ON THE BETA PRIME PRIOR FOR SCALE PARAMETERS IN HIGH-DIMENSIONAL BAYESIAN REGRESSION MODELS

Ray Bai and Malay Ghosh
University of South Carolina and University of Florida

Supplementary Material

In Section S1, we provide the tables reporting the results from our simulation studies in Section 6 and our data analysis in Section 7 of the main manuscript. In Section $\operatorname{S2}$ we provide proofs for Theorems 3.1 and 4.1 of the main manuscript. In Section S 3 , we provide technical details for the Monte Carlo EM and variational EM algorithms described in Section 5 of the main manuscript.

S1 Results for Simulations and Data Analysis

Table 1: Simulation results for Experiments 1 and 2 for the NBP, HS-HC, HS-REML, SSL- $\mathcal{B}(1, p)$, SSL- $\mathcal{B}(1,1)$, MCP, SCAD, and ENet models, averaged across 100 replications when $n=60, p=100$.

Experiment 1: sparse model (10 active predictors)

Method	MSE	FDR	FNR	MP
NBP	$\mathbf{0 . 0 1 9}$	0.214	0.011	0.039
HS-HC	0.020	0.128	0.014	0.029
HS-REML	0.021	$\mathbf{0 . 0 2 3}$	0.023	$\mathbf{0 . 0 2 3}$
SSL-B $(1, p)$	0.020	0.066	0.019	0.026
SSL-B $(1,1)$	0.025	0.151	0.017	0.036
MCP	0.020	0.238	$\mathbf{0 . 0 1 4}$	0.046
SCAD	0.028	0	0.1	0.1
ENet	0.037	0.730	0.006	0.284

Experiment 2: fairly sparse model (20 active predictors)

Method	MSE	FDR	FNR	MP
NBP	$\mathbf{0 . 0 7 7}$	0.202	0.050	0.083
HS-HC	0.110	0.235	0.084	0.11
HS-REML	0.286	$\mathbf{0 . 1 3 0}$	0.115	0.119
SSL-B $(1, p)$	0.090	0.175	0.053	$\mathbf{0 . 0 7 8}$
SSL-B $(1,1)$	0.090	0.222	0.048	0.086
MCP	0.238	0.321	0.091	0.142
SCAD	0.226	0.791	0.199	0.252
ENet	0.096	0.610	$\mathbf{0 . 0 3 1}$	0.310

Table 2: Simulation results for Experiments 3 and 4 for the NBP, HS-HC, HS-REML, SSL- $\mathcal{B}(1, p)$, SSL- $\mathcal{B}(1,1), \mathrm{MCP}, \mathrm{SCAD}$, and ENet models, averaged across 100 replications when $n=60, p=100$.

Experiment 3: fairly dense model (40 active predictors)

Method	MSE	FDR	FNR	MP
NBP	$\mathbf{0 . 4 4 8}$	0.251	$\mathbf{0 . 2 4 0}$	$\mathbf{0 . 2 4 6}$
HS-HC	0.535	0.243	0.256	0.254
HS-REML	1.10	$\mathbf{0 . 2 3 3}$	0.338	0.325
SSL-B(1,p)	0.728	0.300	0.270	0.279
SSL-B(1,1)	0.665	0.308	0.260	0.276
MCP	1.31	0.298	0.343	0.344
SCAD	1.21	0.604	0.401	0.440
ENet	0.453	0.423	0.198	0.320
Experiment 4: dense model (60 active predictors)				
Method	MSE	FDR	FNR	MP
NBP	$\mathbf{0 . 7 6 0}$	0.173	0.467	0.344
HS-HC	1.10	0.184	0.495	0.395
HS-REML	1.76	$\mathbf{0 . 1 4 9}$	0.552	0.489
SSL-B $(1, p)$	1.53	0.223	0.506	0.409
SSL-B $(1,1)$	1.40	0.226	0.495	0.395
MCP	1.31	0.298	$\mathbf{0 . 3 4 3}$	0.359
SCAD	2.18	0.430	0.603	0.589
ENet	0.892	0.260	0.426	$\mathbf{0 . 3 3 6}$

Table 3: Simulation results for Experiments 5 and 6 for NBP, HS-HC, HS-REML, SSL$\mathcal{B}(1, p)$, SSL- $\mathcal{B}(1,1)$, MCP, SCAD, and ENet models, averaged across 100 replications.

Experiment 5: $n=100, p=500,8$ active predictors set equal to 5 .

Method	MSE	FDR	FNR	MP
NBP	0.0007	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
HS-HC	$\mathbf{0 . 0 0 0 5}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
HS-REML	$\mathbf{0 . 0 0 0 5}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SSL-B $(1, p)$	$\mathbf{0 . 0 0 0 5}$	0.037	$\mathbf{0}$	0.0007
SSL-B $(1,1)$	0.0008	0.089	$\mathbf{0}$	0.0017
MCP	0.078	0.124	0.0012	0.011
SCAD	0.081	0.984	0.016	0.031
ENet	0.067	0.859	$\mathbf{0}$	0.104

Experiment 6: $n=200, p=400,200$ active predictors set equal to 0.6

Method	MSE	FDR	FNR	MP
NBP	$\mathbf{0 . 0 3 1}$	0.273	0.400	$\mathbf{0 . 3 5 1}$
HS-HC	0.041	0.261	0.423	0.384
HS-REML	0.049	$\mathbf{0 . 2 0 4}$	0.469	0.444
SSL-B $(1, p)$	0.095	0.311	0.462	0.437
SSL-B $(1,1)$	0.093	0.334	0.458	0.433
MCP	0.058	0.213	0.479	0.462
SCAD	0.051	0.488	0.499	0.498
ENet	0.038	0.346	0.362	0.355

Table 4: Results for data analysis of the Bardet-Biedl syndrome (BBS) data set.

Method	Number of Genes Selected	MSPE
NBP	31	0.466
HS-HC	6	0.797
HS-REML	4	0.616
SSL-B $(1, p)$	3	0.594
SSL-B $(1,1)$	3	0.504
MCP	5	0.582
SCAD	5	0.603
ENet	26	$\mathbf{0 . 4 6 2}$

S2 Proofs of Main Theorems

Before proving Theorem 3.1, we restate the main results on posterior consistency from Song and Liang (2017). Proposition S2.1 is a restatement of Theorems A. 1 and A. 2 in Song and Liang (2017).

