. For a density function

g on (−∞,∞), let ψ(y) and ψm(y;p) be the convolutions of g with f and fm,

respectively. We have the following result.

Theorem 1. Suppose that f(x) = xa(1 − x)bf0(x) is a density on [0, 1], a and

b are nonnegative integers, f0 ∈ C(r)[0, 1], r ≥ 0, f0(x) ≥ b0 > 0, and f
(r)
0 is

α-Hölder continuous, with α ∈ (0, 1]. Then, both Assumption 1 and Assumption

2 are fulfilled, with k = r + α.

This is a generalization of the result of Lorentz (1963), which requires a

positive lower bound for f .

2.4.4. Rate of convergence

Theorem 2. Under Assumption 1 with k > 0, as n→∞, with probability one,

the maximum value of `(p) with m = O(n1/k) is attained at p̂ in the interior

of Bm(rn) = {p ∈ Sm : D2(p) ≤ rn}, where rn = n−1 log n and the mean

χ2-distance between ψ̂m(·) = ψm(·; p̂) and ψ(·) satisfies

D2(p̂) =

∫
Sψ

[ψm(y; p̂)− ψ(y)]2

ψ(y)
dy <

log n

n
, a.s. (2.3)

Remark 1. If g = δ, the Dirac delta, then under Assumption 1, with m =

O(n1/k), (2.3) is true for ψ = f and ψm = fm.
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Remark 2. If M0 = max−∞≤y≤∞ ψ(y) <∞, then Theorem 2 implies

‖ψ̂m − ψ‖22 =

∫ ∞
−∞

[ψm(y; p̂)− ψ(y)]2dy ≤M−10

log n

n
, a.s.

By Assumption 1 we also have, for some constant C,

(p̂− p0)
TIm(f, g)(p̂− p0) =

∫
Sψ

[ψm(y; p̂)− ψm(y;p0)]
2

ψ(y)
dy ≤ C log n

n
, a.s.

Although the chi-square divergence (2.3) is also a divergence of f̂B from f ,

we are more interested in the rate of convergence for mise(f̂B, f) = E
∫ 1
0 [f̂B(x)−

f(x)]2dx or Eχ2(f̂B‖f) = E
∫ 1
0 [f̂B(x) − f(x)]2/f(x)dx, which is affected by the

error density g. From Assumption 1 and 2, it suffices to investigate the rate of

the (weighted) integrated squared error of f̂B(x) = fm(x; p̂) as an estimator of

fm(x;p0): ∫ 1

0

[fm(x; p̂)− fm(x;p0)]
2

f(x)
dx = (p̂− p0)

TIm(f, δ)(p̂− p0).

Theorem 3. Suppose that the sufficient conditions of Theorem 1 are fulfilled,

with a = b = 0 and k = r + α > 4. Then, a.s., with m = O(n1/k),

(p̂− p0)
TIm(f, δ)(p̂− p0) = RT

nΩm(f, g)Rn, (2.4)

(p̂− p0)
TIm(1, δ)(p̂− p0) = RT

nΩ̃m(f, g)Rn, (2.5)

where Ωm(f, g) = I−1m (f, g)Im(f, δ)I−1m (f, g),Ω̃m(f, g) = I−1m (f, g)Im(1, δ)I−1m (

f, g), and Rn = Im(f, g)(p̂− p0) satisfies

‖Rn‖2 = O
(
n−1+4/k log n

)
. (2.6)

Remark 3. In addition to the conditions of Theorem 3, if the largest eigenvalues

of Ωm(f, g) and Ω̃m(f, g) are of order O(mγ), for some γ < k − 4, then, a.s., the

rates in (2.4) and (2.5) are O(n−(k−4−γ)/k log n).

In many cases, including the supersmooth error densities, we have the fol-

lowing result.

Theorem 4. In addition to the conditions of Theorem 3, with k = r+ α > 5, if

the error density g is nonvanishing, nonincreasing on (0,∞), and nondecreasing

on (−∞, 0), then the largest eigenvalues λm and λ̃m of Ωm(f, g) and Ω̃m(f, g),

respectively, satisfy λm = O(m) and λ̃m = O(m). Therefore, with m = O(n1/k),
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a.s., ∫ 1

0

[fm(x; p̂)− f(x)]2

f(x)
dx = O

(
n−(k−5)/k log n

)
, (2.7)∫ 1

0
[fm(x; p̂)− f(x)]2dx = O

(
n−(k−5)/k log n

)
. (2.8)

Remark 4. From the proof of this theorem, we see that the condition that g is

nonvanishing can be relaxed to require

C0 = min{g2(−1), g2(1)}+

∫ −1
−∞

g2(y)dy +

∫ ∞
1

g2(y)dy > 0.

