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Abstract: Second order saturated (SOS) designs allow the estimation of a saturated

model consisting of main effects and two-factor interactions. Apart from being use-

ful in their own right, SOS designs have recently been applied to the construction

of space-filling designs. This paper introduces the notion of minimal SOS designs

to facilitate the study of SOS designs, and presents some results on the charac-

terization and construction of minimal SOS designs. Both regular and nonregular

minimal SOS designs are considered, and are applied to construct space-filling de-

signs.
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1. Introduction

Second order saturated (SOS) designs allow the estimation of saturated mod-

els consisting of main effects and two-factor interactions (2fi’s). They make the

most efficient use of the degrees of freedom by allocating all of them to the esti-

mation of factorial effects of the first two orders, which are the most important

orders according to the principle of effect hierarchy. SOS designs were first in-

troduced in Block and Mee (2003), and were also discussed in Chen and Cheng

(2004) under the notion of estimation index. Constructions of nonregular SOS

designs were explored by Cheng, Mee and Yee (2008). For more details about

SOS designs, see Mee (2009, Sec. 7.2) and Cheng (2014, Sec. 11.2).

SOS designs are important in their own right, but become more so owing

to their utility in designing computer experiments. It is widely accepted that

space-filling designs are appropriate choices for computer experiments (Sant-

ner, Williams and Notz (2003)). Among the methods available for constructing
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space-filling designs, that based on orthogonal arrays is very attractive because

it provides designs that enjoy some guaranteed space-filling properties in low-

dimensional projections. This line of research started with Latin hypercubes,

which are orthogonal arrays of strength one, in McKay, Beckman and Conover

(1979), and continued with the work of Owen (1992) and Tang (1993). A sig-

nificant enhancement to the idea is the recent introduction of strong orthogonal

arrays (SOAs) by He and Tang (2013), Liu and Liu (2015), and He, Cheng and

Tang (2018). SOAs can be used to construct designs that have better space-

filling properties than those constructed using ordinary orthogonal arrays. In

the process of constructing SOAs using regular 2m−p designs, He, Cheng and

Tang (2018) found that all such SOAs can be constructed from SOS designs.

This paper examines applications of regular and nonregular SOS designs to

the construction of SOAs by introducing the concept of minimal SOS designs.

This concept is useful because, as shown later, all SOS designs can be generated

from minimal ones. Furthermore, to produce SOAs that can accommodate more

factors, one needs SOS designs with fewer factors. Section 2 reviews some mate-

rial on SOAs of strength 2+ from He, Cheng and Tang (2018), including how SOS

designs can be used to construct SOAs. Section 3 first presents a characterizing

result for regular minimal SOS designs using clear effects, and then shows that

the four constructions in He, Cheng and Tang (2018) all produce minimal SOS

designs. This section imports several results from projective geometry and cod-

ing theory, using the equivalence of regular SOS designs to 1-saturating sets and

duals of linear codes with covering radius 2. These results allow us to improve the

bounds on the maximum number of factors in an SOA of strength 2+ obtained

in He, Cheng and Tang (2018). In Section 4, we discuss nonregular SOS designs.

We first present extensions of the four constructions of regular SOS designs in

He, Cheng and Tang (2018) to nonregular designs, showing that they all give

minimal SOS designs. We then show how to use these nonregular minimal SOS

designs to construct SOAs of strength 2+. In addition to more flexible run sizes,

SOAs constructed from nonregular SOS designs have other advantages, including

possibly better three- and higher-dimensional projections. Furthermore, nonreg-

ular SOS designs provide more options for constructing SOAs because there are

often many more nonisomorphic nonregular designs than regular ones. Section 5

concludes the paper with a discussion.
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2. Second Order Saturated Designs and Strong Orthogonal Arrays

A major focus of this study is two-level SOS designs. The following definition

applies to both regular and nonregular designs.

Definition 1. A two-level fractional factorial design with n runs and m factors

is second order saturated (SOS) if it can be used to estimate all of the m main

effects, together with at least one set of n− 1−m 2fi’s (assuming that all other

effects are negligible).

Regular SOS designs were first considered by Block and Mee (2003). Under

such a design, one can entertain a model with the largest number of 2fi’s. In-

dependently, Chen and Cheng (2004) defined the notion of estimation index. It

is well known that each regular design is equivalent to a linear code; then the

estimation index is the same as the covering radius of the dual code, and a design

is SOS if and only if the estimation index is equal to 2.

Given a design of resolution IV, if one factor is added, the resulting design

may have resolution III. A resolution IV design is called maximal if no factor can

be added to maintain resolution IV. This concept is useful because all resolution

IV designs can be obtained as projections of maximal resolution IV designs. It

follows from a geometric result in Bruen, Haddad and Wehlau (1998) that two-

level designs of resolution IV are maximal if and only if they have estimation

index 2. Therefore, a resolution IV design is maximal if and only if it is SOS. An

important byproduct of this result is that every two-level resolution IV design

is a projection of a certain SOS design of resolution IV, a fact also observed by

Block and Mee (2003). Thus, in addition to being able to entertain the largest

number of 2fi’s, another important practical value of SOS designs of resolution

IV is that they can be used to generate all resolution IV designs of the same run

size via projections. For example, there are three 32-run two-level SOS designs

of resolution IV: a 216−11, a 210−5, and a 29−4. All other 32-run resolution IV

designs can be obtained by deleting factors from one of these three designs.

Unexpectedly and interestingly, SOS designs have a third application: they

can be used to construct strong orthogonal arrays. We use OA(n,m, s1 × · · · ×
sm, t) to denote an orthogonal array of strength t in n runs for m factors, with

its jth factor having sj levels, 0, 1, . . . , sj − 1. If s1 = · · · = sm = s, the array is

denoted as OA(n,m, s, t) for simplicity. Hedayat, Sloane and Stufken (1999) and

Dey and Mukerjee (1999) are two good general references for orthogonal arrays.

An n × m matrix with entries from {0, 1, . . . , s2 − 1} is called an SOA of

strength 2+ for n runs and m factors at s2 levels if any subarray of two columns
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can be collapsed into an OA(n, 2, s2× s, 2) and an OA(n, 2, s× s2, 2). We denote

this array by SOA(n,m, s2, 2+). Here, collapsing s2 levels to s levels takes place

according to [a/s] for a = 0, 1, . . . , s2 − 1, where [x] denotes the greatest integer

not exceeding x. An s-level orthogonal array of strength two can be used to

construct a Latin hypercube design that contains an equal number of points in

each cell of s × s grids in all two-dimensional projections. However, a Latin

hypercube design constructed from an SOA(n,m, s2, 2+) has the better space-

filling property that it contains the same number of points in each cell of finer

s× s2 and s2 × s grids in all two-dimensional projections.