Proposition S2.1. Consider the linear regression model (3.1) and suppose that conditions (A1)-(A5) hold. Suppose that the prior for $\pi\left(\boldsymbol{\beta}, \sigma^{2}\right)$ is of the form,

$$
\begin{equation*}
\pi\left(\boldsymbol{\beta} \mid \sigma^{2}\right)=\prod_{i=1}^{p}\left[g\left(\beta_{i} / \sigma\right) / \sigma\right], \quad \sigma^{2} \sim \mathcal{I} \mathcal{G}(c, d) \tag{S2.1}
\end{equation*}
$$

Suppose $r_{n}=M \sqrt{s_{n} \log p_{n} / n}$, where $M>0$ is sufficiently large. If the
density $g(\cdot)$ in S2.1 satisfies

$$
\begin{gather*}
1-\int_{-k_{n}}^{k_{n}} g(x) d x \leq p_{n}^{-(1+u)} \tag{S2.2}\\
-\log \left(\inf _{x \in\left[-E_{n}, E_{n}\right]} g(x)\right)=O\left(\log p_{n}\right),
\end{gather*}
$$

where $u>0$ is a constant and $k_{n} \asymp \sqrt{s_{n} \log p_{n} / n} / p_{n}$, then the following results hold:

$$
\begin{aligned}
& \operatorname{Pr}_{\boldsymbol{\beta}_{0}}\left(\Pi\left(\boldsymbol{\beta}:\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right\|_{2} \geq c_{1} \sigma_{0} r_{n} \mid \boldsymbol{y}_{n}\right) \geq e^{-c_{2} n r_{n}^{2}}\right) \leq e^{-c_{3} n r_{n}^{2}}, \\
& \operatorname{Pr}_{\boldsymbol{\beta}_{0}}\left(\Pi\left(\boldsymbol{\beta}:\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right\|_{1} \geq c_{1} \sigma_{0} \sqrt{s_{n}} r_{n} \mid \boldsymbol{y}_{n}\right) \geq e^{-c_{2} n r_{n}^{2}}\right) \leq e^{-c_{3} n r_{n}^{2}}, \\
& \operatorname{Pr}_{\boldsymbol{\beta}_{0}}\left(\Pi\left(\boldsymbol{\beta}:\left\|\boldsymbol{X}_{n} \boldsymbol{\beta}-\boldsymbol{X}_{n} \boldsymbol{\beta}_{0}\right\|_{2} \geq c_{0} \sigma_{0} \sqrt{n} r_{n} \mid \boldsymbol{y}_{n}\right)<1-e^{-c_{2} n r_{n}^{2}}\right) \leq e^{-c_{3} n r_{n}^{2}} \\
& \operatorname{Pr}_{\boldsymbol{\beta}_{0}}\left(\Pi\left(\boldsymbol{\beta}: \text { at least } \widetilde{q}_{n} \text { entries of }|\boldsymbol{\beta} / \sigma| \text { are larger than } k_{n} \mid \boldsymbol{y}_{n}\right)>e^{-c_{2} n r_{n}^{2}}\right)
\end{aligned}
$$

$$
\leq e^{-c_{3} n r_{n}^{2}}
$$

for some constants $c_{0}, c_{1}, c_{2}, c_{3}>0$, and $\widetilde{q}_{n} \asymp s_{n}$.

Before proving Theorem 3.1, we also prove the following two lemmas.

Lemma S2.1. Suppose that $a_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $b \in(1, \infty)$ as $n \rightarrow \infty$.
Then

$$
\begin{equation*}
\frac{\Gamma\left(a_{n}+b\right)}{\Gamma\left(a_{n}\right) \Gamma(b)} \asymp a_{n} . \tag{S2.3}
\end{equation*}
$$

Proof of Lemma S2.1. Rewrite S2.3) as

$$
\begin{align*}
\frac{\Gamma\left(a_{n}+b\right)}{\Gamma\left(a_{n}\right) \Gamma(b)} & =\frac{a_{n} \Gamma\left(a_{n}+b+1\right)}{\left(a_{n}+b\right) \Gamma\left(a_{n}+1\right) \Gamma(b)} \\
& =\frac{a_{n}}{a_{n}+b}\left(\frac{1}{\int_{0}^{1} u^{a_{n}}(1-u)^{b-1} d u}\right) \tag{S2.4}
\end{align*}
$$

We have the following inequalities:

$$
\begin{equation*}
\int_{0}^{1} u^{a_{n}}(1-u)^{b-1} d u \leq \int_{0}^{1}(1-u)^{b-1} d u=b^{-1} \tag{S2.5}
\end{equation*}
$$

and

$$
\begin{align*}
\int_{0}^{1} u^{a_{n}}(1-u)^{b-1} d u & \geq \int_{1 / 2}^{1} u^{a_{n}}(1-u)^{b-1} d u \\
& \geq 2^{-a_{n}} \int_{1 / 2}^{1}(1-u)^{b-1} d u \\
& =2^{-a_{n}} 2^{-b} b^{-1} \tag{S2.6}
\end{align*}
$$

Thus, from (S2.4)-(S2.6), we have

$$
\begin{equation*}
\frac{a_{n} b}{a_{n}+b} \leq \frac{\Gamma\left(a_{n}+b\right)}{\Gamma\left(a_{n}\right) \Gamma(b)} \leq \frac{a_{n} 2^{a_{n}+b} b}{a_{n}+b} \tag{S2.7}
\end{equation*}
$$

Since $a_{n} \rightarrow 0$ as $n \rightarrow \infty$, we have $b /\left(a_{n}+b\right) \sim 1$ and $2^{a_{n}+b} b /\left(a_{n}+b\right) \sim 2^{b}$, and thus, from S2.7), we have $\Gamma\left(a_{n}+b\right) / \Gamma\left(a_{n}\right) \Gamma(b) \asymp a_{n}$ as $n \rightarrow \infty$.

