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Supplementary Material

S1 Proofs

To prove Theorem 1, we begin with the following remark and lemma.

Remark 1. By the fact that A\(0) : =exp(¢(0)) is analytic in the interior
of © (see Theorem 2.7 in Brown (1986)), Cauchy’s integral formula tells
us that all its higher derivatives exist and are continuous. Therefore, the
derivatives 1(t), 1(t), ¥ (t) are continuous in ¢, and 4 (¢),1)(¢) are bounded

on the compact set, which follows by a well-known property that every

real-valued continuous function on a compact set is necessarily bounded.
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Lemma 1. If Assumptions (H.1)-(H.4) and (H.6) hold, then as r — oo

and n — oo, conditionally on F, in probability,

Ix — Jx = Op|, (7’_1/2), (SL.1)
%L*(ﬂ) - %L(ﬁ) = Opiz, (%), (81.2)
%%;LE) = Opiz (r™'1%), (S1.3)

where
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Proof. By the definition of conditional expectation and towering property

of flirtations, it yields that
E(Jx|Fn) = Jx.
For any component j)];m of Jx where 1 < jy,js < p,
E (jjm — Jin|F, )2 (S1.4)
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where the last inequality stems form (H.1) and the last equality holds by
assumptions (H.3) and (H.6). From Chebyshev’s inequality, it is proved
that Equation (S1.1) holds.

To prove Equation (S1.3), let ;(8) = y;u(B7x;) — Y(u(BTx;), t1(8) =

yiu(BTzr) — Y(u(B7x})), then
L*(B) = %Z ﬂ and L(B) = Zti(ﬁ)'

- T,
=1

Under the conditional distribution of the subsample given F,,,

(B2 R ()

=1

Combining the facts that the parameter space is compact and w(t) is con-
tinuous function, by assumption (H.1) we have that u(3” x;) are uniformly

bounded. Then, it can be shown that by Remark 1 that
t:(B)] < lyiu(BTai) — d(u(B i) u(BT@:)| + [ (u(BT2:))u(B 2:) — v (u(B2)))|
< lyi = D (u(BT @) u(B )| + [$(u(B @) u(B 2| + [ (u(B ),



Therefore, we have

(%ZM@) < ZOP )yi — (ﬁTwJ)I)

Lot

> I = (8 @) + O (1)

From Assumptions (H.1), we have supn='>""  #;(8) < co. Thus,

n n

E{L*(IB) L(/B) ]_—n}Q — OPlfn(r_l/Q)' (815)

Now the desired result (S1.2) follows from Chebyshev’s Inequality.

Similarly, we can show that

Var (%%ﬁ) = Op(r ).

Thus (S1.3) is true. O

S1.1 Proof of Theorem 1

Proof. As v — oo, by (S1.5), we have that n='L*(8) — n"'L(8) — 0 in
conditional probability given F,,. Note that the parameter space is compact
and BMLE is the unique global maximum of the continuous convex function
L(B). Thus, from Theorem 5.9 and its remark of van der Vaart (1998), by

(S1.3) we have

18 — BuLel = op|r,(1). (51.6)



as n — 00,7 — o0, conditionally on JF,, in probability.
Using Taylor’s theorem for random variables (see Ferguson, 1996, Chap-
ter 4),
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where Lj(ﬁ) is the partial derivative of L*(8) with respect to f;, and the

remainder
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From (H.1) and Remark 1, we have
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for all B € Ag, where C3 and Cy are some constants according to Remark 1.




As 7 — oo, assumption (H.5) gives,

1 ] ||fI3 ||
Pl — E " > E FE
(m’ — T - nrr

Also note that as 7 — 00,
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where the last equality is due to (H.3) and (H.5) by noting that

n
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Thus we have
O*L;(B)
- = Opy7,(1).
From (H.1)- ) and Remark 1, it is known that
V0L Bk + wo(B — ,BMLE)}UdudU

0BoBT



aQL;{BMLE +uv(B — Bure)}
0B03T

vdudv = Opz,(1).

Combining the above equations with the Taylor’s expansion (S1.7), we

have
B — Bue = —Jx " {@‘FOP}%(HB_BMLEHQ)}. (S1.8)

From Lemma 1 and Assumption (H.4), it is obvious that J¢' = Opjz, (1).