Example 1. Displayed below are an SOA(16, 10, 22, 2+) (left), and a Latin hy-

percube design constructed from it (right):

2 2 2 2 2 2 0 0 0 0

2 2 0 2 0 0 1 2 2 2

2 0 2 0 2 1 2 1 2 2

2 0 0 0 0 3 3 3 0 0

0 2 2 1 1 2 2 2 1 2

0 2 0 1 3 0 3 0 3 0

0 0 2 3 1 1 0 3 3 0

0 0 0 3 3 3 1 1 1 2

1 1 1 2 2 2 2 2 2 1

1 1 3 2 0 0 3 0 0 3

1 3 1 0 2 1 0 3 0 3

1 3 3 0 0 3 1 1 2 1

3 1 1 1 1 2 0 0 3 3

3 1 3 1 3 0 1 2 1 1

3 3 1 3 1 1 2 1 1 1

3 3 3 3 3 3 3 3 3 3



,



8 9 10 11 8 10 0 2 3 3

10 10 1 10 1 3 7 8 9 10

9 3 11 3 11 7 10 6 11 9

11 0 0 1 3 12 14 15 2 2

2 8 8 5 4 11 8 10 6 11

0 11 2 6 13 2 15 0 15 0

1 2 9 12 5 4 2 14 12 1

3 1 3 15 15 14 6 7 7 8

7 7 4 8 10 9 11 9 10 7

5 5 14 9 0 0 12 3 1 12

6 15 6 2 9 5 1 12 0 13

4 13 13 0 2 15 4 4 8 4

13 4 5 7 7 8 3 1 13 14

12 6 15 4 14 1 5 11 5 6

14 12 7 13 6 6 9 5 4 5

15 14 12 14 12 13 13 13 14 15



.

The SOA has the property that when the entries 0, 1, 2, and 3 in any column

are replaced by 0, 0, 1, and 1 respectively, in the 16 × 2 matrix formed by the

resulting column and any other original column, all eight ordered pairs of {0, 1}
and {0, 1, 2, 3} appear equally often as rows. The Latin hypercube design on the

right is obtained from the SOA by replacing the four occurrences of i = 0, 1, 2, 3,

with a permutation of 4i, 4i + 1, 4i + 2, and 4i + 3, respectively. If we divide

all entries by 16, and consider each row as a point, then we obtain 16 points

in the 10-dimensional unit cube [0, 1)10. This design exhibits the uniformity
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property that there are two points in each cell of 4× 2 and 2× 4 grids in all two-

dimensional projections. For a design constructed from a two-level orthogonal

array of strength two, only stratification in 2× 2 grids is guaranteed.

He, Cheng and Tang (2018) gave the following result, which provides a com-

plete characterization of SOAs of strength 2+, and also shows how they can be

constructed from ordinary orthogonal arrays.

Lemma 1. An SOA(n,m, s2, 2+), say D, exists if and only if there exist two ar-

rays A and B, where A = (a1, . . . , am) is an OA(n,m, s, 2) and B = (b1, . . . , bm)

is an OA(n,m, s, 1), such that (aj , ak, bk) is an orthogonal array of strength three

for any j 6= k. The three arrays are linked through D = sA + B.

Theorem 1 of He, Cheng and Tang (2018) shows how Lemma 1 can be applied

to two-level regular designs. As usual, we use C = (cij)n×m, where cij = ±1, to

represent a two-level factorial design of n runs for m factors. A regular saturated

design S of 2k runs for 2k− 1 factors can be obtained by first writing down a full

factorial for k factors, and then adding all possible interaction columns. Then

each regular 2m−p design C with p = m− k consists of m columns of S. The set

of columns not in C, denoted by C = S \ C, is called the complementary design

of C. Being regular, S has the property that ab ∈ S for any a, b ∈ S, a 6= b, where

ab is the interaction column of a and b. If C is SOS, then the 2k − 1 degrees of

freedom of S = C ∪ C correspond to the main effects and a set of 2k − 1 −m

2fi’s of the m factors in C. (Our use of the union symbol technically corresponds

to a matrix augmentation; the above C ∪ C represents a matrix obtained by

combining the column vectors of C with those of C.) This gives a very simple

description of C: each d ∈ C can be expressed as d = ab for some a, b ∈ C. Let

C be (a1, . . . , am′), where m′ = 2k − 1 − m and ai = bici, with bi, ci ∈ C, for

all i = 1, . . . ,m′. As shown in the proof of Theorem 1 in He, Cheng and Tang

(2018), this implies that (aj , ak, bk) is an orthogonal array of strength three for

any j 6= k. Thus, Lemma 1 is applicable. Following this lemma, we can construct

an SOA(n,m′, 22, 2+) by taking A = C = (a1, . . . , am′) and B = (b1, . . . , bm′).

Then D = A+B/2 + 3/2 is a desired SOA(n,m′, 22, 2+). Note that because, for

two-level designs, the two levels in Lemma 1 are represented by 0 and 1, to apply

Lemma 1, we first need to transform −1 and 1 to 0 and 1, respectively. Thus,

instead of D = 2A+B as stated in Lemma 1, we should use D = A+B/2 + 3/2

here.

Example 2. Let (x1, x2, x3, x4) be a full 24 factorial in 16 runs. Then C =

(x1, x2, x3, x4, x1x2x3x4) is an SOS design. Note that this design has the defin-
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ing relation I = 12345. It has resolution V, with the five main effects and

ten 2fi’s distributed in the 15 alias sets, and hence is SOS. From the previ-

ous discussion, to construct an SOA using Lemma 1, we can let A = C =

(x1x2, x1x3, x1x4, x2x3, x2x4, x3x4, x1x2x3, x1x2x4, x1x3x4, x2x3x4), and choose an

appropriate B = (b1, . . . , b10). Denote the ith column of A by ai; then for all

i = 1, . . . , 10, any bi such that both bi and aibi are columns of C will do. One

choice is B = (x1, x1, x1, x2, x2, x3, x4, x3, x2, x1). Then D = A + B/2 + 3/2 is

the SOA(16, 10, 4, 2+) as shown in Example 1.