Lemma S2.2. Let $b>1$. Then for any $a>0, \beta^{\prime}(a, b)$ is stochastically dominated by $\beta^{\prime}(a, 1)$.

Proof of Lemma S2.2. Let $f(x \mid a, b)$ denote the probability density function (pdf) for the beta prime density, $\beta^{\prime}(a, b)$. We have

$$
\frac{f(x \mid a, 1)}{f(x \mid a, b)} \propto \frac{x^{a-1}(1+x)^{-a-1}}{x^{a-1}(1+x)^{-a-b}}=(1+x)^{b-1}
$$

which is increasing in x due to our assumption that $b>1$. Hence, by the monotone likelihood ratio property, $\beta^{\prime}(a, b)$ is stochastically dominated by $\beta^{\prime}(a, 1)$ for any $b>1$.

Proof of Theorem 3.1. By Proposition S2.1, it is sufficient to verify that the NBP prior for each coefficient $\pi\left(\beta_{i}\right), i=1, \ldots, p_{n}$, satisfies the two conditions S2.2). We first verify the first condition. Let $g(\cdot)$ be the marginal pdf of $\pi(\beta)$ for a single coefficient β. The pdf $g(x)$ under the NBP prior is

$$
\begin{equation*}
g(x)=\frac{\Gamma\left(a_{n}+b\right)}{(2 \pi)^{1 / 2} \Gamma\left(a_{n}\right) \Gamma(b)} \int_{0}^{\infty} \exp \left(-\frac{x^{2}}{2 \omega^{2}}\right)\left(\omega^{2}\right)^{a_{n}-3 / 2}\left(1+\omega^{2}\right)^{-a_{n}-b} d \omega^{2} \tag{S2.8}
\end{equation*}
$$

By the symmetry of $g(x)$ and Fubini's Theorem, we have from S2.8) that

$$
\begin{align*}
& 1-\int_{-k_{n}}^{k_{n}} g(x) d x=2 \int_{k_{n}}^{\infty} g(x) d x \\
& \quad=\frac{2 \Gamma\left(a_{n}+b\right)}{(2 \pi)^{1 / 2} \Gamma\left(a_{n}\right) \Gamma(b)} \int_{k_{n}}^{\infty} \int_{0}^{\infty} \exp \left(-\frac{x^{2}}{2 \omega^{2}}\right)\left(\omega^{2}\right)^{a_{n}-3 / 2}\left(1+\omega^{2}\right)^{-a_{n}-b} d \omega^{2} d x \\
& \quad=\frac{\Gamma\left(a_{n}+b\right)}{\Gamma\left(a_{n}\right) \Gamma(b)} \int_{0}^{\infty}\left(\omega^{2}\right)^{a_{n}-1}\left(1+\omega^{2}\right)^{-a_{n}-b}\left[2 \int_{k_{n}}^{\infty}\left(2 \pi \omega^{2}\right)^{-1 / 2} \exp \left(-\frac{x^{2}}{2 \omega^{2}}\right) d x\right] d \omega^{2} \tag{S2.9}
\end{align*}
$$

Letting $X \sim \mathcal{N}\left(0, \omega^{2}\right)$, we see the inner integral in $\operatorname{S2.9}$ is $\operatorname{Pr}\left(|X| \geq k_{n}\right)$. We use the tail bound, $\operatorname{Pr}\left(|X| \geq k_{n}\right) \leq 2 e^{-k_{n}^{2} / 2 \omega^{2}}$, to further bound S2.9) from above as

$$
\begin{align*}
2 \int_{k_{n}}^{\infty} g(x) d x & \leq \frac{2 \Gamma\left(a_{n}+b\right)}{\Gamma\left(a_{n}\right) \Gamma(b)} \int_{0}^{\infty}\left(\omega^{2}\right)^{a_{n}-1}\left(1+\omega^{2}\right)^{-a_{n}-b} e^{-k_{n}^{2} / 2 \omega^{2}} d \omega^{2} \\
& \leq 2 a_{n} \int_{0}^{\infty}\left(\omega^{2}\right)^{a_{n}-1}\left(1+\omega^{2}\right)^{-a_{n}-1} e^{-k_{n}^{2} / 2 \omega^{2}} d \omega^{2} \\
& =2 a_{n} \int_{0}^{\infty}(1+u)^{-a_{n}-1} e^{-u\left(k_{n}^{2} / 2\right)} d u \\
& \leq 2 a_{n} \int_{0}^{\infty} e^{-u\left(k_{n}^{2} / 2\right)} d u \\
& =\frac{4 a_{n}}{k_{n}^{2}} \\
& \lesssim p_{n}^{-(1+u)} \tag{S2.10}
\end{align*}
$$

where we used the fact that $b \in(1, \infty)$ and Lemma S2.2 in the second inequality, a transformation of variables $u=1 / \omega^{2}$ in the first equality, and the fact that $a_{n} \lesssim k_{n}^{2} p_{n}^{-(1+u)}$ for the final inequality of the above display. Thus, combining $(\overline{\mathrm{S} 2.9})-(\sqrt{\mathrm{S} 2.10)}$ shows that the first condition in $(\mathrm{S} 2.2)$ holds.

We now show that the second condition of (S2.2) also holds under our assumptions on $\left(a_{n}, b\right)$ and our assumption on the rate of growth on E_{n} in (A5). With a change of variables, $z=x^{2} / 2 \omega^{2}$, in (S2.8), we can rewrite the marginal pdf of the NBP prior, $g(x)$, as

$$
\begin{equation*}
g(x)=\frac{\Gamma\left(a_{n}+b\right)}{2^{1-b} \pi^{1 / 2} \Gamma\left(a_{n}\right) \Gamma(b)}\left(x^{2}\right)^{a_{n}-1 / 2} \int_{0}^{\infty} e^{-z} z^{b-1 / 2}\left(x^{2}+2 z\right)^{-a_{n}-b} d z \tag{S2.11}
\end{equation*}
$$