Therefore,

B — B = 0P|fn(7“_1/2) + 0P|Fn<||B - BMLEH))

which implies that B — BMLE = Op‘]:n (T_1/2). ]

S1.2 Proof of Theorem 2

Proof. Note that

/BMLE _ Z {yr — Y (u(Bs; 3)}U<B{4LE:B:>@ = lim (51.9)

n}
It can be seen that given F,,, 1y, ..., n, are i.i.d random variables with mean

0 and variance

T

Z{?Jz %( (ﬁMLEm%))} u (BMLEwZ) ;T . (S1.10)

T

var(n|Fn)

Then from (H.7) with v = 0, we know that var(n;|F,) = Op(1) as n — oo.



Meanwhile, for some v > 0 and every € > 0,

B Pl 1wl > r2e)l Fa)
i=1
1 - 24 1/2
SWZE{HHZH TI([lnill > r7e) | Fa}
(SL.11)
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From (H.7) for some 7 > 0, we obtain

- B 1 1
ZE{HT R PI(me|| > v Pe)| Fa} < — o VOP() Op(1) = op(1),

This shows that the Lindeberg-Feller conditions are satisfied in probability.
From (S1.9) and (S1.10), by the Lindeberg-Feller central limit theorem

(Proposition 2.27 of van der Vaart, 1998), conditionally on F,,

1 —1/2 7%/ _12 :
~VTPL (Bus) = 1/2{Var(m|f /2 n; — N(0, 1),

=1

in distribution. From Lemma 1, (S1.8) and Theorem 1, we have
8- BMLE = —%jglL* (BMLE) + Opy7, (rh). (51.12)
From (S1.1) in Lemma 1, it follows that
Ix' =I5 = =I5 (Ix = T)Ix" = Opiz, (712). (S1.13)
Based on Assumption (H.4) and (S1.10), it can be proved that

1
V= Tx'WVeTx" = 25" (rVe) It = Op(r™),



Thus,

V—l/Q(B o BMLE) _ _V_l/zn_lj)zlL*(BMLE> + Op|]:n(’l“_1/2)
V_I/ZJ)Zln_lL*(,BMLE) -V- 1/2(7 — Jx'n~ L*(,@MLE) + Opy7,(r —/2)

- V71/2j§1%1/2‘/571/2n711;*(BMLE) + OP\]:n (7,71/2).

So the result in (2.4) of Theorem 2 follows by applying Slutsky’s Theorem

(Theorem 6, Section 6 of Ferguson, 1996) and the fact that

V71/2j§1‘/61/2(V71/2\7);1‘/01/2)T _ V71/2j§1%1/2‘/61/2\7);1‘/71/2 — T

S1.3 Proof of Theorem 3

Proof. Note that

tr(V) = tr(Jy VeIx )

n2 Ztr[ {yi — (5MLE332))} jX (B1\T/1LE931)33Z[U(B{KZLE%)%]TJ);I}

_ L { {0 VB PITE Bl

nQr :
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where the last inequality follows from the Cauchy-Schwarz inequality, and

the equality in it holds if and only if

mi o |y — Y(u(Bip@))| T @il I{]y: — & (u(Blse)) || Tx "2l > 0}

Here we define 0/0 = 0, and this is equivalent to removing data points with

lyi — U(u(BLpx:))| = 0 in the expression of V. O

S1.4 Proof of Theorems 5 and 6

Let |Allp == (307, Y7, A%)Y? denote the Frobenius norm. For a given
m X n matrix A and an n X p matrix B, we want to get an approximation
to the product AB. In the following fast Monte Carlo algorithm in Drineas
et al. (2006), we do r independent trials. In each trial we randomly sample
an element of {1,2,---,n} with given discrete distribution P =: {p;} .
Then we extract an m X r matrix C from the columns of A, and extract
an r X n matrix R from the corresponding rows of B. If the P is chosen
appropriately in the sense that C'R is a nice approximation to AB, then
the F-norm matrix concentration inequality in Lemma 2 holds with high

probability.

Lemma 2. (Theorem 2.1 in Drineas et al. (2006)) Let A% be the i-th
row of A € R™" as row vector and B; be the j-th column of B € R"™*?

as column vector. Suppose sampling probabilities {p;}?_1, (> pi = 1) are
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such that
49 |y
>y A [|Bg |

for some B € (0,1]. Construct C' and R with Algorithm 1 in Drineas et al.

pi >

(2006), and assume that € € (0,1/3). Then, with probability at least 1 — ¢,

we have

44/log(1/e)
Bye

Now we prove Theorems 5 and 6 by applying the above Lemma 2.