3. Minimal SOS Designs and Results on Regular Factorials

3.1. SOS designs and their minimality

Let C be an SOS design. Obviously, adding a factor to C still gives an SOS

design. When a factor is deleted from C, the resulting design can be SOS, but

is not necessarily so. If the design obtained by deleting one factor from C is

still SOS, then we can continue the process of deleting a factor from the current

SOS design until no factor can be deleted while maintaining an SOS design. At

the end, we must obtain an SOS design such that if any factor is removed, the

resulting design is no longer SOS.

Definition 2. An SOS design is said to be minimal if the design resulting from

deleting any factor is no longer SOS.

Let (x1, x2, x3) be a full 23 factorial in eight runs. Then C = (x1, x2, x3, x1
x2x3) is a minimal SOS design. The SOS design of 16 runs for five factors in

Example 2 is also minimal.

The discussion prior to Definition 2 also explains why minimal SOS designs

are useful, which we summarize in a lemma.

Lemma 2. Any SOS design is either minimal or can be obtained by adding

factors to a minimal SOS design.

Lemma 2 states that all SOS designs can be constructed if all minimal SOS

designs are available. Therefore, studies on SOS designs can be focused on min-

imal SOS designs. Furthermore, by Theorem 1 of He, Cheng and Tang (2018),

using a regular SOS design of n runs for m factors, one can construct an n-run

SOA of strength 2+ for n−1−m factors. In order to construct SOAs with more

factors, we need SOS designs with fewer factors. Thus, SOS designs with fewer

factors are of interest.
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The next two subsections are devoted to regular minimal SOS designs. We

examine nonregular SOS designs in Section 4.

3.2. Characterization and construction of regular minimal SOS designs

A main effect or 2fi is said to be clear if it is not aliased with any other

main effect or 2fi. Under the reasonable assumption that interactions of order

three or higher are negligible, a clear effect is estimable regardless of other effects.

For a detailed discussion on clear effects, refer to Cheng (2014, Chap. 10). The

next result provides a complete characterization of a regular SOS design being

minimal through clear effects.

Theorem 1. Let C = (c1, . . . , cm) be a regular SOS design, with cj denoting its

jth column. Then C is a minimal SOS design if and only if, for any i = 1, . . . ,m,

at least one of the following m effects is clear: the main effect ci and all 2fi’s cicj
with j 6= i.

Theorem 1 is obvious, and so not really in need of a proof. It simply recog-

nizes the fact that the design given by deleting column ci from C remains SOS

if and only if none of ci and cicj , with j 6= i, are clear. Theorem 1 may be

mathematically simple, but it is a very useful result as will be seen throughout

the paper.

Corollary 1.

(i) If an SOS design has resolution IV or higher, then it must be minimal.

(ii) A minimal SOS design of resolution III must have at least one clear 2fi.

(iii) For a minimal SOS design of n = 2k runs and m factors, we must have that

m ≤ n/2.

Proof. Part (i) of Corollary 1 is true because all main effects are clear in a res-

olution IV or higher design. Part (ii) follows because some main effects cannot

be clear in a resolution III design, meaning that some 2fi’s have to be clear,

from Theorem 1. Parts (i) and (ii) state that a minimal SOS design is either

of resolution IV or higher, or has some clear 2fi’s, both of which imply that

m ≤ n/2 (Cheng (2014, Corollary 9.6 and Thm. 10.7)). The first result follows

from Rao’s bound, and the second was originally obtained by Chen and Hedayat

(1998). This proves Corollary 1(iii).

He, Cheng and Tang (2018) presented four constructions of regular SOS

designs. Using Theorem 1, we show that these SOS designs are actually minimal.

Again, let S be the saturated design based on k independent factors, which we
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denote by a1, . . . , ak1
, b1, . . . , bk2

, where k1 ≥ 2, k2 ≥ 2, and k1+k2 = k. Consider

two subsets P and Q of S, where P consists of a1, . . . , ak1
and their interaction

columns, and Q consists of b1, . . . , bk2
and their interaction columns. All four

constructions build SOS designs using P and Q.

Construction 1: C1 = P ∪Q.

Construction 2: C2 = (P \ {a1}) ∪ (Q \ {b1}) ∪ {a1b1}.

Construction 3: C3 = (P \ {a1}) ∪ (a1Q).

Construction 4: C4 = (b1P ) ∪ (a1Q \ {a1b1}).

Construction 1 gives a design with n = 2k runs and 2k1 + 2k2 − 2 factors.

Constructions 2–4 all produce designs with the same run size, but with 2k1+2k2−3

factors, where k1 ≥ 2, k2 ≥ 2, and k1 + k2 = k ≥ 4.

Theorem 2. Designs C1, C2, C3, and C4 given by Constructions 1–4 are all

minimal SOS designs.

Proof. That C1, C2, C3, and C4 are all SOS is established in He, Cheng and Tang

(2018). Design C4 has resolution IV, and is thus minimal, by Corollary 1(i). For

design C1, it is obvious that the 2fi pq is clear for any p ∈ P and any q ∈ Q,

implying that C1 is minimal, by Theorem 1. Design C2 is minimal because pq,

a1b1p, and a1b1q are all clear for any p ∈ P \ {a1} and any q ∈ Q \ {b1}. Design

C3 is minimal because pq is clear for any p ∈ P \ {a1} and any q ∈ a1Q.

By Corollary 1, all SOS designs of resolution IV are minimal. On the other

hand, as noted in Section 2, maximal designs of resolution IV are SOS. Therefore,

we have the following simple result.

Corollary 2. All maximal resolution IV designs are minimal SOS designs.

Chen and Cheng (2006) examined the structures and constructions of maxi-

mal designs with n/4 + 1 or more factors. In contrast, the minimal SOS designs

given by Constructions 1–4 all have fewer than n/4 + 1 factors unless k1 = 2 or

k2 = 2. Finally, note that Constructions 1 and 4 were also given in Tang et al.

(2002) in their studies of clear 2fi’s.

3.3 Imports from projective geometry and coding theory

It is well known that constructing a regular 2m−p design amounts to choosing

m points, one point for each factor, from the 2m−p − 1 points in an (m− p− 1)-

dimensional projective geometry based on the Galois field GF (2) = {0, 1}. Each
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line in this geometry contains three points. Then a 2fi can be identified with the

third point on the line determined by the points corresponding to the two factors.

A set A of points is called a 1-saturating set if every point in the complement

of A is on the line determined by a certain pair of points in A. Thus, it is clear

that regular SOS designs are equivalent to 1-saturating sets, and regular minimal

SOS designs are equivalent to minimal 1-saturating sets. Regular SOS designs

also have a coding theory connection, because the dual codes of linear codes

with covering radius 2 are equivalent to 1-saturating sets. In this subsection, we

import some results from projective geometry and coding theory.

