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ON SUPERVISED REDUCTION AND ITS DUAL
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Abstract: Existing regression dimension-reduction methods estimate a subspace in

the primal predictor-based space, and then obtain the set of reduced predictors by

projecting the original predictor vector onto this subspace. We propose a principled

method for estimating a sufficient reduction in the dual sample-based space, based

on a supervised inverse regression model. The reduction is performed without need-

ing to estimate the subspace. Our method extends the duality between principal

component analysis and principal coordinate analysis. We study the asymptotic

behavior of the proposed method, and demonstrate that it is robust to model mis-

specification. We present simulation results to support the theoretical conclusion,

and show how to apply the method by means of a real-data analysis.

Key words and phrases: Data visualization, inverse model-based reduction, multi-

dimensional scaling, sufficient dimension reduction, supervised coordinate analysis.

1. Introduction

Dimension reduction is a long-standing and prominent problem in regression

analysis (Cook (2007)). Classical methods transform the predictors, and then fit

a least squares model using the transformed variables. For example, the widely

used principal component regression extracts the first few principal components

of the predictors, and then uses these components as the predictors in a lin-

ear model. However, one of the main concerns with this approach is that the

directions in which the predictors show the most variation are not necessarily

the directions associated with the response. Many methods have been proposed

to deal with this issue, including the partial least squares and sliced inverse re-

gression (Li (1991)) methods. A common goal of such methods is to reduce

the dimensionality of the predictors without losing any information about the

response.

Suppose we have a response Y ∈ R and a vector of predictors X ∈ Rp.
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Formally, the aim is to estimate a reduction R : Rp → Rd, for d ≤ p, such that

Y⊥⊥X | R(X ), (1.1)

where ⊥⊥ indicates independence. Here, R(X ) is called a sufficient reduction for

the regression of Y onto X (Cook (1998)). Sufficient dimension reduction has

been an active research area since the introduction of the sliced inverse regression

and sliced average variance estimation methods (Cook and Weisberg (1991)). In

this study we focus on linear reductions that are linear combinations of the

predictors: R(X ) = η>X , for some p× d matrix η.

Depending on the stochastic nature of Y and X , there are three paradigms

for determining a sufficient reduction: forward reduction, inverse reduction, and

joint reduction, which are equivalent when Y and X are jointly distributed (Cook

(2007)). Without requiring a pre-specified model for Y | X , inverse reduction is

promising in regressions with many predictors. To estimate a reduction inversely,

methods such as the sliced inverse regression exploit properties of the conditional

moments of X | Y . These inverse moment-based methods impose constraints on

the marginal distribution of X . Alternatively, inverse model-based approaches

directly specify a model for the inverse regression of X onto Y . Much of the

existing work relies on normal models. See Adragni and Cook (2009) for a recent

review of inverse reduction methods.

Sufficient reduction permits us to restrict attention to a few new predictors

η>X , upon which subsequent modeling and prediction can be built. Indeed, the

original intent behind (1.1) is to provide a framework for dimension reduction

to facilitate graphical analyses (Cook (1998)). Previous studies have largely

focused on properties of estimators of the subspace spanned by the columns of

η. However, the inference object more relevant to subsequent data analyses is

not the subspace, but the reduction itself. Estimating sufficient reductions is

relatively new. Cook et al. (2012) proposed an inverse model-based method after

studying the asymptotic behavior of a class of methods for sufficient reduction in

large abundant regressions, where most predictors contribute some information

on the response. In the modern “small n and large p” setting, Wang et al.

(2018) recently proposed an inverse moment-based method for estimating sparse

reductions using a novel representation of a sliced inverse regression.