IAB — CR||f < Al Bl -

Proof. Note the fact that the maximum likelihood estimate BMLE of the

parameter vector 3 satisfy the following estimation equation
X"y - d(uw(X"B))]a(X"B) = 0, (S1.14)

where 1) (u(X7T3)) denotes the n x n diagonal matrix whose i-th element
in its diagonal is ¥ (u(x? B)).
Without of loss of generality, we only show the case with probability

mV

7™V since the proof for w™Ve

is quite similar. Let S be an n X r matrix

whose i-th column is 1/4/rmV

ej,, where e;, € R" denotes the all-zeros
vector except that its j;-th entry is set to one. Here j; denotes the j;-

th data point chosen from the ¢-th independent random subsampling with

probabilities 7™V, Then B satisfies the following equation

XTS5 [y — d(u(XTB))u(XTB) = 0. (S1.15)
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Let || - || denote the Frobenius norm, we have

Oin X7 SSTi( X7 B))|[(u( X7 B)) = (u(X Brn))|
< [ XTSSTa( X B (u(X" )~ d(u(X Byl
< | XTSSTa( X B (u(X"B)) — yllle
+1IXTSSTA(XTB)y — v (u(XT Bywe) )¢
— IX7SS"a(X By ~ Y(u(X" Bus)) s [by (51.15)]
< I XT(XTB)y — (X" Bue))l
+ || XTUXTB) Iy — D (X7 Bue))] - XSS X B)ly — (X" Buwn))]|

< | X"u(XTB)[y — d(w(X" Bure))]l r
N 4R<J§1>ﬁlog<1/e)
< Omax (X) /DI X T B) [y — ¢ (u(X " Bure)) |

N Ak(Ty )\/FIOg(l/E)amaX(X)\/]_OHY'L(XTBM?J — h(u(X T Brwe))]|

4k(Tx )\/Flog(l/e)]amax(X)\/ﬁ”U(XTB)[y — (X T Byl

4k (Jx ")/ log(1/€)
Jr

where the fourth last inequality follows from Lemma 2 by putting A =

11 el (X B) [y — o (w(X T Baaee)]|

<[1+

< Cull + Jomax (X)VD[y — ¥ (w(X" Brs))]|

XTu(X"B), B = (X" B)ly—d(w( X" Bwwp))],C = XS, R = STi( X" B)(y—
Yu(XTBuwr))) and 8 = 1/k(Jx"), and last equality stems from (H.1) and

Remark 1 with Cy = sup |u(r)].
re KCo
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Hence,

1(u(X 7 Bure)) — ¥ (u(XTB))]

4r(T 5 /log(1/€)
[1+ = : ]\/ﬁamaX(X)

VT . .
=Ci amin(u(XTB)XTSST) Iy — (u(X" Buwr))]l|.  (S1.16)

Then by following the facts that
Omin(1( X7 B) XSS X (X" B)) < Ommax (i X7 B) X )orin (0 X" B) XS ST)
and 02, (4(XTB)XT) = 0 (W(XTB) XTSSTXW(XTB)) > 0.502,,(X),
it holds that
Ounin(03(XTB)XTSST) 2 0.507:, (4(XTB)X) /omax (0(XTB)X). (S1.17)
Combing the result (S1.17) with (S1.16), the desired result holds

I (u(XT Buee)) — 9 (u(XTB))l|

< 20,1 4 2evioall/g) Vlji“/e’wﬁ(w%)xmy X Bue)ll. (SLIS)

Now, we turn to prove Theorem 6.

Note that

min |y; — ¢( (Blsz)|laBlusz) Nl _ ol

%Z s — DAL ) Pl Bl ) o Nl s ]

with some 0 < ¢ :=

ay
\/Z |yj ﬂMLE‘L‘])” |u2(,6MLE:B])|
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According to the Weyl inequality, we have

|Oin (0 XTB) X T4(XTB)X) — owin(W(XTB) XSS X0(XTB))]
<[[a(XTB8) XTuXTB)X — u(XTB)XTSSTXu(XTP)|s
<[[a(XTB)lIslI(XTX — XTSSTX)||s|la(XTB)|s

