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LEAST FAVORABLE DIRECTION TEST FOR
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Abstract: This study considers multivariate analysis of variance for normal samples

in a high-dimensional medium sample size setting. When the sample dimension is

larger than the sample size, the classical likelihood ratio test is not defined, because

the likelihood function is unbounded. Based on this unboundedness, we propose a

new test called the least favorable direction test. The asymptotic distributions of

the test statistic are derived under both nonspiked and spiked covariances. The local

asymptotic power function of the test is also given. The results for the asymptotic

power function and simulations show that the proposed test is particularly powerful

under the spiked covariance.

Key words and phrases: High-dimensional data, least favorable direction test, mul-

tivariate analysis of variance, principal component analysis, spiked covariance.

1. Introduction

Suppose there are k (k ≥ 2) independent samples of p-dimensional data.

Within the ith sample (1 ≤ i ≤ k), the observations {Xij}ni

j=1 are independent

and identically distributed (i.i.d.) as Np(θi,Σ), which is a p-dimensional normal

distribution with mean vector θi and common variance matrix Σ.

We test the following hypotheses:

H0 : θ1 = θ2 = · · · = θk vs. H1 : θi 6= θj , for some i 6= j. (1.1)

This testing problem is known as the one-way multivariate analysis of variance

(MANOVA), and has been well studied when p is small relative to N , where

N =
∑k

i=1 ni is the total sample size.

Let H =
∑k

i=1 ni(X̄i− X̄)(X̄i− X̄)> be the sum-of-squares between groups,

and let G =
∑k

i=1

∑ni

j=1(Xij − X̄i)(Xij − X̄i)
> be the sum-of-squares within

groups, where X̄i = n−1i

∑ni

j=1Xij is the sample mean of group i, and X̄ =
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Table 1

Wilks’ Lambda: |G + H|/|G|
Pillai trace: tr[H(G + H)−1]

Hotelling–Lawley trace: tr[HG−1]
Roy’s maximum root: λ1(HG−1)

N−1
∑k

i=1

∑ni

j=1Xij is the pooled sample mean. There are four classical test

statistics for hypotheses (1.1), all of which are based on the eigenvalues of HG−1.

In some modern scientific applications, researchers would like to test hy-

potheses (1.1) in the high-dimensional setting, that is, where p is greater than

N ; see, for example, Verstynen et al. (2005) and Tsai and Chen (2009). How-

ever, none of the four classical test statistics are defined when p ≥ N . As a

result, extensive research has been done on the testing problem (1.1) in high-

dimensional settings. Thus far, numerous tests have been proposed for the case

k = 2; see, for example, Bai and Saranadasa (1996), Srivastava (2007), Chen

and Qin (2010), Cai, Liu and Xia (2014), and Feng et al. (2015). Tests have

also been proposed for the general case of k ≥ 2. Schott (2007) modified the

Hotelling–Lawley trace and proposed the following test statistic:

TSc =
1√
N − 1

(
1

k − 1
tr
(
H
)
− 1

N − k
tr
(
G
))
.

Here, TSc is a member of the so-called sum-of-squares statistics, because it is

based on an estimation of the squared Euclidean norm
∑k

i=1 ni‖θi − θ̄‖2, where

θ̄ = N−1
∑k

i=1 niθi. See Srivastava and Kubokawa (2013), Yamada and Himeno

(2015), Hu et al. (2017), Zhang, Guo and Zhou (2017), Zhou, Guo and Zhang

(2017), and Cao, Park and He (2019) for other sum-of-squares test statistics for

k ≥ 2. Sum-of-squares tests are known to be particularly powerful in the case

of dense alternatives. In another work, Cai and Xia (2014) proposed the test

statistic

TCX = max
1≤i≤p

∑
1≤j<l≤k

njnl
nj + nl

(Ω(X̄j − X̄l))
2
i

ωii
,

where Ω = (ω)ij = Σ−1 is the precision matrix. When Ω is unknown, it is

substituted by an estimator. Unlike TSc, TCX is an extreme-value test statistic,

and is powerful in the case of sparse alternatives.

Most existing sum-of-squares test procedures require the condition tr(Σ4)/

tr2(Σ2)→ 0, which is equivalent to



LEAST FAVORABLE DIRECTION TEST 725

λ1√
tr(Σ2)

→ 0, (1.2)

where λi is the ith largest eigenvalue of Σ, for i = 1, . . . , p. In fact, the equiva-

lence of these two conditions can be seen from the following inequalities:

λ4
1

tr2(Σ2)
≤ tr(Σ4)

tr2(Σ2)
≤ λ2

1 tr(Σ2)

tr2(Σ2)
=

λ2
1

tr(Σ2)
.

Condition (1.2) is reasonable if Σ is nonspiked, in the sense that it does not

have significantly large eigenvalues. However, in practice, variables may be heav-

ily correlated with common factors, in which case, the covariance matrix Σ is

spiked, in the sense that a few eigenvalues of Σ are significantly larger than the

others (Fan, Yuan and Mincheva (2013); Cai, Ma and Wu (2015); Wang and

Fan (2017)). In such cases, condition (1.2) can be violated and, consequently,

existing sum-of-squares tests may not have the correct level. Adjusted sum-

of-squares test procedures have been proposed to solve this problem; see, for

example, Katayama, Kano and Srivastava (2013), Ma, Lan and Wang (2015),

Zhang, Guo and Zhou (2017), and Wang and Xu (2019). However, the power

behavior of these corrected tests may not be satisfactory.