By the symmetry of $g(x)$, the infimum of $g(x)$ on the interval $\left[-E_{n}, E_{n}\right]$
occurs at either $-E_{n}$ or E_{n}. From (S2.3) in Lemma S2.1, (S2.11), and the assumptions that E_{n} is nondecreasing and $b \in(1, \infty)$, we have

$$
\begin{align*}
\inf _{x \in\left[-E_{n}, E_{n}\right]} g(x) & \gtrsim a_{n}\left(E_{n}^{2}\right)^{a_{n}-1 / 2} \int_{0}^{\infty} e^{-z} z^{b-1 / 2}\left(E_{n}^{2}+2 z\right)^{-a_{n}-b} d z \\
& =a_{n}\left(E_{n}^{2}\right)^{a_{n}-1 / 2} \int_{0}^{\infty} e^{-z}\left(\frac{z}{E_{n}^{2}+2 z}\right)^{b-1 / 2}\left(\frac{1}{E_{n}^{2}+2 z}\right)^{a_{n}+1 / 2} d z \\
& \geq a_{n}\left(E_{n}^{2}\right)^{a_{n}-1 / 2} \int_{1}^{2} e^{-z}\left(\frac{z}{E_{n}^{2}+2 z}\right)^{b-1 / 2}\left(\frac{1}{E_{n}^{2}+2 z}\right)^{a_{n}+1 / 2} d z \\
& \gtrsim a_{n}\left(E_{n}^{2}\right)^{a_{n}-1 / 2}\left(E_{n}^{2}+2\right)^{-b+1 / 2}\left(E_{n}^{2}+4\right)^{-a_{n}-1 / 2} \\
& \asymp a_{n}\left(E_{n}^{2}\right)^{-b-1 / 2} \tag{S2.12}
\end{align*}
$$

By assumption, $a_{n} \lesssim k_{n}^{2} p_{n}^{-(1+u)}$ for some $u>0$, and $\log \left(E_{n}\right)=O\left(\log p_{n}\right)$. Therefore, it follows from (S2.12) that

$$
\begin{align*}
-\log \left(\inf _{x \in\left[-E_{n}, E_{n}\right]} g(x)\right) & \lesssim-\log \left(k_{n}^{2} p_{n}^{-(1+u)}\right)+(b+1 / 2) \log p_{n} \\
& \lesssim-\log \left(p_{n}^{-(3+u)}\right)+(b+1 / 2) \log p_{n} \\
& \lesssim \log p_{n} \tag{S2.13}
\end{align*}
$$

where we used the fact that $k_{n} \asymp \sqrt{s_{n} \log p_{n} / n} / p_{n}$ and Assumption (A4) that $s_{n}=o\left(n / \log p_{n}\right)$, and so $k_{n} \lesssim p_{n}^{-1}$. Thus, the second condition in (S2.2) also holds.

We have shown that as long as $a_{n} \lesssim k_{n}^{2} p_{n}^{-(1+u)}, u>0, b \in(1, \infty)$, and $\log \left(E_{n}\right)=O\left(\log p_{n}\right)$ in Assumption (A5), the two conditions S2.2) in Proposition S2.1 are satisfied. Hence, Theorem 3.1 has been proven.

Proof of Theorem 4.1. At the k th iteration of the EM algorithm, the (a, b) that solves (4.4) is

$$
\begin{align*}
\psi(a) & =\frac{1}{p} \sum_{i=1}^{p} U_{i}\left(\lambda_{i}^{2}\right), \quad a \geq 0 \tag{S2.14}\\
\psi(b) & =-\frac{1}{p} \sum_{i=1}^{p}, V_{i}\left(\xi_{i}^{2}\right), \quad b \geq 0
\end{align*}
$$

where $U_{i}\left(\lambda_{i}^{2}\right)$ is an estimate of $\mathbb{E}_{a^{(k-1)}}\left[\log \left(\lambda_{i}^{2}\right) \mid \boldsymbol{y}\right]$ and $V_{i}\left(\xi_{i}^{2}\right)$ is an estimate of $\mathbb{E}_{b^{(k-1)}}\left[\log \left(\xi_{i}^{2}\right) \mid \boldsymbol{y}\right]$ taken from either the Gibbs sampler or the MFVB coordinate ascent algorithm. Since the λ_{i} 's and ξ_{i} 's, $i=1, \ldots, p$, are strictly greater than zero and are drawn from $\mathcal{G I G}$ and $\mathcal{I G}$ densities in the Gibbs sampling algorithm or the MFVB algorithm (and thus, expectations of $\log \left(\lambda_{i}^{2}\right)$ and $\log \left(\xi_{i}^{2}\right), i=1, \ldots, p$, are well-defined and finite), U_{i} and V_{i}, $i=1, \ldots, p$, exist and are finite.

The digamma function $\psi(x)$ is continuous and monotonically increasing for all $x \in(0, \infty)$, with a range of $(-\infty, \infty)$ on the domain of positive reals. Therefore, for any $y \in \mathbb{R}$, there exists a unique $x \in(0, \infty)$ so that $\psi(x)=y$. Since we impose the constraint that $a \geq 0$, there must be a unique $\widehat{a}^{(k)}>0$ that solves the first equation in S2.14. Similarly, there exists a unique $\widehat{b}^{(k)}>0$ that solves the second equation in S2.14.

S3 Details for the Monte Carlo EM and Variational EM Algorithms for the Self-Adaptive NBP Model

S3.1 Monte Carlo EM Algorithm

After initializing $\left(\boldsymbol{\beta}, \lambda_{1}, \ldots, \lambda_{p}, \xi_{1}, \ldots, \xi_{p}, \sigma^{2}\right)$, we iteratively cycle through sampling from the full conditional densities in (5.1). To speed up computation, the λ_{i} 's and ξ_{i} 's, $i=1, \ldots, p$, are block-updated in parallel, and we utilize the fast sampling algorithm of Bhattacharya et al. (2016) to sample from the full conditional for $\boldsymbol{\beta}$ in $O\left(n^{2} p\right)$ time.