<O (XTX — XTSSTX)||
4+/log(1/€)C? 5

max

SCdél\/logg\(/lf/e)(ﬁ’g 2 (x),

Using the above inequality, if we set
r > 64c3C; log(1/6)0;‘;3}{(X)pQ/(fSZUﬁlin(u(XTB)X))7
it holds that
Cuin (@ XTB)XTSST Xit(XTB)) = 0in (a(XTB) X7 Xi( X" B)
<0.50mim(0(XTB)XT X 0u(XT3)).
Thus the following equation holds with probability at least 1 — e:

Omin (W XTB)XTSSTX0u(XTB)) > 0.502, ((XTB)X).

min
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S1.5 Proof of Theorem 7

For the average weighted log-likelihood in Step 2 of two-step algorithm, we

have
470 * ) * T+7Q *
- LR LS

ﬂ-;k(ﬂo) r+To i gy i=rg+1 T (ﬁ())

0 * r+ro *
:T_o_iz; ti(B) + r % Z t:(B)

= 7 (Bo) T T A= T (Bo)
where 7*(8,) in the first item stands for the initial subsampling strategy
which satisfies (H.5).

For the sake of brevity, we begin with the case with probability 7™V.

Denote the log-likelihood in the first and second steps by

70 T

. 1 <~ t(B) . 1~ t(8)
L~0 = — ~— d L7 = SENE)
) ro;wﬂﬁw wnd 150 T;w:wo)

respectively, where m;(8) = 7" in Ly (B), and it has been calculated in
the two-step algorithm in Section 4.

To proof of Theorem 7, we begin with the following Lemma 3.

Lemma 3. If Assumptions (H.1)-(H.4) holds, then as n — oo, condition-

ally on F,, in probability,

T — Ty = Opir, (r112), (S1.19)

1 aL*Bo (BMLE)

" 0B = Opi7, (r %), (S1.20)
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where

gio_ 1005 Bue) Er:@E(U(B%*i))u(ﬁ%*i)w;"[u(BﬂLEw;")wﬂT

X T aﬁaﬁT T *(Bo)
+n7“ ZZI Uy (BO) .

Proof. Using the same arguments in Lemma 1, we have

E (j)ﬁ?o,hjz . j)j(l]é

22 OP(l){ 0 (B ) (i, i)
‘Fn’ S ~
B) <= ; (o)
{U BMLEwZ Tiji Lijy W( (B;{/{LE%)) - yi]}Z]
" Z n2m;(Bo) '

(S1.21)

Now we substitute expression of Wi(,éo) in the two-step algorithm: 7™V
and 7™Ve. Here we only give the proof of the case ™V, and the proof of

the case #™V° is analogous thus we omit it. For the first terms in (S1.21),

note that opay(Jx ), omin(Jx ) are bounded from Lemma 1 and (H.4), it
implies

zn: OQ(BEALE%)(}?@&UZ)Q

i=1 n?mi(Bo)

o |8, (lys = (B @), 0) | Tx il B o)z
< .
n?max(\yj—wu(ﬁowj )10) |5 (Bl @,
o ||| S max(ly, — b (B2, O)omee (T ) [ i2(BE )2
<

i

1 n 50‘min(s7)z HUQ /ngz)mz

jX Z || % ( IBMLEmZ )| {Z ly; — 50 x;)) || (:30 x;)z;||

n
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S 6||u2<ﬁ§wi>wjn}

- n
Jj=1

o Z I B N

I bl 6%%)%”}
j=1

Z lyi —

J=1

((6 )P | = (B )|
0 szl on

2]

(T D

S Op(l)li

Op(1).

R

— 0|
D
j=1

where the last equality is from (H.3) and (H.5).

For the second terms in (S1.21), we have

n

(iLQ (BIC\F/ILEwi)xijl Lijo [¢(U<B{4Lsz)) -
>

2

yi))

i—1 7127&‘(,30)
~ 20 . ~ 2
- z": W (BieTi)Ti ¢(1j(ﬂl\T/lLsz)) — Yi
i=1 n?d || Ty u(B ;)
3 (s — (B 2)l+0) |75 (B )
7j=1
n \2( 3T . . i 3T ) — .2
< “(jxl)Z[ W (Byrp®:)T: HE;L(BMLE:CZ)) Yi
=1
> (1 = (B z)l+9) || B ),
~ . ~ 2
o || [ B - v
— #(T") Or(1)

no
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A 2 N 4
_ n [ 2( AT . . n T
ot | [ e | e -l
=1 i=1
= Op(1)

where the second last and last equality is from (H.3) and (H.5).