Davydov, Marcugini and Pambianco (2006) presented several construction

methods for minimal 1-saturating sets. Their Constructions A and B are equiva-

lent to our Constructions 1 and 2, respectively, in Section 3.2. In design language,

we present one of their other methods because it gives SOS designs with fewer

factors than our Constructions 1–4 do. As commented in the paragraph following

Lemma 2, SOS designs with fewer factors are of interest because they result in

SOAs with more factors.

Recall that our Construction 1 gives a minimal SOS design with 2k1 +2k2−2

factors, and Constructions 2–4 produce minimal SOS designs with 2k1 + 2k2 − 3

factors, where k1 ≥ 2, k2 ≥ 2, and k1 + k2 = k ≥ 4. However, if k ≥ 7, a minimal

SOS design with 2k1 + 2k2 − 4 factors can be constructed for k1 ≥ 3, k2 ≥ 4,

and k1 + k2 = k. This is Construction C of Davydov, Marcugini and Pambianco

(2006), which is presented below.

Let S, P , and Q be defined as in Section 3.2. Let p1p2p3 = q1q2q3 = I be

two defining words of length three, where p1, p2, p3 ∈ P , q1, q2, q3 ∈ Q, and I is

the all-ones column. Take any q4 ∈ Q \ {q1, q2, q3}. Consider

C5 = (P \ {p1, p2, p3}) ∪ (Q \ {q1, q2, q3, q4}) ∪ {p1q3, p2q3, p3q1, p3q2, p3q4}.

Lemma 3. (Davydov, Marcugini and Pambianco (2006))Design C5 is a minimal

SOS design of n = 2k runs with 2k1 + 2k2 − 4 factors, where k1 ≥ 3, k2 ≥ 4, and

k = k1 + k2 ≥ 7.

However, for k ≥ 7, SOS designs with even fewer factors can be constructed,

as given in Theorems 1 and 2 of Gabidulin, Davydov and Tombak (1991) in

terms of duals of linear codes with covering radius 2. We summarize their results

in a lemma.

Lemma 4. (Gabidulin, Davydov and Tombak (1991)) For k ≥ 7, an SOS design

of n = 2k runs for m factors can be constructed, where
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m =

{
5× 2w−2 − 1 if k = 2w − 1,

7× 2w−2 − 2 if k = 2w.

To the best of our knowledge, whether or not the SOS designs given in

Lemma 4 are minimal has not been established in the literature on coding theory

and projective geometry. Here, we provide an affirmative answer to the question.

Proposition 1. The SOS designs in Lemma 4 are minimal.

The proof is rather lengthy and, thus, is given in the Appendix.

Example 3. For k = 7, and thus w = 4, the construction in Lemma 4 gives an

SOS design with n = 2k = 128 runs for m = 5 × 2w−2 − 1 = 19 factors. The

design matrix is given by taking all linear combinations of the rows of

B =



000 1111 1111 1111 1111

011 0011 0011 0011 0000

101 0101 0101 0101 0000

000 0011 0101 0110 0011

000 0110 0011 0101 0101

000 0000 0000 1111 1111

000 0000 1111 0000 1111


,

with all calculations within GF (2) = {0, 1}. The resulting design can be con-

verted to a version with familiar levels ±1 by changing 0 to −1. According to

Proposition 1, this SOS design is minimal. It is of resolution III, having one

word of length three, which is given by the first three columns. In comparison,

for k = 7 and n = 128, Construction 1 gives a minimal SOS design with 22

factors, Constructions 2–4 generate minimal SOS designs with 21 factors, and

Lemma 3 gives a minimal SOS design with 20 factors. For k = 8, the construc-

tion in Lemma 4 gives an SOS design with 256 runs for 26 factors, which is also

minimal, by Proposition 1.

Let mk be the largest m for which an SOA(2k,m, 4, 2+) based on regular

designs can exist. Using Constructions 2–4, He, Cheng and Tang (2018) obtained

a general lower bound on mk. Lemma 4 offers an improvement for k ≥ 7.

Proposition 2. We have that, for k ≥ 7,

mk ≥

{
2k − 5× 2w−2 if k = 2w − 1,

2k − 7× 2w−2 + 1 if k = 2w.
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Table 1. Classification of all regular minimal SOS designs for n≤ 64 and n= 128 with
m≤20.

n m III IV total
8 4 1 1 2

16 5 0 1 1
16 6 1 0 1
16 8 1 1 2
32 9 1 1 2
32 10 6 1 7
32 11 1 0 1
32 16 1 1 2
64 13 7 1 8
64 14 19 0 19
64 15 14 0 14
64 16 16 0 16
64 17 48 5 53
64 18 108 1 109
64 20 1 1 2
64 32 1 1 2

128 19 5 0 5
128 20 36 0 36

Davydov, Marcugini and Pambianco (2006) provide a complete enumeration

of all minimal 1-saturating sets in small geometries. Thus, their Table 1 classifies

all regular minimal SOS designs for up to 64 runs and all regular minimal SOS

designs with m ≤ 20 for 128 runs. We give a summary of their results in Table

1 for the benefit of design researchers.

For given n and m, the last column of Table 1 gives the number of all regular

minimal SOS designs; the third and fourth columns give the numbers of minimal

SOS designs of resolution III and IV, respectively. For example, with n = 64 runs

and m = 13 factors, there are exactly seven minimal SOS designs of resolution

III, one minimal SOS design of resolution IV, and eight minimal SOS designs in

total.

Using the search results in Table 2 of Davydov, Marcugini and Pambianco

(2006), we obtain lower and upper bounds on m′k, the size of the smallest regular

minimal SOS design for 7 ≤ k ≤ 10. These bounds on m′k are then used to obtain

upper and lower bounds on mk, the greatest m such that an SOA(2k,m, 4, 2+)

based on regular designs exists, because m′k +mk = 2k− 1. Our Table 2 updates

and expands Table 1 of He, Cheng and Tang (2018). For completeness, we include

information on both m′k and mk in Table 2. For 4 ≤ k ≤ 7, the m′k and mk values
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Table 2. The smallest number m′
k of factors for a regular minimal SOS design, and the

largest number mk of factors for an SOA of strength 2+ based on regular designs.

k n = 2k m′
k mk

4 16 5 10
5 32 9 22
6 64 13 50
7 128 19 108
8 256 [25, 26] [229, 230]
9 512 [34, 39] [472, 477]
10 1,024 [47, 51] [972, 976]

are exact. For 8 ≤ k ≤ 10, Table 2 gives the best known lower and upper bounds

(e.g., 25 ≤ m′8 ≤ 26 and 229 ≤ m8 ≤ 230).