Recently, Aoshima and Yata (2018) and Wang and Xu (2018) considered

a two-sample mean testing problem under the spiked covariance model. These

tests have better power behavior than that of sum-of-squares tests. However,

both studies imposed strong conditions on the magnitude of p. For example,

under the approximate factor model in Fan, Yuan and Mincheva (2013), the test

in Aoshima and Yata (2018) requires p/N → 0, whereas the test in Wang and

Xu (2018) requires that p/N2 → 0 and that the small eigenvalues of Σ are all

equal.

The likelihood ratio test (LRT) method has been very successful in leading

to satisfactory procedures in many specific problems. However, the LRT statistic

for hypotheses (1.1), that is, Wilks’ Lambda statistic, is not defined for p > N−k.

In the high-dimensional setting, neither the sum-of-squares nor the extreme-value

statistics are based on the likelihood function. This motivates us to construct

a likelihood-based test in the high-dimensional setting. In a recent work, Zhao

and Xu (2016) proposed a generalized likelihood ratio test in the context of the

one-sample mean vector test. They used a least favorable argument to construct

a generalized likelihood ratio test statistic. Their simulation results showed that

their test exhibits good power performance, especially when the variables are
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correlated. However, they do not provide a theoretical proof.

We propose a generalized likelihood ratio test statistic for hypotheses (1.1),

called the least favorable direction (LFD) test statistic, which is a generalization

of the test in Zhao and Xu (2016). We give the asymptotic distributions of the

test statistic under both nonspiked and spiked covariances. An adaptive LFD

test procedure is constructed by consistently detecting the unknown covariance

structure and estimating the unknown parameters. The asymptotic local power

function of the LFD test is also given. Our theoretical results show that the

LFD test is particularly powerful under the spiked covariance. This explains

the simulation results of Zhao and Xu (2016). Extending the work of Zhao

and Xu (2016), our main contribution is that we provide a thorough theoretical

analysis of the LFD test. This analysis falls within the high-dimensional medium

sample size setting, where both N, p → ∞, but p/N → ∞ (see Aoshima et al.

(2018), Sec. 5). To prove our main results, we carefully study the high-order

asymptotic behavior of the eigenvalues and eigenspaces of the sample covariance

matrix. These results are also of independent interest. We further compare the

proposed test procedure with existing tests using simulations. Here, we show

that the LFD test exhibits behavior comparable with that of existing sum-of-

squares tests under the nonspiked covariance, while significantly outperforming

competing tests under the spiked covariance.

The rest of the paper is organized as follows. In Section 2, we propose the

LFD test statistic and derive its explicit forms. The asymptotic distributions of

the LFD test statistic under nonspiked and spiked covariances are given in Section

3. Based on these theoretical results, an adaptive LFD test procedure is proposed.

Section 4 complements our study with numerical simulations. Section 5 concludes

the paper. Finally, the proofs are gathered in the Supplementary Material.

2. Least Favorable Direction Test

We first introduce some necessary notation. Define the p×N pooled sample

matrix X as

X = (X11, X12, . . . , X1n1
, X21, X22, . . . , X2n2

, . . . , Xk1, Xk2, . . . , Xknk
).

The sum-of-squares within groups G can be written as G = X(IN − JJ>)X>,

where
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J =


1√
n1

1n1
0 0

0 1√
n2

1n2
0

...
...

...

0 0 1√
nk

1nk


is an N×k matrix, and 1ni

is an ni-dimensional vector with all elements equal to

one, for i = 1, . . . , k. Let n = N − k be the degrees of freedom of G. Construct

an N × n matrix J̃ as

J̃ =


J̃1 0 0

0 J̃2 0
...

...
...

0 0 J̃k

 ,

where J̃i is an ni × (ni − 1) matrix defined as

J̃i =



1√
2

1√
6
· · · 1√

(ni−2)(ni−1)
1√

(ni−1)ni

− 1√
2

1√
6
· · · 1√

(ni−2)(ni−1)
1√

(ni−1)ni

0 − 2√
6
· · ·

...
...

...
... · · · − ni−2√

(ni−2)(ni−1)
1√

(ni−1)ni

0 0 · · · 0 − ni−1√
(ni−1)ni


.

The matrix J̃ is a column orthogonal matrix satisfying J̃>J̃ = In and J̃J̃> =

IN − JJ>. Define Y = XJ̃. Then, G can be written as

G = YY>.

The sum-of-squares between groups H can be written as

H = X

(
JJ> − 1

N
1N1>N

)
X> = XJ

(
Ik −

1

N
J>1N1>NJ

)
J>X>.

By some matrix algebra, we have Ik − N−1J>1N1>NJ = CC>, where C is a
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k × (k − 1) matrix defined as C = C1C2, and

C1 =



√
n1

√
n1 · · · √

n1
√
n1

− n1√
n2

√
n2 · · · √

n2
√
n2

0 −n1+n2√
n3
· · ·

...
...

...
... · · · −

∑k−2
i=1 ni√
nk−1

√
nk−1

0 0 · · · 0 −
∑k−1

i=1 ni√
nk


,

C2 =


n1(n1+n2)

n2
0 · · · 0

0
(
∑2

i=1 ni)(
∑3

i=1 ni)
n3

· · · 0
...