As described in Section 5.1, we incorporate the EM algorithm for obtaining the MML estimates of (a, b) by solving for (a, b) in (4.4) every $M=$ 100 iterations of the Gibbs sampler. To assess convergence, we compute the square of the Euclidean distance between $\left(\widehat{a}^{(k-1)}, \widehat{b}^{(k-1)}\right)$ and ($\left.\widehat{a}^{(k)}, \widehat{b}^{(k)}\right)$ at the k th iteration of the EM Monte Carlo algorithm, and if it falls below a small $\delta>0$, then we set our MML estimates as $(\widehat{a}, \widehat{b})=\left(\widehat{a}^{(k)}, \widehat{b}^{(k)}\right)$ and draw a final sample from the Gibbs sampler.

We recommend setting $\delta=10^{-6}$. If the square of the ℓ_{2} distance has not fallen below δ after 100 iterations (so 10,000 total iterations of the Gibbs sampler have been sampled at this point), then we terminate the EM algorithm and use the estimate from the 100th iteration as $(\widehat{a}, \widehat{b})$. In
our experience, even if the square of the ℓ_{2} distance between $\left(\widehat{a}^{(k-1)}, \widehat{b}^{(k-1)}\right)$ and $\left(\widehat{a}^{(k)}, \widehat{b}^{(k)}\right)$ does not quite fall underneath the small $\delta>0$ after $k=100$ updates, the successive iterates are still very close to one another at this point. Thus, all these later estimates of (a, b) would have a similar effect on posterior inference. Algorithm 1 at the end of Section S2 gives the complete steps for implementing the EM/Gibbs algorithm for our model.

S3.2 Variational EM Algorithm

Let $\boldsymbol{\lambda}=\left(\lambda_{1}^{2}, \ldots, \lambda_{p}^{2}\right)$ and $\boldsymbol{\xi}=\left(\xi_{1}^{2}, \ldots, \xi_{p}^{2}\right)$ from (5.1). The mean field variational Bayes (MFVB) approach stems from the following lower bound:

$$
\begin{align*}
\log \pi(\boldsymbol{y}) & \geq \int_{\left(\boldsymbol{\beta}, \boldsymbol{\lambda}, \boldsymbol{\xi}, \sigma^{2}\right)} q\left(\boldsymbol{\beta}, \boldsymbol{\lambda}, \boldsymbol{\xi}, \sigma^{2}\right) \log \left(\frac{\pi\left(\boldsymbol{y}, \boldsymbol{\beta}, \boldsymbol{\lambda}, \boldsymbol{\xi}, \sigma^{2}, \boldsymbol{\gamma}\right)}{q\left(\boldsymbol{\beta}, \boldsymbol{\lambda}, \boldsymbol{\xi}, \sigma^{2}\right)}\right) d\left(\boldsymbol{\beta}, \boldsymbol{\lambda}, \boldsymbol{\xi}, \sigma^{2}\right) \\
& \equiv \mathcal{L}[q(\cdot)] \tag{S3.1}
\end{align*}
$$

where $\mathcal{L}[q(\cdot)]$ is known as the evidence lower bound (ELBO). We constrain $q\left(\boldsymbol{\beta}, \boldsymbol{\lambda}, \boldsymbol{\xi}, \sigma^{2}\right)=q_{1}^{*}(\boldsymbol{\beta}) q_{2}^{*}(\boldsymbol{\lambda}) q_{3}^{*}(\boldsymbol{\xi}) q_{4}^{*}\left(\sigma^{2}\right)$ and the $q_{i}{ }^{\prime} \mathrm{s}, i=1, \ldots, 4$, to be families that ensure that $(\overline{\mathrm{S} 3.1)}$ is tractable. This is also known as mean field variational Bayes (MFVB). The parameters in $q_{1}^{*}, q_{2}^{*}, q_{3}^{*}$, and q_{4}^{*} are found by maximizing (S3.1), which is equivalent to minimizing the Kullback-Leibler (KL) distance between $\pi\left(\boldsymbol{\beta}, \boldsymbol{\lambda}, \boldsymbol{\xi}, \sigma^{2} \mid \boldsymbol{y}\right)$ and $q\left(\boldsymbol{\beta}, \boldsymbol{\lambda}, \boldsymbol{\xi}, \sigma^{2}\right) . \pi(\boldsymbol{\beta} \mid \boldsymbol{y})$ can be approximated by $q_{1}^{*}(\boldsymbol{\beta})$ and posterior inference can be carried out through $q_{1}^{*}(\boldsymbol{\beta})$. For a detailed review of variational inference, see Blei et al. (2017).

Based on the conditional densities in (5.1), we use the approximation,

$$
q\left(\boldsymbol{\beta}, \boldsymbol{\lambda}, \boldsymbol{\xi}, \sigma^{2} \mid \boldsymbol{y}\right) \approx q_{1}^{*}(\boldsymbol{\beta}) q_{2}^{*}(\boldsymbol{\lambda}), q_{3}^{*}(\boldsymbol{\xi}) q_{4}^{*}\left(\sigma^{2}\right)
$$

where

$$
\begin{aligned}
& q_{1}^{*}(\boldsymbol{\beta}) \sim \mathcal{N}_{p}\left(\boldsymbol{\beta}^{*}, \boldsymbol{\Sigma}^{*}\right), \\
& q_{2}^{*}(\boldsymbol{\lambda}) \sim \prod_{i=1}^{p} \mathcal{G} \mathcal{I} \mathcal{G}\left(k_{i}^{*}, l^{*}, m^{*}\right), \\
& q_{3}^{*}(\boldsymbol{\xi}) \sim \prod_{i=1}^{p} \mathcal{I} \mathcal{G}\left(u^{*}, v_{i}^{*}\right), \\
& q_{4}^{*}\left(\sigma^{2}\right) \sim \mathcal{I} \mathcal{G}\left(c^{*}, d^{*}\right)
\end{aligned}
$$