4. Nonregular Minimal SOS Designs and Their Applications

4.1. Characterization and construction

Orthogonal arrays were introduced in Section 2. Throughout this subsection,

the two levels in an OA(n,m, 2, t) are denoted by ±1, rather than 0 and 1.

An OA(n,m, 2, 2) is said to be a nonregular design if it is not regular. For a

review of nonregular designs, see Xu, Phoa and Wong (2009). Prior to Sun

and Wu (1993), nonregular designs were referred to as irregular (e.g., Addelman

(1961)). Hadamard matrices provide rich sources of nonregular designs, although

not every nonregular design can be imbedded into a Hadamard matrix; see Sun,

Li and Ye (2008) and Bulutoglu and Kaziska (2009) for details. A main effect

or 2fi is called clear in a nonregular design if it is orthogonal to all other main

effects and 2fi’s (Tang (2006)).

Our general discussion on SOS designs and their minimality in Section 3.1

applies to nonregular and regular designs. Theorem 1 in Section 3 gives a com-

plete characterization of a regular SOS design being minimal. A similar result

holds for nonregular designs.

Theorem 3. Let C = (c1, . . . , cm) be an SOS design, regular or nonregular.

Then C is minimal if, for any i = 1, . . . ,m, at least one of the m effects ci and

cicj with j 6= i is clear.

Similarly to Theorem 1, Theorem 3 states that the condition of existence of

certain clear effects is still sufficient for a nonregular SOS design to be minimal.

Unlike Theorem 1, the necessity part cannot hold, in general, for nonregular
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designs. To illustrate this, consider the following example. There are exactly

two nonequivalent OA(12, 5, 2, 2)s (Sun, Li and Ye (2008)). Using a computer,

we can easily check that one is SOS and the other is not. The one that is SOS

must also be minimal because there are not enough degrees of freedom for an

OA(12, 4, 2, 2) to be SOS. On the other hand, an OA(12, 5, 2, 2) cannot have

a clear effect, because otherwise the run size would be a multiple of 8 (Tang

(2006)). Proposition 1 of Tang (2006) relates to the existence of a clear 2fi; the

same argument applies to a clear main effect.

Corollary 3. If an OA(n,m, 2, 3) is SOS, then it must be minimal.

This result follows from Theorem 3, because all main effects are clear in

an orthogonal array of strength three. Cheng, Mee and Yee (2008) introduced

some constructions of SOS OA(n,m, 2, 3)s, which are all minimal according to

Corollary 3. These minimal SOS designs have relatively large numbers of factors;

for example, their first construction gives m = n/4+1. When constructing SOAs,

it is desirable to obtain minimal SOS designs with fewer factors, which we discuss

next.

It turns out that the four constructions in Section 3 can all be adapted to

the setting of nonregular designs. Let Hn1
= (1n1

, a1, . . . , an1−1) and Hn2
=

(1n2
, b1, . . . , bn2−1) be two Hadamard matrices of orders n1 ≥ 4 and n2 ≥ 4,

respectively, where 1n1
is a column vector of n1 ones. Let pi = ai ⊗ 1n2

for

i = 1, . . . , n1 − 1, and qj = 1n1
⊗ bj for j = 1, . . . , n2 − 1. Furthermore, let P =

{p1, . . . , pn1−1} and Q = {q1, . . . , qn2−1}. Consider the following constructions:

Construction(i) : C1 = P ∪Q.

Construction(ii) : C2 = (P \ {p1}) ∪ (Q \ {q1}) ∪ {p1q1}.

Construction(iii) : C3 = (P \ {p1}) ∪ (p1Q).

Construction(iv) : C4 = (q1P ) ∪ (p1Q \ {p1q1}).

All four designs have n1n2 runs. Design C1 has n1 + n2 − 2 factors, and

designs C2, C3, and C4 have n1 + n2 − 3 factors.

Theorem 4. Designs C1, C2, C3, and C4, given above, are minimal SOS designs.

Proof. For brevity, we give proofs for Constructions (i) and (ii) only. The proofs

for Constructions (iii) and (iv) use similar ideas, but are more tedious and com-

plicated.
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First, consider design C1 = P ∪ Q from Construction (i). The Hadamard

matrix Hn1
⊗Hn2

then consists of 1n1n2
, all main effect columns in P , all main

effect columns in Q, and all interaction columns pq, where p ∈ P and q ∈ Q.

Therefore the design C1 = P ∪ Q is SOS. Because any 2fi pq with p ∈ P and

q ∈ Q is obviously clear, design C1 is minimal, by Theorem 3.

Now, consider design C2 from Construction (ii). We first decompose the set

of n1n2 columns in the Hadamard matrix Hn1
⊗Hn2

into a union of six disjoint

subsets, as given by

Hn1
⊗Hn2

= R0 ∪R1 ∪R2 ∪R3 ∪R4 ∪R5,

where R0 = {1n1n2
}, R1 = P , R2 = Q, R3 = p1Q, R4 = q1P \ {p1q1}, and

R5 = {piqj | i = 2, . . . , n1 − 1; j = 2, . . . , n2 − 1}. To prove that design

C2 = (P \ {p1}) ∪ (Q \ {q1}) ∪ {p1q1} is SOS, we need to show that for each

Rj , where j = 1, . . . , 5, we can choose a set of linearly independent main effects

or 2fi’s from design C2 such that they span the same linear subspace as that

spanned by the columns of Rj . Because every column in R5 is a 2fi of design C2,

the job is done for R5. Now, consider R1 = P . If we can find a 2fi pipj of design

C2, where 2 ≤ i < j ≤ n1 − 1, such that it is not orthogonal to p1, then the

main effects p2, . . . , pn1−1 of C2 plus this 2fi pipj are linearly independent and,

thus, span the linear subspace spanned by R1 = P . Such a 2fi must exist; oth-

erwise p2, . . . , pn1−1, p1p2, . . . , p1pn1−1 are mutually orthogonal within the linear

subspace spanned by P , which is a contradiction. The same argument works for

R2 = Q. We now turn our attention to R3 = p1Q. Because the column vectors

p1q1, p1q1q2, . . . , p1q1qn2−1 are mutually orthogonal and all belong to L(R3), the

linear subspace spanned by the columns of R3 = p1Q, they therefore span L(R3).