... · · ·
...

0 0 · · · (
∑k−1

i=1 ni)(
∑k

i=1 ni)
nk


−1/2

.

Then, H can be written as

H = XJCC>J>X>.

Define Θ = (
√
n1θ1, . . . ,

√
nkθk). Then, the null hypothesis H0 is equivalent to

ΘC = Op×(k−1), where Op×(k−1) is a p × (k − 1) matrix with all entries zero.

Thus, the hypotheses (1.1) are equivalent to

H0 : ΘC = Op×(k−1) vs. H1 : ΘC 6= Op×(k−1).

The testing problem (1.1) is well studied for low-dimensional settings. A

classical test statistic is Roy’s maximum root, constructed by Roy (1953) using

his well-known union intersection principle. The key idea is to decompose X

into a set of univariate data {Xa = a>X : a ∈ Rp, a>a = 1}. This induces the

following decompositions of the null and alternative hypotheses:

H0 =
⋂

a∈Rp,a>a=1

H0a vs. H1 =
⋃

a∈Rp,a>a=1

H1a,

where H0a : a>ΘC = O1×(k−1) and H1a : a>ΘC 6= O1×(k−1). Let L0(a) and

L1(a) be the maximum likelihood of Xa under H0a and H1a, respectively. For

each a satisfying a>a = 1, the component LRT statistic

L1(a)

L0(a)
=
(a>(G + H)a

a>Ga

)N/2
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can be used to test H0a versus H1a. Using the union intersection principle, Roy

proposed the test statistic maxa>a=1 L1(a)/L0(a) = (1 + λ1(HG−1))N/2, where

λi(·) denotes the ith largest eigenvalue. This statistic is an increasing function

of Roy’s maximum root.

From a likelihood point of view, the log likelihood ratio is an estimator

of the Kullback–Leibler divergence between the true distribution and the null

distribution. Hence, the component LRT statistic L1(a)/L0(a) characterizes the

discrepancy between the true and the null distribution along the direction a.

This motivates us to consider the direction

a∗ = argmax
a>a=1

L1(a)

L0(a)
, (2.1)

which hopefully yields the largest discrepancy between the true and the null

distribution. Thus, H0a∗ is the component null hypothesis least likely to be true.

We call a∗ the least favorable direction. Note that Roy’s maximum root is the

component LRT statistic along the least favorable direction.

Unfortunately, Roy’s maximum root can only be defined when n ≥ p, and

hence cannot be used in the high-dimensional setting. In what follows, we assume

p > n. In this case, the set

A def
= {a : L1(a) = +∞, a>a = 1} = {a : a>Ga = 0, a>a = 1}

is not empty because G is singular. Consequently, the right-hand side of (2.1)

is not well defined because the ratio involves infinity. Hence, we need a new

definition for the LFD in the high-dimensional setting. Define

B = {a : L0(a) = +∞, a>a = 1} = {a : a>(G + H)a = 0, a>a = 1}.

Note that B ⊂ A. Moreover, by the independence of G and H, with probability

one, we have A ∩ Bc 6= ∅. Then, for any direction a, there are three possible

scenarios: L1(a) < +∞ and L0(a) < +∞; L1(a) = +∞ and L0(a) < +∞;

and L1(a) = +∞ and L0(a) = +∞. To maximize the discrepancy between

L1(a) and L0(a), one may consider the direction a such that L1(a) = +∞ and

L0(a) < +∞. This suggests that the least favorable direction a∗, which hopefully

maximizes the discrepancy between L1(a) and L0(a), should be defined as a∗ =

argmina∈A∩BcL0(a). Equivalently,

a∗ = argmin
a∈A∩Bc

L0(a) = argmax
a>a=1,a>Ga=0

a>Ha.
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Based on a∗ and the likelihood L0(a), we propose a new test statistic,

T (X) = a∗THa∗ = max
a>a=1,a>Ga=0

a>Ha.

The null hypothesis is rejected when T (X) is sufficiently large. We call T (X) the

LFD test statistic. Because the least favorable direction a∗ is obtained from the

component likelihood function, the statistic T (X) is also a generalized likelihood

ratio test statistic.

Now, we derive the explicit forms of the LFD test statistic. Let Y =

UYDYV>Y be the singular value decomposition of Y, where UY and VY are

p × min(n, p) and n × min(n, p) column orthogonal matrices, respectively, and

DY is a min(n, p)×min(n, p) diagonal matrix, with diagonal elements comprising

the non-increasingly ordered singular values of Y. If p > n, let PY = UYU>Y
be the projection matrix onto the column space of Y. Then, Lemma 1 in the

Supplementary Material implies that, for p > n,

T (X) = λ1
(
C>J>X>(Ip −PY)XJC

)
. (2.2)

Although (2.2) is convenient for the theoretical analysis, it is not convenient

for computation. When p > N , another simple form of T (X) can be used for

computation. If p > N , then X>X is invertible. By the relationship(
J>X>XJ J>X>XJ̃

J̃>X>XJ J̃>X>XJ̃

)−1
=

((
J>

J̃>

)
X>X

(
J J̃
))−1

=

(
J>(X>X)

−1
J J>(X>X)

−1
J̃

J̃>(X>X)
−1

J J̃>(X>X)
−1

J̃

)

and the matrix inverse formula, we have that(
J>(X>X)

−1
J
)−1

=J>X>XJ− J>X>XJ̃(J̃>X>XJ̃)
−1

J̃>X>XJ

=J>X>(Ip −PY)XJ.