We propose a new approach for estimating a sufficient reduction, motivated

by the well-known duality between principal component analysis and principal co-

ordinate analysis (Gower (1966)), also known as classical multidimensional scal-
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ing (CMDS; Hastie, Tibshirani and Friedman (2009)). Let X = (x 1, . . . ,xn)> ∈
Rn×p be a data matrix of predictor values. Without loss of generality, assume

that each column of X has been centered to have mean zero. A singular value

decomposition offers a way of expressing a principal component analysis. Let

X = UDV> be the singular value decomposition of X; that is, U = (U1, . . . ,Up)

is n × p with orthonormal columns, V = (V1, . . . ,Vp) is p × p orthogonal, and

D is a p× p diagonal matrix with diagonal entries d1 ≥ d2 ≥ · · · ≥ dp ≥ 0. Here,

Vj is called the jth principal component direction, and djUj is the jth principal

component score vector. In the terminology of regression dimension reduction,

UD = XV are linear reductions used in a principal component regression. Geo-

metrically, each row of UD represents the coordinates of the corresponding row

of X with respect to the orthonormal basis V. In this sense, a principal compo-

nent analysis can be viewed as an ordination method. Indeed, it is equivalent to

CMDS, and an alternative way of obtaining principal components is to perform

an eigen-decomposition of the Gram matrix XX> = UD2U>.

Instead of estimating the directions, one can directly determine the projec-

tion coordinates of the predictor vector onto the subspace spanned by these di-

rections. In the context of a moment-based inverse reduction, Zhang et al. (2008)

calculated projection coordinates by applying CMDS to slice means, and then

interpolated the projection of a new predictor vector using these coordinates.

This method can be thought of as a dual version of a sliced inverse regression.

At the population level, however, it is not clear what quantity is being treated

as the target. Here, we propose a principled method for estimating a sufficient

reduction under the inverse model-based reduction scheme. The reduction is per-

formed without needing to estimate the subspace. To the best of our knowledge,

this study is the first time to examine the asymptotics of predictor reduction in

terms of prediction and under model misspecification.

To express the projection coordinates explicitly, an inverse regression model

is introduced in Section 2, without requiring normal errors. Because the co-

ordinates are unconstrained, sufficient reduction is achieved using CMDS, or a

principal component analysis by duality. To perform a supervised reduction, we

model the coordinates in a parametric way in Section 3, extending the method of

Section 2 for a known error structure. A reduction with an unknown error struc-

ture is considered in Section 4, and our theoretical conclusions are presented.

Simulation results and a real-data application are presented in Section 5. Sec-

tion 6 concludes the paper. All proofs are available in the online Supplementary

Material.
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2. A Naive Inverse Regression Model

The subspace spanned by the columns of η is called a dimension-reduction

subspace. The parsimonious target of sufficient dimension reduction is the central

subspace SY |X , defined as the intersection of all dimension-reduction subspaces

(Cook (1998)). Let Y denote the sample space of Y , and let

SE(X |Y ) = span{E(X | Y = y)− E(X ), y ∈ Y}

denote the subspace spanned by the centered inverse regression curves. We have

the following proposition.

Proposition 1. Assume (C1) SE(X|Y ) ⊆ Var(X)SY |X and (C2) Var(X | Y ) is

positive definite and nonrandom. Then,

Var(X | Y )SY |X = Var(X)SY |X.

Conditions (C1) and (C2) are generally regarded as mild in the sufficient

dimension reduction literature. Condition (C1) holds if E(X | η>X ) is a linear

function of η>X , where η is a basis matrix for SY |X . A slightly stronger condition

is given by (C1′) SE(X |Y ) = Var(X )SY |X ; see Li and Wang (2007) for a good

recent discussion.

Throughout this paper, conditions (C1′) and (C2) are assumed to be true.

Then, by Proposition 1,

SE(X |Y ) = ∆SY |X ,

where ∆ = Var(X | Y ). This implies that SY |X = span(∆−1Γ), where Γ ∈
Rp×d is a basis matrix for SE(X |Y ). Let X y denote a random vector distributed

as X | (Y = y). The above argument motivates the inverse regression model

X y = µ + Γvy + ε, (2.1)

where µ = (µ1, . . . , µp)
> ∈ Rp, vy ∈ Rd is an unknown vector-valued function

of y, ε is a p-dimensional random vector with mean vector zero and covariance

matrix ∆, and ε is independent of Y . Because Γ is not usually identifiable,

we require that ∆−1/2Γ be a p × d matrix with orthonormal columns; that is,

Γ>∆−1Γ is the d× d identity matrix. Let µy = E(X y) = E(X | Y = y). Then,

vy = Γ>∆−1(µy − µ). We assume that Var(vY ) is positive definite.
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2.1. Reduction via CMDS