However, p1q1 is a main effect of design C2, and p1q1qj for j ≥ 2 is a 2fi between

factor p1q1 and factor qj of design C2. This takes care of R3. The same argument

with a minor modification also works for R4. We have thus proved that design

C2 is SOS. That C2 is minimal follows from the fact that the 2fi of factor pi and

factor qj is clear, for all i ≥ 2 and j ≥ 2, and that the main effect p1q1 is also

clear.

In the next subsection, we examine how to use the designs given by Con-

structions (i)–(iv) to construct SOAs of strength 2+.

Small orthogonal arrays have been completely enumerated by Sun, Li and

Ye (2008) and Schoen, Eendebak and Nguyen (2010). Using these results, we

conduct a complete search of OA(n,m, 2, t)s that are minimal SOS designs for
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Table 3. Classification of all OA(n,m, 2, t)s that are minimal SOS designs for t = 2 with
n = 12, 16, and 20, and for t = 3 with n = 16, 24, 32, and 40, where Nall, Nsos, and
Nminsos denote the number of all nonisomorphic designs, number of SOS designs, and
number of minimal SOS designs, respectively.

t (n,m) Nall Nsos Nminsos
2 (12, 5) 2 1 1
2 (16, 5) 11 3 3
2 (16, 6) 27 14 2
2 (16, 8) 80 80 2
2 (20, 6) 75 15 15
2 (20, 7) 474 339 22
2 (20, 9) 2,477 2,466 1
3 (16, 5) 2 1 1
3 (16, 8) 1 1 1
3 (24, 12) 1 1 1
3 (32, 9) 34 6 6
3 (32, 10) 32 1 1
3 (32, 16) 5 5 5
3 (40, 20) 3 3 3

t = 2 with n = 12, 16, and 20, and for t = 3 with n = 16, 24, 32, and 40. Table 3

presents a summary of all minimal SOS designs for these parameters. For a given

strength t and pair (n,m), the last column of Table 3 gives the number Nminsos
of OA(n,m, 2, t)s that are minimal SOS designs. For comparison, we also include

in Table 3 the number Nall of all nonisomorphic designs and the number Nsos
of all SOS designs. For example, there are 474 nonisomorphic OA(20, 7, 2, 2)s,

of which 339 arrays are SOS. Among the 339 SOS designs, 22 are minimal.

Furthermore, Table 3 shows that there exist exactly three OA(16, 5, 2, 2)s that

are minimal SOS designs. Comparing these results with those shown in Table 1,

we conclude that one of these minimal SOS designs is regular, and the other two

are nonregular.

4.2. Applications to strong orthogonal arrays

In this subsection, we consider the problem of constructing SOA(n,m, 4, 2+)s.

According to Lemma 1, we first need to find two arrays A and B, where A =

(a1, . . . , am) is an OA(n,m, 2, 2) and B = (b1, . . . , bm) is an OA(n,m, 2, 1), such

that (aj , ak, bk) has strength three for any j 6= k. Then, as noted in the paragraph

following Lemma 1, we obtain an SOA(n,m, 4, 2+) using D = A + B/2 + 3/2.

He, Cheng and Tang (2018) examined how to obtain A and B if their columns

are selected from a saturated regular design. We now consider obtaining A and



882 CHENG, HE AND TANG

B by choosing their columns from a saturated orthogonal array, which can be

nonregular.

Theorem 5. Let S be an OA(n, n − 1, 2, 2). To construct an SOA(n,m, 4, 2+)

using D = A + B/2 + 3/2 with the columns of A and B selected from S, it

is necessary and sufficient that, for any column a ∈ A, there exists a column

b ∈ S \A such that ab is orthogonal to all columns in A.

Theorem 5 extends Theorem 1 of He, Cheng and Tang (2018), and includes

the latter as a special case, because one can easily see that the condition for

array A in Theorem 5 is equivalent to S \A being SOS if S is a regular saturated

design. We omit the proof for Theorem 5 because it is very similar to that for

Theorem 1 of He, Cheng and Tang (2018).

Theorem 5 is actually constructive. Suppose that A = (a1, . . . , am) satisfies

the required condition in Theorem 5, meaning that, for any ai, there exists a

column in S \ A, say bi, such that aibi is orthogonal to all aj . Then we simply

take B = (b1, . . . , bm).

Remark 1. When S is a nonregular saturated design, the condition for array A

in Theorem 5 may not be equivalent to S \ A being SOS. Further discussion on

this issue will be given in Section 5. It is therefore not true that every nonregular

SOS design can be used to construct an SOA(n,m, 4, 2+). On the other hand,

as shown below, almost all SOS designs given by Constructions (i)–(iv) allow the

construction of SOAs.

All minimal SOS designs obtained by Constructions (i)–(iii) can be used to

construct SOA(n,m, 4, 2+)s. The minimal SOS designs obtained by Construction

(iv) can also be used, provided that one of Hn1
and Hn2

is regular. Details are

given as follows. Note that S = Hn1
⊗Hn2

\ {1n1n2
}.

Construction (i). Let A1 = S \C1. All columns in A1 have the form pq, where

p ∈ P and q ∈ Q. For any a = pq ∈ A1, we take b = p.

Construction (ii). Let A2 = S \C2. For a = piqj ∈ A2, where i, j ≥ 2, we take

b = pi. For a = p1, take b = p2. For a = q1, take b = q2. For a = p1qj , where

j ≥ 2, take b = p1q1. For a = q1pi, where i ≥ 2, take b = p1q1.

Construction (iii). Let A3 = S \ C3. For a = piqj , where i ≥ 2, j ≥ 1, we take

b = p1qj . For a = p1, take b = p2. For a = qj , where j ≥ 1, take b = p1qj′ ,

where j′ 6= j
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Construction (iv). Assume Hn1
is regular. Let A4 = S \ C4. For a = pi, take

b = pi′q1, where i′ 6= i. For a = qj , take b = p1qj′ , where j′ 6= j. For a = piqj ,

where i ≥ 2 and j ≥ 2, take b = pi′q1, where pi′ = p1pi, which is possible

because Hn1
is regular.

We can verify routinely that A1, A2, A3, and A4 satisfy the condition in

Theorem 5. The above also shows how to obtain the corresponding B1, B2, B3,

and B4. Using D = A+B/2 + 3/2, we can then obtain D1, D2, D3, and D4. We

summarize these developments in the following theorem.