Thus,

T (X) = λ1

(
C>
(
J>(X>X)−1J

)−1
C
)
. (2.3)

Compared with (2.2), the expression in (2.3) does not involve PY and, thus, is

more convenient for computation.

In the case of k = 2, it can be seen that the least favorable direction is
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proportional to (Ip −PY)(X̄1 − X̄2), and the LFD test statistic has expression

T (X) =
n1n2
n1 + n2

‖(Ip −PY)(X̄1 − X̄2)‖2.

In this case, the least favorable direction coincides with the maximal data piling

direction proposed by Ahn and Marron (2010).

3. Theoretical Analysis

We now analyze the asymptotic distributions of the LFD test statistic. The

normality of the observations is an important assumption for our results, and is

assumed throughout this section. We present theoretical results under both non-

spiked and spiked covariances. Based on these results, we construct an adaptive

test with an asymptotically correct level. In addition, these results allow us to

derive the local asymptotic power function of the LFD test.

3.1. Nonspiked covariance

In this subsection, we establish the asymptotic distribution of T (X) under

the nonspiked covariance. Let Wk−1 be a (k − 1) × (k − 1) symmetric random

matrix in which the entries above the main diagonal are i.i.d. N (0, 1) random

variables, and the entries on the diagonal are i.i.d. N (0, 2) random variables.

The following theorem establishes the asymptotic distribution of the LFD test

statistic.

Theorem 1. Suppose as n, p→∞, condition (1.2) holds. Furthermore, suppose

nλ1/ tr(Σ)→ 0 and λ1−λp = O(n−1
√

tr(Σ2)). Then, under the local alternative

hypothesis ‖C>Θ>ΘC‖ = O(
√

tr(Σ2)),

T (X)−
(
tr(Σ)− n tr(Σ2)/ tr(Σ)

)√
tr(Σ2)

∼ λ1

(
Wk−1 +

C>Θ>ΘC√
tr(Σ2)

)
+ oP (1),

where ∼ means having the same distribution.

Remark 1. The condition nλ1/ tr(Σ) → 0 implies p/n → ∞. Hence, T (X) is

well defined for large n. The condition λ1 − λp = O(n−1
√

tr(Σ2)) requires that

the range of the eigenvalues of Σ not be too large.

To centralize T (X) under the conditions of Theorem 1, we need to estimate

the parameters tr(Σ) and tr(Σ2). Let Σ̂ = n−1G = n−1YY> be the sample
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covariance matrix. We use the following simple estimators:

t̂r(Σ) = tr(Σ̂), t̂r(Σ2) = tr(Σ̂2)− n−1 tr2(Σ̂).

Define

Q1 =
T (X)−

(
t̂r(Σ)− nt̂r(Σ2)/t̂r(Σ)

)
√

t̂r(Σ2)

.

Let F1(x) be the cumulative distribution function of λ1(Wk−1). Then, we reject

the null hypothesis if Q1>F
−1
1 (1− α). The following corollary gives the asymp-

totic local power function of the proposed test under the nonspiked covariance.

Corollary 1. Under the conditions of Theorem 1,

Pr
(
Q1 > F−11 (1− α)

)
= Pr

(
λ1

(
Wk−1 +

C>Θ>ΘC√
tr(Σ2)

)
> F−11 (1− α)

)
+ o(1).

Corollary 1 shows that under the nonspiked covariance, the LFD test ex-

hibits power behavior similar to that of existing sum-of-squares tests. In fact,

if k = 2, the asymptotic local power function given by Corollary 1 is equal to

the asymptotic local power function of the tests in Bai and Saranadasa (1996)

and Chen and Qin (2010).

3.2. Spiked covariance

Now, we derive the asymptotic results under the spiked covariance, which

is more involved than the nonspiked case. Let Σ = UΛU> denote the eigen-

value decomposition of Σ, where Λ = diag(λ1, . . . ,λp) and U is an orthogonal

matrix. Suppose that Σ has r spiked eigenvalues, where 1 ≤ r ≤ p can also

vary as n, p → ∞. We first assume the spiked number r is known. We lat-

ter consider the adaptation to unknown r. Denote Λ1 = diag(λ1, . . . ,λr) and

Λ2 = diag(λr+1, . . . ,λp). Correspondingly, we denote U = (U1,U2), where U1

and U2 are the first r columns and the last p − r columns, respectively, of U.

Then, Σ = U1Λ1U
>
1 + U2Λ2U

>
2 .

First, we derive the asymptotic properties of the eigenvalues and eigenspaces

of the sample covariance matrix Σ̂, because these play a key role in our later anal-

ysis. The following proposition gives the asymptotic behavior of λ1(Σ̂), . . . , λr(Σ̂)

and
∑n

i=r+1 λi(Σ̂).
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Proposition 1. Suppose r ≤ n. Then, uniformly for i = 1, . . . , r,

λi(Σ̂) = λi + n−1 tr(Λ2) +OP

(
λi

√
r

n
+

√
tr(Λ2

2)

n
+ λr+1

)
and n∑

i=r+1

λi(Σ̂) =
(

1− r

n

)
tr(Λ2) +OP

(
r

√
tr(Λ2

2)

n
+ rλr+1

)
.