and

$$
\begin{gather*}
\boldsymbol{\beta}^{*}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}+\boldsymbol{D}^{*}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}, \quad \boldsymbol{\Sigma}^{*}=\mathbb{E}_{q_{4}^{*}}\left(\sigma^{2}\right)\left(\boldsymbol{X}^{\top} \boldsymbol{X}+\boldsymbol{D}^{*}\right)^{-1}, \\
\boldsymbol{D}^{*}=\operatorname{diag}\left(\mathbb{E}_{q_{2}^{*}}\left(\lambda_{1}^{-2}\right) \mathbb{E}_{q_{3}^{*}}\left(\xi_{1}^{-2}\right), \ldots, \mathbb{E}_{q_{2}^{*}}\left(\lambda_{p}^{-2}\right) \mathbb{E}_{q_{3}^{*}}\left(\xi_{p}^{-2}\right)\right), \\
k_{i}=\mathbb{E}_{q_{1}^{*}}\left(\beta_{i}^{2}\right) \mathbb{E}_{q_{4}^{*}}\left(\sigma^{-2}\right) \mathbb{E}_{q_{3}^{*}}\left(\xi_{i}^{-2}\right), i=1, \ldots, p, \quad l^{*}=2, \quad m^{*}=a-\frac{1}{2}, \\
u^{*}=b+\frac{1}{2}, \quad v_{i}^{*}=\frac{1}{2} \mathbb{E}_{q_{1}^{*}}\left(\beta_{i}^{2}\right) \mathbb{E}_{q_{4}^{*}}\left(\sigma^{-2}\right) \mathbb{E}_{q_{2}^{*}}\left(\lambda_{i}^{-2}\right)+1, i=1, \ldots, p, \\
c^{*}=\frac{n+p+2 c}{2}, \quad d^{*}=\frac{\mathbb{E}_{q_{1}^{*}}\left(\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}\|_{2}^{2}\right)+\mathbb{E}_{q}\left(\boldsymbol{\beta}^{\top} \boldsymbol{D}^{*} \boldsymbol{\beta}\right)+2 d}{2} . \tag{S3.2}
\end{gather*}
$$

From (5.3) and (S3.2), we can easily construct our coordinate ascent updates. The expectations, $\mathbb{E}_{q_{2}^{*}}\left(\lambda_{i}^{-2}\right), \mathbb{E}_{q_{3}^{*}}\left(\xi_{i}^{-2}\right), \mathbb{E}_{q_{4}^{*}}\left(\sigma^{2}\right)$, and $\mathbb{E}_{q_{4}^{*}}\left(\sigma^{-2}\right)$ can be computed using properties of the $\mathcal{G I \mathcal { G }}$ and $\mathcal{I \mathcal { G }}$ densities. We also have

$$
\begin{aligned}
& \mathbb{E}_{q_{1}^{*}}\left(\beta_{i}^{2}\right)=\left(\beta_{i}^{*}\right)^{2}+\boldsymbol{\Sigma}_{i i}^{*} \\
& \mathbb{E}_{q_{1}^{*}}\left(\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}\|_{2}^{2}\right)=\left\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}^{*}\right\|_{2}^{2}+\operatorname{tr}\left(\boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{\Sigma}^{*}\right) \\
& \mathbb{E}_{q}\left(\boldsymbol{\beta}^{\top} \boldsymbol{D}^{*} \boldsymbol{\beta}\right)=\sum_{i=1}^{p}\left(\beta_{i}^{*}\right)^{2} \mathbb{E}_{q_{2}^{*}}\left(\lambda_{i}^{-2}\right) \mathbb{E}_{q_{3}^{*}}\left(\xi_{i}^{-2}\right)+\operatorname{tr}\left(\boldsymbol{D}^{*} \boldsymbol{\Sigma}^{*}\right)
\end{aligned}
$$

At each iteration, we compute the evidence lower bound (ELBO),

$$
\begin{equation*}
\mathcal{L}=\mathbb{E}_{q} \log f\left(\boldsymbol{y}, \boldsymbol{\beta}, \boldsymbol{\lambda}, \boldsymbol{\xi}, \sigma^{2}\right)-\mathbb{E}_{q} \log q\left(\boldsymbol{\beta}, \boldsymbol{\lambda}, \boldsymbol{\xi}, \sigma^{2}\right) \tag{S3.3}
\end{equation*}
$$

where f is the joint density over \boldsymbol{y} and all parameters. In particular, S3.3) can be derived as

$$
\begin{align*}
\mathcal{L}= & \mathbb{E}_{q} \log f\left(\boldsymbol{y} \mid \boldsymbol{\beta}, \sigma^{2}\right)+\mathbb{E}_{q} \log \left(\boldsymbol{\beta} \mid \boldsymbol{\lambda}, \boldsymbol{\xi}, \sigma^{2}\right)+\mathbb{E}_{q} \log \pi(\boldsymbol{\xi})+\mathbb{E}_{q} \log \pi(\boldsymbol{\xi}) \\
& +\mathbb{E}_{q} \log \pi\left(\sigma^{2}\right)-\mathbb{E}_{q} \log q_{1}^{*}(\boldsymbol{\beta})-\mathbb{E}_{q} \log q_{2}^{*}(\boldsymbol{\lambda})-\mathbb{E}_{q} \log q_{3}^{*}(\boldsymbol{\xi})-\mathbb{E}_{q} \log q_{4}^{*}\left(\sigma^{2}\right) \\
= & -\frac{n}{2} \log (2 \pi)+\frac{p}{2}+p \log 2+p \log \Gamma\left(u^{*}\right)-p \log \Gamma(a)-p \log \Gamma(b) \\
& +c \log d-c^{*} \log d^{*}+\log \Gamma\left(c^{*}\right)-\log \Gamma(c)+\frac{1}{2} \log \left|\boldsymbol{\Sigma}^{*}\right| \\
& -\sum_{i=1}^{p} \log \left[\frac{\left(k_{i}^{*} / l^{*}\right)^{m^{*} / 2}}{K_{m^{*}}\left(\sqrt{k_{i}^{*} l^{*}}\right)}\right]-u^{*} \sum_{i=1}^{p} \log v_{i}^{*}+\sum_{i=1}^{p}\left(\frac{k_{i}^{*}}{2}-1\right) \mathbb{E}_{q_{2}^{*}}\left(\lambda_{i}^{2}\right) \\
& +\sum_{i=1}^{p}\left(v_{i}^{*}-1\right) \mathbb{E}_{q_{3}^{*}}\left(\xi_{i}^{-2}\right)+\frac{l^{*}}{2} \sum_{i=1}^{p} \mathbb{E}_{q_{2}^{*}}\left(\lambda_{i}^{-2}\right), \tag{S3.4}
\end{align*}
$$

where $K_{\nu}(\cdot)$ denotes the modified Bessel function of the second kind.
In each step of our algorithm, we compute the ELBO (S3.3). Convergence is assessed by computing the absolute difference, dif $=\left|\mathcal{L}^{(t)}-\mathcal{L}^{(t-1)}\right|$, at each iteration, and terminating the algorithm if dif $<\delta$, for some small tolerance $\delta>0$. We run the MFVB algorithm until convergence or until a maximum of 1000 iterations have been reached.