Direct calculation yields
LA . 2 v . - \2
E(j)?odljz . j)j(1]2|fn> _ EBOE<:7£0731J2 . jj](lj2|‘Fn7IBO) _ OP(T_l)

where E5 means that the expectation is taken with respect to the distri-
bution of Bo given F,.
On the other hand, following the same arguments in Lemma 1, we can

have

. { L;,(B)  L(B)

n

2
fnaBO} = OP(Til)‘

2
Then E {n—ng (8) - n‘lL(ﬁ)]}"n} = Op(rY).

0
Similarly, we can see that Var(n_laLgo (Buie)/0B) = Op(r~'). Thus,

the desired result holds. O

Now we prove Theorem 7.
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Proof. Using the same arguments in Lemma 3 , we have

. { 5 B L(B) fn}z o g {LE2<ﬂ>_L<ﬁ>‘fn}2

n n n n

T+ T n n

+2<L>2E{LEO([3) - L(ﬂ)‘fn} — Op(rY).

Therefore E{n~ 1Ltwo P(B)—n" L(B)|Fu}? — 0asrg/r — 0,7 — oo and
*1Lg;° *P(B) — n~'L(B) — 0 in conditional probability given F,. Also
note that the parameter space is compact and BMLE is the unique global

maximum of the continuous convex function L(83). Thus, from Theorem

5.9 and its remark of van der Vaart (1998), we have

18 — Buiiel = opiz, (1)

Using Taylor’s theorem,

two step / 2 3 o 2
0— [30] P(Ig) To ,BOJ(ﬂ) X T LBo,j(/B)

n r—i—ro n r+ 170 n

L% (BMLE) 1 oL (BMLE) o A 1
. r Bo, Bo,
= { ! - + - (‘;ﬂT (B — Bure) + ﬁRﬁo,j

To IBOJ(B)

) n

T+ 719

)

where L%O j(ﬁ) is the partial derivative of L;}O j(,B) with respect to 3;.
By similar argument in the Proof of Theorem 1, the Lagrange remainder

have the rate

vdudv (B — BMLE)

1 . Ul 920 Bure + wv(B — Bure)}
= *(ﬁ - IgMLE)T/ / ! aﬂﬁﬂT



20

= Opi7, (|8 — Brrsl?).

Note that the subsampling probabilities in the first stage satisfies the con-
dition (H.1)-(H.7), thus from Theorem 2, it holds that

L2 (B) LY (Bue) 10LY (Buwe) . . 54
Bo.j Bo.j L2 Bod B — Burr) + Opiz (|18 — Burel?)-

n n n opT

Therefore

1 3[/;% B 1 8L:§% (Buiie) 1 QZLE% (Byre) . . o 2
n 08 n 0B T 0papT B — Bure) + Op7, (1B — Burel”)-

From Lemma 1, it is clear to see that

1 3% (Buiie) _
nap = Onnl)

for the first step, since 7} is prespecified and satisfied (H.6), and

ro 1 6L§3)(BMLE) B TOO ( 1
r+ron 0B P "o

/2) = Op|F, (r=1/2),

since ro/r — 0. This step holds due to the fact that @Opprn(l) =

\/\/TE p|]:n<].)0p|]:n(7"_1/2) = 0(].)Op|]:n(7"_1/2). Let

v r 182L;”0(;6MLE> o 182L§3J(BMLE)

X = o T 0BT v tron 03087

Combine Lemmas 1 and 3, we have

2710 (]
o T - 3o To 1 d L,gO (/BMLE)
Ix = Tx == (78 - av) o (ﬁ sogT
— —1/2 "o —1/2y _ ~1/2
T+T00P|fn(7“ )+ T+TOOP|fn(7“o ) = Opz, (1'%,
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since ro/r — 0.

Hence,

B~ Pup = (Jx)" {%LEO (Bue) + Opi, (18 = Burell”) + oy, W?)} 7

=0pi7,(r"*) + opi7, (|18 — Bzl

as ro/r — 0, by noting (Jx) ! = Op|r, (1) from (H.5). Therefore, the

desired result follows by noting

B — B = Opiz, (r™/?).

S1.6 Proof of Theorem 8

Proof. For the sake of brevity, we begin with the case with probability 7w™Ve.