Remark 2. Recent works have examined the asymptotic behavior of the spiked

eigenvalues of the sample covariance matrix; see, for example, Yata and Aoshima

(2013), Shen, Shen and Marron (2016), Wang and Fan (2017), and Cai, Han and

Pan (2019). An important improvement of Proposition 1 over existing results is

that Proposition 1 does not impose any conditions on the structure of Σ, but

still gives the correct convergence rate.

Based on Proposition 1, we propose the following estimators of tr(Λ2) and

λ1, . . . ,λr:

t̂r(Λ2) =
(

1− r

n

)−1 n∑
i=r+1

λi(Σ̂), λ̂i = λi(Σ̂)− n−1t̂r(Λ2), i = 1, . . . , r.

Moreover, we propose the following estimator of tr(Λ2
2), which we use in our later

analysis:

t̂r(Λ2
2) =

n∑
i=r+1

(
λi(Σ̂)− n−1t̂r(Λ2)

)2
.

The following proposition gives the convergence rate of these estimators.

Proposition 2. Suppose r = o(n). Then, uniformly for i = 1, . . . , r,

λ̂i = λi +OP

(
λi

√
r

n
+

√
tr(Λ2

2)

n
+ λr+1

)
and

t̂r(Λ2) = tr(Λ2) +OP

(
r

√
tr(Λ2

2)

n
+ rλr+1

)
,

t̂r(Λ2
2) = tr(Λ2

2) +OP

(
r tr(Λ2

2)

n
+ rλ2

r+1

)
.

Remark 3. Our estimators of λ1, . . . ,λr and tr(Λ2) are similar to some existing

estimators, including the noise-reduction estimators of Yata and Aoshima (2012)
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and the estimators of Wang and Fan (2017). However, their theoretical results

require that r is fixed, p is not large, and Σ satisfies certain spiked covariance

models.

Remark 4. The estimation of tr(Λ2
2) is relatively unexplored. Recently, Aoshima

and Yata (2018) proposed an estimator of tr(Λ2
2) based on the cross-data-matrix

methodology. They also proved the consistency of their estimator. However,

their method relies on an arbitrary split of the data into two samples of equal

size.

Next, we consider the asymptotic behavior of the eigenspaces of Σ̂. Let UY,1

denote the first r columns of UY. Then, the columns of UY,1 are the principal

eigenvectors of Σ̂, and PY,1 = UY,1U
>
Y,1 is the projection matrix onto the rank

r principal subspace of Σ̂. The properties of PY,1 and the individual principal

eigenvectors have been studied extensively. See Cai, Ma and Wu (2015), Shen,

Shen and Marron (2016), and Wang and Fan (2017), and the references therein.

Existing results include the consistency of the principal subspace and the high-

order asymptotic behavior of the individual principal eigenvectors. However,

these results are not sufficient for our analysis. The following proposition gives

the high-order asymptotic behavior of PY,1. To the best of our knowledge, this

is a novel result in the literature.

Write Y = UΛ1/2Z, where Z is a p × n random matrix with i.i.d. N (0, 1)

entries. Then, Y = U1Λ
1/2
1 Z1 +U2Λ

1/2
2 Z2, where Z1 and Z2 are the first r rows

and the last p− r rows, respectively, of Z.

Proposition 3. Suppose r = o(n), tr(Λ2)/(nλr) → 0, and rλr+1/ tr(Λ2) → 0.

Then, ∥∥∥PY,1 −P†Y,1

∥∥∥ = OP

(
tr(Λ2)

nλr
+

λr+1

λr

)
,

where ‖ · ‖ is the spectral norm, P†Y,1 = U1U
>
1 + U1Q

>U>2 + U2QU>1 , and

Q = Λ
1/2
2 Z2Z

>
1 (Z1Z

>
1 )−1Λ

−1/2
1 .

Remark 5. The condition tr(Λ2)/(nλr) → 0 is commonly adopted in studies

on principal subspaces. In fact, when this condition is violated, the principal

subspace loses its relation to the rank-r eigenspace of Σ; see, for example, Nadler

(2008).

Remark 6. Several high-order Davis–Kahan theorems have been established, for

example, Lemma 2 in Koltchinskii and Lounici (2016) and Lemma 2 in Fan et al.
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(2019). These general results explicitly characterize the linear term and the high-

order error on the rank-r eigenspace due to matrix perturbation. Applying these

results to Σ̂ and Σ, we can obtain similar results to that given in Proposition 3;

however, the above results are slightly weaker and require stronger conditions.

If p > n, let UY,2 be the r + 1 to nth columns of UY. Then, PY,2 =

UY,2U
>
Y,2 is the projection matrix onto the eigenspace spanned by the r + 1

to nth eigenvectors of Σ̂. Our later analysis also requires the asymptotic prop-

erties of PY,2, which have not been considered in the literature. Let VZ1
=

Z>1 (Z1Z
>
1 )−1/2. Then, VZ1

V>Z1
= Z>1 (Z1Z

>
1 )−1Z1 is the projection matrix onto

the row space of Z1. Let ṼZ1
be an n× (n− r) column orthogonal matrix that

satisfies ṼZ1
Ṽ>Z1

= In−VZ1
V>Z1

. The following proposition gives the asymptotic

behavior of PY,2.