To incorporate the EM algorithm for computing hyperparameters (a, b) into the MFVB scheme, we solve for (a, b) in (4.4) in every iteration of coordinate ascent algorithm, using $\mathbb{E}_{q_{2}^{*(t-1)}, a^{(t-1)}}\left[\log \left(\lambda_{i}^{2}\right)\right]$ and $\mathbb{E}_{q_{3}^{*(t-1)}, b^{(t-1)}}\left[\log \left(\xi_{i}^{2}\right)\right]$
in place of the summands in (4.4) at the t th iteration:

$$
\begin{align*}
& \mathbb{E}_{q_{2}^{*(t-1)}, a^{(t-1)}}\left[\log \left(\lambda_{i}^{2}\right)\right]=\log \left(\frac{\sqrt{k_{i}^{*(t-1)}}}{\sqrt{l^{*}}}\right)+\frac{\partial}{\partial m^{*(t-1)}} \log \left[K_{m^{*(t-1)}}\left(\sqrt{k_{i}^{*(t-1)} l^{*}}\right)\right], \\
& \mathbb{E}_{q_{3}^{*(t-1)}, b^{(t-1)}}\left[\log \left(\xi_{i}^{2}\right)\right]=\log \left(v_{i}^{*(t-1)}\right)-\psi\left(u^{*(t-1)}\right), \tag{S3.5}
\end{align*}
$$

where $K_{\nu}(\cdot)$ denotes the modified Bessel function of the second kind, and $a^{(* t-1)}, b_{i}^{*(t-1)}, k_{i}^{*(t-1)}, l^{*}$, and $m^{*(t-1)}$ are taken from the $(t-1)$ st iteration and defined in (S3.2). Numerical differentiation is used to evaluate the derivative in the first equation of (S3.5). Algorithm 2 at the end of Appendix S 2 provides the complete steps for implementing the variational EM algorithm for the self-adaptive NBP model. Note that Step 9 in Algorithm 2 involves computing the inverse of a $p \times p$ matrix, $\boldsymbol{\Phi}^{*(t)}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}+\boldsymbol{D}^{*(t)}\right)^{-1}$. Since $\boldsymbol{D}^{*(t)}$ is a diagonal matrix, the computational cost can be substantially reduced when $p \gg n$ by invoking the Sherman-Morrison-Woodbury formula, i.e.

$$
\boldsymbol{\Phi}^{*(t)} \leftarrow\left(\boldsymbol{D}^{*(t)}\right)^{-1}-\left(\boldsymbol{D}^{*(t)}\right)^{-1} \boldsymbol{X}^{\top}\left(\boldsymbol{I}_{n}+\boldsymbol{X}\left(\boldsymbol{D}^{*(t)}\right)^{-1} \boldsymbol{X}^{\top}\right)^{-1} \boldsymbol{X}\left(\boldsymbol{D}^{*(t)}\right)^{-1}
$$