Thus, even if g has a compact support [−1, 1], such that C0 = min{g2(−1), g2(1)}
> 0, we still have a rate O(n−(k−5)/k log n), which is better than O(n−η), for some

η > 0, whenever k > 5.

3. Simulation

In this section, we conduct a simulation to compare the finite-sample per-

formance of the proposed estimator f̂B with the parametric deconvolution f̂P,

the Fourier transform estimator f̂F based on contaminated data, and the ker-

nel density f̃K based on uncontaminated data. The data x1, . . . , xn of size

n = 100, 200, 400 are generated from f . The errors ε follow normal N(0, σ20)

and L(0, σ0), for some selected σ0. Only when σ0 is “small” relative to the stan-

dard deviation σ of X can we obtain an applicable estimate of f , even for a

parametric deconvolution. For instance, if both X and ε are normal, then the

maximum likelihood estimates of µ = E(X) and σ2 = var(X) are, respectively,

µ̂ = ȳ and σ̂2 = max{(n− 1)s2/n− σ20, 0}, where ȳ and s2 are the sample mean

and sample variance, respectively, of y1, . . . , yn. If σ < σ0 and n is not large, then

σ̂2 could also be zero because pr{(n−1)s2/n < σ20} = pr[χ2
n−1 < n/{1+(σ/σ0)

2}]
is not small. Therefore the parametric deconvolution f̂P(x) may be degenerate

because σ̂2 could be zero, even if σ0 ≤ σ.

We used the R package decon (Wang and Wang (2011)), which implements

the methods of Fan (1991, 1992), Delaigle and Gijbels (2004), and Delaigle and

Meister (2008) to calculate f̂F. The “dboot2” method was used to choose an

optimal bandwidth h (see Delaigle and Gijbels, 2004 and Wang and Wang, 2011

for details).

After R Monte Carlo runs, we obtained f̂ (1), . . . , f̂ (R) for the estimator f̂ . We
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then approximated the point-wise mean squared error at x ∈ [a, b], pmse[f̂(x)] =

E[f̂(x)− f(x)]2 = var[f̂(x)] + Bias2[f̂(x)], by p̂mse[f̂(x)] = σ̂2[f̂(x)] +{µ̂[f̂(x)]−
f(x)}2, where µ̂[f̂(x)] and σ̂2[f̂(x)] are the sample mean and the sample variance,

respectively, of f̂ (1)(x), . . . , f̂ (R)(x). The MISE mise(f̂) = E
∫

[f̂(x)− f(x)]2dx is

estimated by m̂ise(f̂) =
∑N

i=1 p̂mse[f̂(ti)]∆t, where ∆t = (b−a)/N , ti = a+i∆t,

for i ∈ IN0 , and N = 512.

In the simulation results shown in Table 1, as in Fan (1992), we have

(i) unimodal f = N(0, 1) truncated by [a, b] = [−7, 7], and (ii) bimodal f =

0.6N(−2, 12) + 0.4N(2, 0.82) truncated by [a, b] = [−7, 7]. The errors ε are taken

from N(0, σ20) and L(0, σ0), with σ0 = 0.2, 0.4, 0.6, 0.8, 1.0. Furthermore, f̂P(x)

is the parametric estimate of the density of N(µ, σ2) and λ N(µ1, σ
2
1) + (1 −

λ)N(µ2, σ
2
2), with known variances σ2, σ21, and σ22, but unknown µ and (λ, µ1, µ2).

The rate of convergence in the MISE of such a parametric estimator is O(n−1).

In order to compare the proposed estimator f̂B with f̂F, f̂P, and f̃K, we plot

the point-wise mean squared error in Figure 1, from which we see that f̂B almost

uniformly outperforms f̂F for both unimodal and bimodal f . We also see that if

f is unimodal and smooth enough that k is large, as in Theorems 2 and 3, then

f̂B almost uniformly outperforms f̃K, which is based on the clean data.

The (mixture) normal density f has continuous kth derivative f (k), for all

k. In practice, a random variable may have an approximate normal distribution,

supported by the central limit theorem and some goodness-of-fit test.

In the second simulation study, presented in Table 2, we generated the sam-

ple x1, . . . , xn from a “nearly normal” distribution NN(d), for d = 4, with the

distribution of the sample mean ūd of u1, . . . , ud taken from uniform(0, 1). The

errors ε1, . . . , εn were generated from N(0, σ20) and L(0, σ0), where 12dσ20 = 0.22,

0.42, 0.62, 0.82, 1.02 and d = 4. Thus, σ0 = (0.05, 0.10, 0.15, 0.20, 0.25)/
√

3.