Proposition 4. Suppose r = o(n), tr(Λ2)λ1/(nλ
2
r) → 0, and nλr+1/ tr(Λ2) →

0. Then, ∥∥∥PY,2 −P†Y,2

∥∥∥ = OP

(√
tr(Λ2)λ1

nλ2
r

+

√
nλr+1

tr(Λ2)

)
,

where P†Y,2 = (tr(Λ2))
−1 U2Λ

1/2
2 Z2ṼZ1

Ṽ>Z1
Z>2 Λ

1/2
2 U>2 .

Remark 7. The condition tr(Λ2)λ1/(nλ
2
r) → 0 is stronger than the condition

tr(Λ2)/(nλr) → 0 in Proposition 3. These two conditions are equivalent if λ1

and λr are of the same order.

Now, we are ready to derive the asymptotic properties of T (X) under the

spiked covariance. Let W∗
k−1 be a (k − 1) × (k − 1) symmetric random matrix,

distributed as Wishart(r, Ik−1) and independent of Wk−1, where Wishart(m,Ψ)

is the Wishart distribution with parameter Ψ and m degrees of freedom. The

following theorem gives the asymptotic distribution of T (X) under the null and

local alternative hypotheses.

Theorem 2. Suppose r = o(
√
n), r tr(Λ2)λ1/(nλ

2
r) → 0, rnλr+1/ tr(Λ2) → 0,

rλr+1/
√

tr(Λ2
2)→ 0, and λr+1 − λp = O(n−1

√
tr(Λ2

2)). Then,

(i) under the null hypothesis ΘC = Op×(k−1),

T (X)−
(
(1 + r/n) tr(Λ2)− n tr(Λ2

2)/ tr(Λ2)
)√

rn−2 tr2(Λ2) + tr(Λ2
2)

∼ λ1

(
n−1 tr(Λ2)√

rn−2 tr2(Λ2) + tr(Λ2
2)

(W∗
k−1 − rIk−1)
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+

√
tr(Λ2

2)√
rn−2 tr2(Λ2) + tr(Λ2

2)
Wk−1

)
+ oP (1);

(ii) if r → ∞ or tr(Λ2)/(n
√

tr(Λ2
2)) → 0, then under the local alternative

hypothesis ‖C>Θ>ΘC‖ = O(
√
rn−2 tr2(Λ2) + tr(Λ2

2)),

T (X)−
(
(1 + r/n) tr(Λ2)− n tr(Λ2

2)/ tr(Λ2)
)√

rn−2 tr2(Λ2) + tr(Λ2
2)

∼ λ1

(
n−1 tr(Λ2)√

rn−2 tr2(Λ2) + tr(Λ2
2)

(W∗
k−1 − rIk−1)

+

√
tr(Λ2

2)√
rn−2 tr2(Λ2) + tr(Λ2

2)
Wk−1 +

C>Θ>U2U
>
2 ΘC√

rn−2 tr2(Λ2) + tr(Λ2
2)

)
+ oP (1).

Remark 8. Suppose the approximate factor model in Fan, Yuan and Mincheva

(2013) holds. That is, r is fixed, λ1, . . . ,λr diverge at rate O(p), and λr+1, . . . ,λp

are bounded. Then, the conditions of Theorem 2 become p/n→∞ and λr+1 −
λp = O(

√
p/n). Hence, Theorem 2 holds for ultrahigh-dimensional data. In

contrast, recent tests under the spiked covariance model can only be used for

lower-dimensional data. In fact, under the approximate factor model in Fan,

Yuan and Mincheva (2013), Aoshima and Yata (2018) requires p/n → 0, and

Wang and Xu (2018) requires p/n2 → 0 and λr+1 = · · · = λp. Note that if

k = 2 and p/n2 → 0, then the coefficient of W∗
k−1− rIk−1 is negligible, and, as a

result, T (X) is asymptotically normally distributed. Thus, Theorem 2 gives the

high-order behavior of T (X).

Now, we formulate a test procedure with an asymptotically correct level.

Define the standardized statistic as

Q2 =
T (X)−

(
(1 + r/n)t̂r(Λ2)− nt̂r(Λ2

2)/t̂r(Λ2)
)

√
rn−2(t̂r(Λ2))2 + t̂r(Λ2

2)

.

Let F2(x; tr(Λ2), tr(Λ
2
2)) be the cumulative distribution function of

λ1

(
n−1 tr(Λ2)√

rn−2 tr2(Λ2) + tr(Λ2
2)

(W∗
k−1 − rIk−1)+

√
tr(Λ2

2)√
rn−2 tr2(Λ2) + tr(Λ2

2)
Wk−1

)
.

Then, we reject the null hypothesis if
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Q2 > F−12

(
1− α; t̂r(Λ2), t̂r(Λ2

2)
)
.

The following corollary shows that this test procedure has an asymptotically

correct level, as well as giving the asymptotic local power function.