Denote

BMLE MEET])) By pT;)
Z {yz 5 ))} (,3 Z”

ni; (60)
(S1.22)

It can be shown that given F, and Bo, n? o .. ,77?0 are i.i.d random variables

with zero mean and variance

Var(nl | F, Bo) = C~ = Z {yz ( (/BMLEw')()B}:)uZ(/B{/[LEw;)wiw?.
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Meanwhile, for every € > 0,

S~ Bl PR IPI (0| > v )| Fu, Bo}
=1

1 — . - B
STS/QE Z E{ln IPI(Inf* | > r'/%¢)| F, Bo}

< 3/25 ZE I 17, Bo)

3 3
1/2 ~ Z {yi — IBMLEm:)(gz) ||u(ﬁMLsz)wz||

i ﬂ 2 BT N
7’1/2 Z {lyi — MLEL: ?l} [6( BTy i ) |

( Zmax [y — W (u(B )], )|l e’Bg)fBgll)

¢1/2 Z {ly: — ﬂMLEwZ?H HU(IBMLE%>%H

X (i > Iy = (u (,Bgil?]))|+5)||u(ﬂ0m])m]||>

7=1

From (H.1), (H.3) and (H.5),

i IBMLEwl U ﬁMLsz L
Z{\y 25)\} [ a( )i

1/2 "
( Z{lyl IBMLEwl))‘} ) (% Z HU(BEALE%)C’?JP)

=0p(1),

1/2

by Holder’s inequality.
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Similarly, it can be shown

- Z ly; — 50 w;))| + 5)““(50 x;)x;|| = Op(1),

from (H.1), (H.3) and (H.5).

Hence

S Bl PR PI(n® | > r2e) | F, Bot = opis (1).

This shows that the Lindeberg-Feller conditions are satisfied in probability.
By the Lindeberg-Feller central limit theorem (Proposition 2.27 of van der
Vaart, 1998), conditionally on F,, and ,éo,

l(‘/céo)_l/zL*(BMLE) = %/Q{Var(m\]:nﬁo)}_l/g iﬁi — N(0,1),

n r —
in distribution.

The distance between Vc'éo and V, is

Ve = V|
1 1 1 {yi — ( (BMLsz))}2 2(/BMLEwZ)||wZ”2
<- R
T ; mpVe Wi(ﬁo) n
1 " {yi — ( (ﬁMLEmi))}Z Q(BMLE%)”%”
— 1—
r ; 7Tz(50) nmpVe
<1 3 1— i lyi — P (u(BliLe®))| [ Bheei)ai |
T Wz(ﬁ@) n
n /
<1 <1§; - ”f(“;) ) (Z {1 = DBl we)) i (Bl o)l ) i
A" i (Bo n

= OP‘]:n (T71)7
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where the last equation follows from the facts that

mVe |2 mVe _ (A 2
-] < T e

and

i {y: — ¥ (u(Bhie®:)) 202 (Blee) |2l = Op(1).

n

Here the first equality in the fact above holds for the continues mapping the-
orem and the second equality holds from (H.1), (H.3), (H.5) and Cauchy’s
inequality.

Utilizing the facts
(j)[?o)—l - j)zl - —jil(j)?o - jX + jX - jX)(j)éo)_l - ()p‘]:n(’f‘_lm)7

we have (jf?ﬂ)—l — (Jx)™" = Opyz, (r~/?) from Lemma 3 and Theorem 7.

Thus
B~ Bae=— —(T) ' L5 (Bre) + Opiz, () (5123
Based on Equation (S1.19), we further have
(T = Tx' = =TI~ T = Oz, (7).
Therefore

V_1/2 (B - BMLE)

1 s .
- V_1/2ﬁ(jxo)_1L*(BMLE) + Opiz, (™)
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1. . » 1. .
= - V_l/Qj)?lﬁL*(ﬁMLE) —VIR{gE T - ng}gL*(ﬂMLE) + Opiz, (r™'7?)

. . 1. .
== VRIS VYRV L (Bue) + Opir, (r77).
n
It can be shown that

V71/2‘7);1(‘/Cﬁo)l/Q(Vfl/Qj);l(V'cﬁo)l/2)T
:V_l/QJ)Zl(VCBO)J)ZIV_l/Q
:V—I/QJ)ZI(‘/C)j)Elv—I/Q 4 Opl}_n(r—l/Q)

:[ + 0p|_7:n(7"71/2).