Theorem 6. Design D1 is an SOA(n1n2,m, 4, 2+) with m = n1n2−n1−n2 +1,

and designs D2, D3, and D4 are all SOA(n1n2,m, 4, 2+)s with m = n1n2 − n1 −
n2 + 2.

Example 4. Take n1 = 4 and n2 = 12. Then D1 is an SOA(48, 33, 4, 2+), and

D2, D3, and D4 are SOA(48, 34, 4, 2+)s. If we take n1 = n2 = 12, then D1 is an

SOA(144, 121, 4, 2+), and D2 and D3 are both SOA(144, 122, 4, 2+)s. Such run

sizes cannot be attained using regular SOS designs. Note that D4 is not available

for n1 = n2 = 12 because Hn1
and Hn2

are both nonregular.

SOAs constructed from regular and nonregular designs differ in terms of their

three-dimensional space-filling properties. The distribution of the design points

in the eight cells when projected onto three dimensions and viewed on a 2×2×2

grid is determined by the three corresponding columns of the array A in Lemma

1. This array of three columns has only two possible structures for regular A,

but a lot more for nonregular A.

Example 5. Hall (1961) identified five nonisomorphic Hadamard matrices of

order 16, denoted by HI, HII, HIII, HIV , and HV , respectively, where only HI is

regular. Denote a submatrix consisting of the j1, j2, . . . , jmth columns of Hi by

Hi(j1, j2, . . . , jm), where i = I, II, III, IV, V. Then it can be verified that C1 =

HI(7, 11, 12, 13, 14, 15), C2 = HI(6, 7, 9, 11, 13, 14), and C3 = HII(1, 2, 3, 7, 11, 15)

are all SOS. Furthermore, their complementary designs A1 = HI(1, 2, 3, 4, 5, 6, 8,

9, 10), A2 = HI(1, 2, 3, 4, 5, 8, 10, 12, 15), and A3 = HII(4, 5, 6, 8, 9, 10, 12, 13, 14)

all satisfy the condition of Theorem 5. One can construct SOA(16, 9, 4, 2+)s Di =

Ai +Bi/2 + 3/2, for i = 1, 2, 3, by choosing B1 = HI(12, 12, 12, 11, 11, 11, 7, 7, 7),

B2 = HI(6, 9, 13, 9, 11, 6, 7, 7, 6), and B3 = HII(3, 2, 1, 3, 2, 1, 3, 2, 1). Because A1

has seven defining words of length three, for D1, there are seven three-dimensional

projections in which there are points in only four of the eight cells in a 2× 2× 2

grid. For D2, there are six such three-dimensional projections. Because of the
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nonregular structure of A3, for all three-dimensional projections of D3, there is

at least one point in each cell. The numbers of four-dimensional projections in

which only eight of the sixteen cells in a 2×2×2×2 grid are occupied are 51, 45,

and 9 for D1, D2, and D3, respectively. This comparison shows that D3, which

is constructed from a nonregular SOS design, has better coverage than D1 and

D2, which are constructed from regular SOS designs.

5. Discussion

This study conducts a comprehensive investigation of SOS designs and their

minimality, focusing on their usefulness in constructing strong orthogonal arrays.

In both regular and nonregular cases, we establish characterizing results for SOS

designs to be minimal, and provide some construction results for minimal SOS

designs. In the case of regular designs, results from projective geometry and

coding theory allow us to construct SOAs of strength 2+ with more factors (see

Proposition 2 and Table 2) than those in He, Cheng and Tang (2018). The

nonregular counterparts of the four constructions in He, Cheng and Tang (2018)

allow us to construct four families of SOAs of strength 2+.

In the case of regular designs, Grynkiewicz and Lev (2010) studied the struc-

tures and sizes of large 1-saturating sets. Although we are more concerned with

SOS designs with small numbers of factors, one of their results is relevant here.

They show that while the largest minimal SOS design has m = n/2, the second

largest minimal SOS design must have m = 5n/16, provided that n is sufficiently

large. From Table 1, we see that this is already true for n = 64. The results in

Table 2 of Davydov, Marcugini and Pambianco (2006) confirm the statement.

An important unresolved problem is whether the constructions in Lemmas

3 and 4 can be adapted to nonregular designs. Because the construction for

the design in Lemma 4 relies heavily on the regular structure, it does not seem

possible to generalize this to nonregular settings. However, in Lemma 3, as

long as both Hn1
and Hn2

contain a defining word of length three, there is a

nonregular counterpart for the construction. The questions then are whether the

resulting design is minimal SOS, and whether it can be used to construct an SOA

of strength 2+. We leave these questions to future research.

The construction of SOAs in Theorems 5 and 6 raises an intriguing ques-

tion, which is at least of technical interest: what is the relationship between the

condition in Theorem 5 and the property of being SOS? We know that they are

equivalent in the case of regular designs. In the nonregular case, the following
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result sheds some light on the issue.

Lemma 5. Let C, an OA(n,m, 2, 2), be an orthogonal SOS design, meaning that

there exists a set A of n−1−m mutually orthogonal 2fi’s that are also orthogonal

to the main effects. Then array A satisfies the condition in Theorem 5.

The proof is straightforward by taking S = A ∪ C, which is an OA(n, n −
1, 2, 2). Lemma 5 seems to suggest that the condition in Theorem 5 is stronger

than being SOS. A proof or a counterexample is worth seeking.
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Appendix

A. Proof of Proposition 1

The constructions were given in Theorems 1 and 2 of Gabidulin, Davydov

and Tombak (1991). Our notation in this appendix is different from the main

body of our paper. Instead, we use the notation in Gabidulin, Davydov and

Tombak (1991). This is just to make presentation easier. Let e0 = 0, e1, . . . , eB
be the elements of GF (2b), where B = 2b−1. Further let (ei)

b denote the column

vector that is the binary b-bit representation of ei. Define two matrices Eb and

F 2b(ej) as follows

Eb =
[

(e0)
b (e1)

b · · · (eB)b
]
,

F 2b(ej) =

[
(e0)

b (e1)
b · · · (eB)b

(e0)
b (e−11 ej)

b · · · (e−1B ej)
b

]
.

Let Eb
0 be Eb with the first column deleted. We use P b(ei) to denote a

matrix with the same column (ei)
b repeated where the number of repetitions is

determined by context.