Corollary 2. Suppose the conditions of Theorem 2 hold. Then,

(i) under the null hypothesis ΘC = Op×(k−1),

Pr
(
Q2 > F−12

(
1− α; t̂r(Λ2), t̂r(Λ2

2)
))

= α+ o(1);

(ii) if r → ∞ or tr(Λ2)/(n
√

tr(Λ2
2)) → 0, then under the local alternative

hypothesis ‖C>Θ>ΘC‖ = O(
√
rn−2 tr2(Λ2) + tr(Λ2

2)),

Pr
(
Q2 > F−12

(
1− α; t̂r(Λ2), t̂r(Λ2

2)
))

= Pr

(
λ1

(
n−1 tr(Λ2)√

rn−2 tr2(Λ2) + tr(Λ2
2)

(W∗
k−1 − rIk−1)

+

√
tr(Λ2

2)√
rn−2 tr2(Λ2) + tr(Λ2

2)
Wk−1 +

C>Θ>U2U
>
2 ΘC√

rn−2 tr2(Λ2) + tr(Λ2
2)

)

> F−12

(
1− α; tr(Λ2), tr(Λ

2
2)
))

+ o(1).

To gain some insight into the asymptotic behavior of T (X), we consider

k = 2 and compare the power of the LFD test with that of Bai and Saranadasa

(1996) and Chen and Qin (2010). Corollary 2 implies that if

lim inf
n→∞

C>Θ>U2U
>
2 ΘC√

rn−2 tr2(Λ2) + tr(Λ2
2)
> 0,

then the LFD test has nontrivial power, asymptotically. In contrast, if

lim sup
n→∞

C>Θ>ΘC√
tr(Σ2)

= 0,

then the tests in Bai and Saranadasa (1996) and Chen and Qin (2010) exhibit

trivial power, asymptotically. To compare C>Θ>U2U
>
2 ΘC and C>Θ>ΘC, we

temporarily place a prior on Θ. Suppose
√
niθi has prior distributionNp(0p, ψIp),

for i = 1, 2. Then, ψ−1C>Θ>ΘC follows a χ2 distribution with p degrees of
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freedom. On the other hand, ψ−1C>Θ>U2U
>
2 ΘC follows a χ2 distribution

with p− r degrees of freedom. Thus, we have

C>Θ>U2U
>
2 ΘC

C>Θ>ΘC

P−→ 1.

Therefore, on average, the signal contained in C>Θ>U2U
>
2 ΘC is roughly the

same as that in C>Θ>ΘC. Now, we compare the asymptotic variance. It is not

hard to see that under the conditions of Theorem 2, we have rn−2 tr2(Λ2)/tr(Σ
2)

→ 0. Also, if λ1, . . . ,λr are sufficiently large, then tr(Λ2
2)/ tr(Σ2) → 0. Hence,

it can be expected that

rn−2 tr2(Λ2) + tr(Λ2
2)

tr(Σ2)
→ 0.

That is, the asymptotic variance of T (X) is typically much smaller than those

of the tests in Bai and Saranadasa (1996) and Chen and Qin (2010). To appre-

ciate this, note that in the expression (2.2), (Ip − PY)XJC|PY ∼ Np(0p, (Ip −
PY)Σ(Ip − PY)). However, Ip − PY tends to be orthogonal to U1U

>
1 , which

is the projection matrix onto the eigenspace corresponding to the leading eigen-

values of Σ. Hence, the projection by Ip − PY helps reduce the variance of

XJC.

Thus, if Θ satisfies

lim inf
n→∞

C>Θ>ΘC√
rn−2 tr2(Λ2) + tr(Λ2

2)
> 0, lim sup

n→∞

C>Θ>ΘC√
tr(Σ2)

= 0,

then the LFD test has nontrivial power, whereas the tests in Bai and Saranadasa

(1996) and Chen and Qin (2010) exhibit trivial power. Hence, the LFD test

tends to be more powerful than those of Bai and Saranadasa (1996) and Chen

and Qin (2010).

In practice, we may not know whether the covariance matrix is spiked. Fur-

thermore, even if we know that it is spiked, the spike number r may be un-

known. Therefore, we propose an adaptive test procedure. Note that Theo-

rem 1 requires nλ1/ tr(Σ) → 0, and Theorem 2 requires tr(Λ2)/nλr → 0 and

nλr+1/ tr(Λ2) → 0. This motivates us to consider the following adaptive test

procedure. Let τ > 1 be a hyperparameter. If

nλ1(Σ̂)

tr(Σ̂)
< τ,
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then we reject the null hypothesis if Q1 > F−1(1 − α). Otherwise, we reject

the null hypothesis if Q2 > F−12 (1− α; ̂tr(Λ2, ), t̂r(Λ2
2)), where the unknown r is

substituted by the estimator

r̂ = min

{
1 ≤ i < n :

nλi+1(Σ̂)∑n
j=i+1 λj(Σ̂)

< τ

}
.

We have the following proposition.

Proposition 5. Let τ > 1 be a constant.

(i) Under the conditions of Theorem 1,

Pr

(
nλ1(Σ̂)

tr(Σ̂)
< τ

)
→ 1;

(ii) Under the conditions of Theorem 2,

Pr

(
nλ1(Σ̂)

tr(Σ̂)
< τ

)
→ 0, Pr(r̂ = r)→ 1.

Proposition 5 implies that the spiked covariance structure can be detected

consistently. Therefore, the proposed adaptive LFD test procedure can indeed

adapt to the unknown covariance structure.

4. Numerical Study

In this section, we compare the numerical performance of the adaptive LFD

test procedure with that of the MANOVA tests in Schott (2007), Cai and Xia

(2014), Hu et al. (2017), and Zhang, Guo and Zhou (2017). These competing

tests are denoted by Sc, CX, HBWW, and ZGZ, respectively. Throughout the

simulations, we take the nominal test level α = 0.05 and the group number k = 3.