The desired result follows by Slutsky’s theorem.
As for the case m;(By) = 7™V in L (8), 7MY has the same expression

as ™V except that BMLE, is replaced by Bo- Also note that 7Ti<,éo> >

)

k(JTx )" 17mVe. The rest of the proof is the same as that of #™V¢ with minor

modifications. ]

S2 Additional Simulation Results

In terms of the allocation between rq and 7, it is clear to see that the two-
step approach works the best when r/r is around 0.2 from the simulation
result in Figure 3 of the main text. To well demonstrate our methods, we

compare different ro + r with fixed ro/r = 0.2.



26

In each of the settings described in Section 5.1 of the article, we reeval-
uated the performance of 7™V and 7#V¢ when ry/r is fixed at 0.2. For
comparison, the uniform subsampling, leverage subsampling and adjusted
leverage subsampling methods are also considered. Inline with the setting
in the main text, the sample size ry + 7 is selected as 500, 700, 900, 1200,
1400, and 1600. We report the results for the Poisson regression and the

negative binomial regression in Figures S1 and S2, respectively.

0.025- i

method
-® UNIF
A mv

- mve

method
@ UNIF
A mv

i mve

0.020

0.015

eMSE

0.010

—+ Lev ~+ Lev
0.005 B Lev-A - Lev-A
0.000
860 12.00 15.00
To+r
(a) Case 1
method method
@ UNIF @ UNIF
A mv w A mv
o B - mve
—+ Lev ~+ Lev
B Lev-A B Lev-A
0.000 0.00
800 1200 1600 800 1200 1600
fotr fotr
(c) Case 3 (d) Case 4

Figure S1: The eMSEs for the Poisson regression with different subsample size rg + 7
and fixed ro/r = 0.2. The distributions of the covariates are listed at the beginning of

Section 5.
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@ UNIF
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The eMSEs for the NBR with different subsample size ro + 7 and fixed

ro/r = 0.2. The distributions of the covariates are listed at the beginning of Section 5.
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From Figures S1 and S2, we can see that our methods are slightly better

than the cases that 7y is fixed at 200. However, this improvement is not

significant.

To explore influential factors on subsample sizes that have been dis-

cussed in Section 3.2 in terms of estimation accuracy, we consider additional

four cases for the Poisson regression models listed as below.

Case S1:

Case S2:

Case S3:

The true value of B is a 7 x 1 vector of 0.5 and the covariates
matrix X = 2, /2X. Here X is the centralized version of a n x 7
matrix whose elements are i.i.d., generated from U([—1,1]), and
Y, is the sample covariance matrix of X so that X has a sample

covariance matrix as [, and a condition number as 1.

The true value of 3 is a 14 x 1 vector whose first seven elements
are set to be 0.5 and rest are set to be 0.1. The covariates matrix
X =%, 2% , where X is the centralized version of a n x 14 matrix
whose elements are i.i.d. generated from U([—1, 1]) and %, is the
sample covariance matrix of X so that the condition number of
X is 1 and the signal to noise ratio is nearly the same as that in

Case S1.

This case is the same as the Case S2 except that x;,5 in Case

S2 is replaced with @ = 241 + &; where g; < U([-0.4,0.4]) for
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¢t =1,...,n. For this setup, the condition number of X is around

D.

Case S4: This case is the same as the Case S2 except that z;; in Case
S2 is replaced with @ = 241 + &; where g; < U(]—-0.1,0.1]) for
¢t =1,...,n. For this setup, the condition number of X is around

26.

To exclude the pilot subsampling effect, the ideal case that BMLE is given
before conducting the subsampling strategy is considered. Although this
setting is hard to satisfy, the simulation provides some key insights for
Theorem 5 and it is also valuable for the two step Algorithm. The sample
size r is selected as 10, 15, 20, 25 and 30 times of the dimension respectively.
For comparison, the uniform subsampling method is also demonstrated.
The eMSEs are reported in Figures S3.

Through the simulation results reported in Figures S3(a) and S3(b),
we can see that the cases with » = 10p, 20p exhibit similar performance
when the conditional numbers of the covariate matrix are fixed at one. And
for the same dimensional case, the eMSEs become larger as the conditional
number of the covariate matrix increasing. These echo the results discussed

in Section 3.2.
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Figure S3: The eMSEs for Poisson regression with different subsample size r = ¢p. The

different distributions of covariates are listed in the beginning of Section S2.
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