which only involves inverting an $n \times n$ matrix, rather than $p \times p$ one. In steps 12-14 of Algorithm 2, we can also update $\left(k_{i}^{*(t)}, v_{i}^{*(t)}\right), i=1, \ldots, p$, simultaneously in parallel to save on computing time.

```
Algorithm 1 Monte Carlo EM algorithm for the self-adaptive NBP
    Initialize:
    \(a^{(0)}=b^{(0)}=0.01, c=d=10^{-5}, \max =100, M=100, J=20000\),
    \(\delta=10^{-6}\), dif \(=1\), and \(k=0\).
    Initialize \(\boldsymbol{\beta}^{(0)}, \sigma^{2(0)}, \lambda_{i}^{2(0)}, \xi_{i}^{2(0)}, i=1, \ldots, p\).
    for \(t=1\) to \(J\) do
        \(\boldsymbol{D}^{(t)} \leftarrow \operatorname{diag}\left(\lambda_{1}^{2(t-1)} \xi_{1}^{2(t-1)}, \ldots, \lambda_{p}^{2(t-1)} \xi_{p}^{2(t-1)}\right)\)
        Draw \(\boldsymbol{\beta}^{(t)} \sim \mathcal{N}_{p}\left(\left(\boldsymbol{X}^{\top} \boldsymbol{X}+\left(\boldsymbol{D}^{(t)}\right)^{-1}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}, \sigma^{2(t-1)}\left(\boldsymbol{X}^{\top} \boldsymbol{X}+\left(\boldsymbol{D}^{(t)}\right)^{-1}\right)^{-1}\right)\)
        for \(i=1\) to \(p\) do
            Draw \(\lambda_{i}^{2(t)} \sim \mathcal{I G}\left(a^{(k)}+\frac{1}{2}, \frac{\left(\beta_{i}^{(t)}\right)^{2}}{2 \sigma^{2(t-1)} \xi_{i}^{2(t-1)}}+1\right)\)
            Draw \(\xi_{i}^{2(t)} \sim \mathcal{G I \mathcal { G }}\left(\frac{\left(\beta_{i}^{(t)}\right)^{2}}{\sigma^{2(t-1)} \lambda_{i}^{2(t)}}, 2, b^{(k)}-\frac{1}{2}\right)\)
        end for
        Draw \(\sigma^{2(t)} \sim \mathcal{I} \mathcal{G}\left(\frac{n+p+2 c}{2}, \frac{\|\boldsymbol{y}-\| \boldsymbol{X} \boldsymbol{\beta}^{(t)} \|_{2}^{2}+\left(\boldsymbol{\beta}^{(t)}\right)^{\top}\left(\boldsymbol{D}^{(t)}\right)^{-1} \boldsymbol{\beta}^{(t)}+2 d}{2}\right)\)
        EM: Update hyperparameters \((a, b)\).
        if \(t \bmod M=0\) and \(k \leq \max\) and dif \(\geq \delta\) then
            \(k \leftarrow k+1\)
            low \(\leftarrow t-M+1\)
            high \(\leftarrow t\)
            for \(j=1\) to \(p\) do
                    \(U_{j} \leftarrow \frac{1}{M}\left[\ln \left(\lambda_{j}^{2(\text { low })}\right)+\ldots+\ln \left(\xi_{j}^{2(\text { high })}\right)\right]\)
            \(V_{j} \leftarrow \frac{1}{M}\left[\ln \left(\lambda_{j}^{2(\text { low })}\right)+\ldots+\ln \left(\xi_{j}^{2(\text { high })}\right)\right]\)
            end for
            Solve for \(a\) in \(-p \psi(a)-\sum_{j=1}^{p} U_{j}=0\)
            \(a^{(k)} \leftarrow a\)
            Solve for \(b\) in \(-p \psi(b)+\sum_{j=1}^{p} V_{j}=0\)
            \(b^{(k)} \leftarrow b\)
            \(\operatorname{dif} \leftarrow\left(a^{(k)}-a^{(k-1)}\right)^{2}+\left(b^{(k)}-b^{(k-1)}\right)^{2}\)
        end if
    end for
```

```
Algorithm 2 Variational EM algorithm for the self-adaptive NBP model
    : Initialize:
    \(l^{*}=2, c^{*}=\frac{n+p+2 c}{2}, a^{(0)}=b^{(0)}=0.01, \delta=10^{-3}, J=1000\), and \(t=1\).
    : Initialize \(d^{*(0)}, k_{i}^{*(0)}, v_{i}^{*(0)}, i=1, \ldots, p\).
    : while \(\left|\mathcal{L}^{(t)}-\mathcal{L}^{(t-1)}\right| \geq \delta\) and \(1 \leq t \leq J\) do
        E-step: Update variational parameters in S3.2.
        Update \(m^{*(t)} \leftarrow a^{(t-1)}-\frac{1}{2}\)
        Update \(u^{*(t)} \leftarrow b^{(t-1)}+\frac{1}{2}\)
        Update \(\boldsymbol{D}^{*(t)} \leftarrow \operatorname{diag}\left(\mathbb{E}_{q_{2}^{*(t-1)}}\left(\lambda_{1}^{-2}\right) \mathbb{E}_{q_{3}^{*(t-1)}}\left(\xi_{1}^{-2}\right), \ldots, \mathbb{E}_{q_{2}^{*(t-1)}}\left(\lambda_{p}^{-2}\right) \mathbb{E}_{q_{3}^{*(t-1)}}\left(\xi_{p}^{-2}\right)\right)\)
        Update \(\boldsymbol{\Phi}^{*(t)} \leftarrow\left(\boldsymbol{X}^{\top} \boldsymbol{X}+\boldsymbol{D}^{*(t)}\right)^{-1}\)
        Update \(\boldsymbol{\Sigma}^{*(t)} \leftarrow \mathbb{E}_{q_{4}^{*(t-1)}}\left(\sigma^{2}\right) \boldsymbol{\Phi}^{*(t)}\)
        Update \(\boldsymbol{\beta}^{*(t)} \leftarrow \boldsymbol{\Phi}^{*(t)} \boldsymbol{X}^{\top} \boldsymbol{y}\)
        for \(i=1\) to \(p\) do
            Update \(k_{i}^{*(t)} \leftarrow \mathbb{E}_{q_{1}^{*(t-1)}}\left(\beta_{i}^{2}\right) \mathbb{E}_{q_{4}^{(t-1)}}\left(\sigma^{-2}\right) \mathbb{E}_{q_{3}^{(t-1)}}\left(\xi_{i}^{-2}\right)\)
            Update \(v_{i}^{*(t)} \leftarrow \frac{1}{2} \mathbb{E}_{q_{1}^{*(t-1)}}\left(\beta_{i}^{2}\right) \mathbb{E}_{q_{4}^{*(t-1)}}\left(\sigma^{-2}\right) \mathbb{E}_{q_{2}^{*(t-1)}}\left(\lambda_{i}^{-2}\right)+1\)
        end for
        Update \(d^{*(t)} \leftarrow \frac{\mathbb{E}_{q_{1}^{*(t-1)}}\left(\left\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}^{2}\right\|_{2}^{2}\right)+\mathbb{E}_{q^{(t-1)}}\left(\boldsymbol{\beta}^{\top} \boldsymbol{D}^{*(t)} \boldsymbol{\beta}\right)+2 d}{2}\)
        M:step: Update hyperparameters \((a, b)\).
        Solve for \(a\) in \(-p \psi(a)+\sum_{i=1}^{p} \mathbb{E}_{q_{2}^{*(t-1)}}\left[\log \left(\lambda_{i}^{2}\right)\right]=0\)
        \(a^{(t)} \leftarrow a\)
        Solve for \(b\) in \(-p \psi(b)-\sum_{i=1}^{p} \mathbb{E}_{q_{3}^{*(t-1)}}\left[\log \left(\xi_{i}^{2}\right)\right]=0\)
        \(b^{(t)} \leftarrow b\)
        Update \(\mathcal{L}^{(t)}\), as in S3.4.
        \(t \leftarrow t+1\)
    end while
```


Bibliography

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American Statistical Association 112, pp. 859-877.

Bhattacharya, A., Chakraborty, A., and Mallick, B. K. (2016). Fast sampling with gaussian scale mixture priors in high-dimensional regression. Biometrika 103, pp. 985-991.

Song, Q. and Liang, F. (2017). Nearly optimal Bayesian shrinkage for high dimensional regression. arXiv e-prints, 2017. arXiv:1712.08964.

Department of Statistics, University of South Carolina
E-mail: RBAI@mailbox.sc.edu

Department of Statistics, University of Florida

E-mail: ghoshm@ufl.edu