The central limit theorem shows that NN(d) ≈ N(1/2, 1/(12d)) for large

d. Let ρ(n) denote the probability that the Shapiro-test based on a sample

of size n rejects the normality of NN(4) with significance level 0.05. Based on

5,000 Monte Carlo runs, ρ(n) is estimated to be 0.0398, 0.0504, and 0.0966

for n = 100, 200, and 400, respectively. Let ϕd be the density of NN(d). If

d ≥ 2, then ϕ
(d−2)
d is 1-Hölder continuous, but ϕd /∈ C(d−1)[0, 1]. We also have

ϕd(x) = [x(1 − x)]d−1hd(x), where hd(x) ≥ dd/(d − 1)! on [0,1], and h
(d−2)
d is

1-Hölder continuous, but hd /∈ C(d−1)[0, 1]. Therefore, the conditions of Theorem

1 are satisfied with a = b = d−1, f0 = hd, b0 = dd/(d−1)!, α = 1, and r = d−2.

The parametric estimate f̂P of ϕd in this simulation is based on the normal model

N(µ, σ2), with known σ2 = 1/(12d) and a known error density. For ϕ4, we have
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Figure 1. The simulated point-wise mean squared errors of the parametric estimator
f̂P(dashed), proposed estimator f̂B(solid), inverse Fourier estimator f̂F(dotted), and
kernel density estimator based on the simulated uncontaminated data f̃K(dotdash), at
ti = a + i(b − a)/N (i = 0, 1, . . . , N , N = 512). The sample size is n = 200. The trun-
cation interval is [a, b] = [−7, 7]. In the parametric models, all variances are assumed to
be known. M = {10, 11, . . . , 100}. Upper panels: the error distribution is N(0, σ2

0), with
σ0 = 0.6; Lower panels: the error distribution is Laplace L(0, σ0), with σ0 = 0.6.

k = r + α = 3. Although in this case the conditions a = b = 0 and k > 4 of

Theorem 3 are not fulfilled, the proposed estimator f̂B still performs better than

f̂F in such a bad scenario. In this case, f̂B performs worse than f̃K, which is

based on the uncontaminated data and has a rate of O(n−4/5).

Tables 1 and 2 (the case n = 200 is provided in the Supplementary Mate-

rial) show that the proposed f̂B outperforms the Fourier transform method f̂F.

In some cases, especially when σ0 is much smaller than σ, f̂B is three times as

efficient as f̃K in terms of the square root of the MISE. Although the simulation

setup prefers the parametric methods, the results show that in most cases, the

proposed approach has an MISE that leans toward the parametric one. Moreover,

the proposed method outperforms the kernel estimate based on the uncontam-

inated data for the unimodal model or if the magnitude of the error variance

is not too large. Because of the involvement of f̃K in the comparison, it is not

necessary to include any other kernel methods that improve upon f̂F in the sim-

ulation. Table 3 in the Supplementary Material presents simulation results for
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Table 1. The square root multiplied by 100 of the mean integrated squared error. f̂P,
the parametric estimator; f̂B, the proposed estimator; f̂F, the inverse Fourier estimator;
f̃K, the kernel density estimator based on uncontaminated data and 1,000 Monte Carlo
runs, with x1, . . . , xn generated from normal and mixture normal distributions, and the
errors ε1, . . . , εn from N(0, σ2

0) and L(0, σ0). In the parametric models, the variances are
assumed to be known. M = {10, 11, . . . , 100}.

X ∼ N(0, 1) X ∼ 0.6N(−2, 1) + 0.4N(2, 0.82)
σ0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

ε ∼ N(0, σ2
0)