For the adaptive LFD test, we take τ = 5. For CX, we use their oracle procedure.

All simulation results are based on 5,000 replications.

First, we simulate the empirical level and power under various models of Σ

and Θ. To characterize the signal strength, we define the signal-to-noise ratio

(SNR) as

SNR =
C>Θ>ΘC√

tr(Σ2)
.

We consider four models for Σ, where the first two are nonspiked, and the last
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Figure 1. Empirical size and power of tests under model I and model II; n1 = n2 = n3 =
20, p = 300.

two are spiked.

• Model I: Σ = Ip.

• Model II: Σ = (σij), where σij = 0.6|i−j|.

• Model III: Σ = UΛU>, where U is a p × p orthogonal matrix generated

from the Haar distribution and Λ = diag(3p, 2p, p, 1, . . . , 1).

• Model IV: Σ = UΛU> + AA>, where U is a p × p orthogonal matrix

generated from the Haar distribution, Λ = diag(p, p, 1, . . . , 1), and A is a

p × p matrix, the elements of which are independently generated from the

Bernoulli distribution with success probability 0.01.
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Figure 2. Empirical size and power of tests under model I and model II; n1 = n2 = n3 =
25, p = 800.

Under the null hypothesis, we always take θ1 = · · · = θk = 0p. We consider

two structures for the alternative hypotheses: the nonsparse alternative, and

the sparse alternative. In the nonsparse case, we take θ1 = κ1p, θ2 = −κ1p,

and θ3 = 0p, where κ is selected to make the SNR equal to specific values. In

the sparse case, we take θ1 = κ(1>p/5,0
>
4p/5)

>, θ2 = κ(0>p/5,1
>
p/5,0

>
3p/5)

>, and

θ3 = 0p. Again, κ is selected to make the SNR equal to specific values. The

simulation results are summarized in Figures 1–4, and show that in all scenarios,

the empirical sizes of the LFD test are reasonably close to the nominal level 0.05.

Under model I and model II, where the covariance matrices are nonspiked, the

empirical power of the LFD test is slightly lower than that of the sum-of-squares

tests, but is higher than that of the CX test. Under model III and model IV,
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Figure 3. Empirical size and power of tests under model III and model IV; n1 = n2 =
n3 = 20, p = 300.

where the covariance matrices are spiked, the empirical power of the LFD test is

significantly higher than that of the sum-of-squares tests. In addition, the LFD

test exhibits higher empirical power than that of the CX test in most cases, except

for model IV with sparse means. These simulation results verify our theoretical

results that the LFD test is particularly powerful under the spiked covariance.

In our second simulation study, we investigate the effect of correlations be-

tween the variables. We consider the compound symmetry structure; that is,

the diagonal elements of Σ are one, and the off-diagonal elements are ρ, with

0 ≤ ρ < 1. The parameter ρ characterizes the correlations between the variables.

We take θ1 = κ(1>p/5,0
>
4p/5)

>, θ2 = κ(0>p/5,1
>
p/5,0

>
3p/5)

>, and θ3 = 0p, where κ

is selected such that C>Θ>ΘC/(
∑p

i=2 λ
2
i )

1/2 = 5. Figure 5 plots the empirical
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Figure 4. Empirical size and power of tests under model III and model IV; n1 = n2 =
n3 = 25, p = 800.

power for various tests versus ρ. We can see that the empirical power of the

LFD test remains nearly constant as ρ varies, whereas the empirical power of

the competing sum-of-squares tests decreases rapidly as ρ increases. When ρ is

nonzero, the LFD test outperforms the competing tests significantly.

5. Concluding Remarks

Using the idea of the least favorable direction, we have proposed an LFD test

for MANOVA in the high-dimensional setting. We have derived the asymptotic

distribution of the LFD test statistic under both nonspiked and spiked covari-

ances. The asymptotic local power functions are also given. Our theoretical

results and simulation studies show that the LFD test exhibits power behavior
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Figure 5. Empirical power of tests; n1 = n2 = n3 = 35, p = 1,000.

comparable with that of existing tests when the covariance matrix is nonspiked,

and tends to be much more powerful than existing tests when the covariance

matrix is spiked.

Several interesting, but challenging problems remain. First, for the case of

an unknown covariance structure, we proposed an adaptive LFD test procedure

by consistently detecting the unknown covariance structure and estimating the

unknown r. However, this procedure relies on a hyperparameter τ . Determining

an optimal τ remains an interesting problem. Second, our theoretical results rely

on the normality of the observations. In fact, our proofs use the independence

of XJC and Y. Note that XJC and Y = XJ̃ are both linear combinations of

independent random vectors Xij . It is known that the independence of linear

combinations of independent random variables essentially characterizes the nor-

mality of the variables; see, for example, Kagan, Linnik and Rao (1973), Section

3.1. Hence our strategy is not feasible without the normality assumption. It is

unclear whether the conclusions of our theorems hold without this assumption.

Third, our theoretical results require p/n→∞. In fact, the asymptotic behavior

of T (X) will be different in the regime where p/n → constant. Random ma-

trix theory may be useful to investigate the asymptotic behavior of T (X) in this

regime. We leave these topics for future research.

Supplementary Material

The online Supplementary Material presents proofs of the propositions and

theorems.
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