Lemma A. (Gabidulin, Davydov and Tombak (1991,Thm. 1)) Let the parity
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check matrix of a code be

B2m−1 = [N D Q M G],

where 2m− 1 = r ≥ 7 and matrices N,D,Q,M and G are, respectively, given by
0 · · · 0

Em−2
0

Pm(e0)

 ,


1 · · · 1

F 2(m−2)(w1)

0 · · · 0

0 · · · 0

 ,


1 · · · 1

F 2(m−2)(w2)

0 · · · 0

1 · · · 1

 ,


1 · · · 1

F 2(m−2)(w3)

1 · · · 1

0 · · · 0

 ,


1 · · · 1

Pm−2(e0)

Em−2

1 · · · 1

1 · · · 1

 ,

where w1, w2, w3 ∈ GF (2m−2); w1, w2 6= 0, w1 6= w2, w1 + w2 = w3. Then this

code has covering radius R = 2.

Let C be the design generated by taking linear combinations of the rows of

B2m−1 with coefficients from GF (2) = {0, 1}. According to Lemma A, design C

is SOS as the code has covering radius R = 2.

Proposition 1a. The array C, generated by B2m−1, is a minimal SOS design.

Proof. We already know that C is SOS. To show its minimality, we use our

Theorem 1 in Section 3. As design C has entries from GF (2) = {0, 1}, a main

effect column ci is clear if ci 6= cj and ci 6= cj +ck for any other columns cj and ck,

and a 2fi cicj is clear if ci + cj 6= ck and ci + cj 6= ck + cl for any other columns ck
and cl. Equivalently, one can verify these properties for the columns of B2m−1.

We will prove that each column in [D,Q,M,G] is clear, and each column in N

has a clear 2fi.

Suppose that a column ~d in D is not clear. Then there must exist two other

columns x and y in B2m−1 such that ~d = x + y, where x 6= ~d and y 6= ~d. By

examining the first row and last two rows of B2m−1, we see that ~d = x + y is

possible only if x is a column in N and y a column in D. Suppose that neither
~d nor y is the first column of D. Since ~d, x and y have form

~d =


1

(ei)
m−2

(e−1i w1)
m−2

0

0

 , x =


0

(ej)
m−2

0
...

0

 , y =


1

(ek)m−2

(e−1k w1)
m−2

0

0

 ,
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it is impossible to have ~d = x + y unless (e−1i w1)
m−2 = (e−1k w1)

m−2. But

(e−1i w1)
m−2 = (e−1k w1)

m−2 implies ei = ek, which leads to ~d = y. This is a

contradiction. It is also obvious that ~d = x + y cannot hold if one of ~d and y is

the first column of D. Therefore, ~d must be clear. Similarly, one can prove that

any column in Q,M or G is also clear.

For any column ~n of N , we will show that ~n+ ~d is clear where ~d is any except

the first column of D. Since ~d is clear, we only need to prove ~n + ~d 6= x + y for

any other two columns x, y in B2m−1. Again by examining the first row and the

last two rows of B2m−1, the only possible scenario for ~n + ~d = x + y is that x is

a column of N and y a column of D. An argument very similar to that in the

last paragraph shows that if ~n + ~d = x + y, then we must have ~n = x and ~d = y.

This shows that ~n + ~d is clear, and thus each column in N has a clear 2fi. The

proof is completed.

Let D1 and B2m−1
1 be the matrices of D and B2m−1 with their first column

(1, 0, . . . , 0)T deleted, respectively.

Lemma B. (Gabidulin, Davydov and Tombak (1991,Thm. 2)) Let the parity

check matrix of a code be

T 2m = [Z Y ],

where 2m = r ≥ 8 and

Z =

[
0 · · · 0

B2m−1
1

]
, Y =

1 · · · 1

Em−1

Pm(ei)

 ,

where i ∈ {0, . . . , 2m − 1}. Then the code has covering radius R = 2.

Let N∗, D∗1, Q∗, M∗ and G∗ denote the matrices of N , D1, Q, M and G

with an added head row (0, . . . , 0). Partition Y into Y = [Y1, Y2] such that

the second row of Y1 is the all-zeros row, and the second row of Y2 is the

all-ones row. Then T 2m can be partitioned into seven submatrices as T 2m =

[N∗, D∗1, Q
∗,M∗, G∗, Y1, Y2] with N∗, D∗1, Q

∗,M∗, G∗, Y1, Y2 given, respectively,
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by 
0 · · · 0

0 · · · 0

Em−2
0

Pm(e0)

 ,


0 · · · 0

1 · · · 1

F
2(m−2)
0 (w1)

0 · · · 0

0 · · · 0

 ,


0 · · · 0

1 · · · 1

F 2(m−2)(w2)

0 · · · 0

1 · · · 1

 ,


0 · · · 0

1 · · · 1

F 2(m−2)(w3)

1 · · · 1

0 · · · 0

 ,



0 · · · 0

1 · · · 1

Pm−2(e0)

Em−2

1 · · · 1

1 · · · 1


,


1 · · · 1

0 · · · 0

Em−2

Pm(ei)

 ,


1 · · · 1

1 · · · 1

Em−2

Pm(ei)

 ,

where F
2(m−2)
0 (w1) is obtained from F 2(m−2)(w1) by deleting its first column

which consists of all zeros.

Proposition 1b. The array C ′, generated by T 2m, is a minimal SOS design.

Proof. We are going to prove that each column in [D∗1, Q
∗,M∗, G∗] is clear and

each column in [N∗, Y1, Y2] has a clear 2fi.

Since any column of D is clear in B2m−1 (from the proof of Proposition 1a),

we have that if a column ~d in D∗1 has ~d = x1 + x2 for two other columns x1, x2
from T 2m, then at least one of x1 and x2 must come from Y . Examining the first

two rows of T 2m, we see that the only possible case is that x1 is from Y1 and x2
is from Y2. Now if we take a look at the (m + 1)th to (2m− 2)th rows of D∗1, Y1
and Y2, we see that it is impossible for ~d = x1 + x2 to hold. This is because the

(m+1)th to (2m−2)th entries of x1 +x2 are all zeros whereas the corresponding

entries of ~d are those of (e−1i w1)
m−2, which cannot be all zeros. We have thus

established that any column ~d in D∗1 is clear. According to the entries in the first

and the last two rows of T 2m, one can prove that each column in [Q∗,M∗, G∗] is

also clear.

In a manner almost identical to that of showing a column in D∗1 is clear as

given above, we can show that the 2fi ~n + ~d is clear for any column ~n from N∗

and any column ~d from D∗1.

For any column ~y from Y1 or Y2, and any column ~d from D∗1, we can show

that ~y + ~d is clear. The arguments are, though a bit more involved, also very

similar to the above. We omit the details. This completes the proof.
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