n = 100

f̂P 3.96 4.08 4.44 4.93 5.35 5.97 6.42 6.83 7.64 8.97

f̂B 5.26 5.54 5.79 6.24 6.94 7.36 7.82 8.43 9.34 10.93

f̂F 9.40 11.03 13.13 15.90 19.23 9.10 14.74 16.42 17.98 19.37

f̃K 8.14 8.37 8.29 8.21 8.19 8.26 8.35 8.27 8.11 8.26
n = 400

f̂P 1.87 2.04 2.12 2.47 2.64 2.96 2.75 3.46 3.81 4.45

f̂B 2.65 2.90 3.14 3.53 3.83 4.74 4.70 5.46 6.05 6.88

f̂F 5.90 7.25 9.36 11.91 14.69 5.56 8.84 11.17 13.36 15.42

f̃K 4.77 4.72 4.66 4.70 4.71 4.79 4.63 4.84 4.74 4.77
ε ∼ L(0, σ0)
n = 100

f̂P 4.24 4.36 5.01 5.68 5.97 6.02 6.55 7.59 8.92 10.49

f̂B 5.47 5.71 6.58 7.39 8.27 7.41 7.99 9.42 10.61 12.24

f̂F 14.17 19.17 24.17 27.66 30.59 12.92 16.76 20.42 23.56 26.91

f̃K 8.48 8.21 8.36 8.37 7.98 8.15 8.22 8.25 8.18 8.17
n = 400

f̂P 1.97 2.07 2.35 2.94 2.98 2.97 3.26 3.80 4.45 5.36

f̂B 2.73 3.06 3.72 4.21 4.69 4.87 5.26 5.91 6.78 7.77

f̂F 9.48 15.10 20.28 24.85 27.71 8.47 12.26 15.76 19.92 22.62

f̃K 4.79 4.64 4.70 4.75 4.58 4.89 4.81 4.84 4.79 4.82

samples were from beta(3.5, 5.5), which belongs the Hölder class, as in Judit-

sky and Lambert-Lacroix (2004), and violates the assumptions of Theorem 1.

This simulation shows that the proposed estimation could outperform the kernel

method, even when the assumptions of Theorem 1 are not fulfilled.

4. Discussion

As shown in the Theorems in Section 2.4 and the simulation results, the per-

formance of the proposed method leans toward that of the parametric approach

when the correct parametric model is specified. The classical exact parametric



NONPARAMETRIC DENSITY DECONVOLUTION 905

Table 2. The square root multiplied by 100 of the mean integrated squared error. f̂P, the
parametric estimator; f̂B, the proposed estimator; f̂F, the inverse Fourier estimator; f̃K,
the kernel density estimator based on uncontaminated data 1,000 Monte Carlo runs, with
x1, . . . , xn generated from the nearly normal distribution NN(4), and the errors ε1, . . . , εn
from the normal N(0, σ2

0) and Laplace L(0, σ0). We assume the normal distribution
N(µ, σ2) with known variance σ2 = 1/48 as the parametric model. M = {2, 3, . . . , 100}.

X ∼ NN(4), ε ∼ N(0, σ2
0) X ∼ NN(4), ε ∼ L(0, σ0)√

3σ0 0.05 0.10 0.15 0.20 0.25 0.05 0.10 0.15 0.20 0.25
n = 100

f̂P 10.80 11.22 12.07 12.98 14.11 10.85 11.89 13.89 15.26 16.55

f̂B 23.07 26.24 30.81 36.48 42.65 23.42 28.28 35.98 41.29 47.36

f̂F 24.21 54.71 87.24 95.17 95.71 28.31 34.25 39.92 44.97 49.48

f̃K 21.70 20.79 21.28 21.21 20.92 21.02 21.51 21.00 21.64 21.06
n = 400

f̂P 6.83 7.06 7.42 8.01 8.26 6.86 6.95 7.74 8.43 9.18

f̂B 12.22 14.34 18.20 22.45 38.59 12.82 16.40 21.72 25.71 30.33

f̂F 16.91 45.52 75.44 93.35 95.80 16.08 21.04 26.35 30.40 34.48

f̃K 12.23 12.13 12.16 12.26 12.27 11.98 12.08 12.13 12.01 12.16

method is subject to model misspecification. Our approach is an approximate

parametric solution to a nonparametric problem, and speeds up the density de-

convolution significantly, with a computation cost paid for searching an optimal

model degree m, of course, under the assumption that the underlying unknown

density has a positive lower bound on a known compact support. The condition

imposed on the error distribution is satisfied by the family of generalized nor-

mal distributions, which include the supersmooth normal distribution and the

ordinary smooth Laplace distribution. From our real-data example, we see that

when replicated observations are available for estimating the error density g, a

better nonparametric estimator of g is desirable. It is our intention to apply the

Bernstein model to solve this problem.

As commented in Remark 1, the special case of Theorem 2 with g = δ is an

enhancement of Theorem 4.1 of Guan (2016) and Theorem 3.3 of Guan (2017),

which require a positive lower bound for the underlying density f . The simulation

studies indicate there is possible room to improve the result of Theorem 4.

We have assumed that the underlying density f is continuously differentiable

on [0,1] and has bounded support. Therefore, caution should be exercised, be-

cause this restriction might limit the application of the proposed method. Thus,

further generalization and a sensitivity analysis of the proposed model is required.
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Supplementary Material

The online Supplementary Material contains a real-data application, some

additional simulation results, and technical proofs.
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Bernstein, S. N. (1932). Complétement à l’article de E. Voronowskaja. C. R. Acad. Sci. U.R.S.S.,

86-92.

Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1998). Efficient and Adaptive

Estimation for Semiparametric Models. Springer-Verlag, New York.

Box, G. E. P. (1976). Science and statistics. Journal of the American Statistical Association 71,

791–799.

Carroll, R. J. and Hall, P. (1988). Optimal rates of convergence for deconvolving a density.

Journal of the American Statistical Association 83, 1184–1186.
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