Assume for the moment that ∆ is known. Without loss of generality, assume

that ∆ = Ip, the p× p identity matrix. This implies that Γ is a semi-orthogonal

matrix, and SY |X = span(Γ). Otherwise, multiply both sides of equation (2.1) by

∆−1/2 and replace (X y,µ,Γ, ε,SY |X ) with (∆−1/2X y,∆
−1/2µ,∆−1/2Γ,∆−1/2ε,

∆1/2SY |X ).

Suppose the data consist of n independent observations, x y1
, . . . ,x yn

. For

two observations indexed by y and y′, define dyy′ = ‖µy − µy′‖22. We have

dyy′ = ‖Γvy − Γvy′‖22 = v>y vy − 2v>y vy′ + v>y′vy′ .

Let D=(dyy′) ∈ Rn×n,w =(v>y1
vy1

, . . . , v>yn
vyn

)>∈ Rn, and V=(vy1
, . . . , vyn

)>

∈ Rn×d. In matrix notation, we have

D = w1>n + 1nw
> − 2VV>,

where 1n is an n-vector of ones. Let Pn = In − n−11n1>n . Then,

PnDPn = −2PnVV>Pn = −2VV>,

and hence

VV> = −1

2
PnDPn.

Here, without loss of generality, we assume that the columns of V are centered;

that is,
∑n

i=1 vyi
is the d-vector of zeros.

Because dyy′ is actually unknown, we replace it with d̂yy′ = ‖x y−x y′‖22−2p.

It is easy to show that d̂yy′ is an unbiased estimate of dyy′ . Let D̂ = (d̂yy′) and

X = (x y1
, . . . ,x yn

)> ∈ Rn×p. Then,

VV> ≈ −1

2
PnD̂Pn = PnXX>Pn.

Write the eigen-decomposition of PnXX>Pn as

PnXX>Pn =

n∑
i=1

λiαiα
>
i ,

where λ1 ≥ · · · ≥ λn ≥ 0 are the eigenvalues, and α1, . . . ,αn are the corre-

sponding eigenvectors. By the Eckart–Young theorem, a solution for V is given
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by

Ṽ = (λ
1/2
1 α1, . . . , λ

1/2
d αd).

Write Ṽ = (ṽy1
, . . . , ṽyn

)>. In the statistics literature, the reduction from x y

to ṽy is known as the CMDS, or a principal coordinate analysis. We can view ṽy

as the vector of coordinates of x y with respect to the orthonormal basis Γ. From

the viewpoint of regression dimension reduction, Ṽ then contains all regression

information on the response. In subsequent analyses, graphical displays and

regression methods can be exploited to examine the relationship between the

response and the vector of coordinates.

As such, it is important to predict the coordinates of a new observation,

x y∗ , y
∗ ∈ Y. This can be done using the classical method of adding a point to

vector diagrams (Gower (1968); Zhang et al. (2008)). For each i ∈ {1, . . . , n},
we define s̃i = ‖ṽyi

‖22 − ‖x y∗ − x yi
‖22. Let s̃ = (s̃1, . . . , s̃n)> ∈ Rn. Then, the

predicted coordinates ṽy∗ of x y∗ are given by

ṽy∗ =
1

2
(Ṽ>Ṽ)−1Ṽ>s̃. (2.2)

In a classical sufficient reduction, one is interested mainly in the matrix Γ,

or the subspace SY |X spanned by it. The above procedure operates in the space

of coordinates of x y with respect to the orthonormal basis Γ. The approach

is appealing because it achieves dimension reduction while avoiding the need to

estimate Γ.

2.2. Subspace estimation

Once vy has been determined, it becomes natural to use the least squares

method to estimate Γ in model (2.1), if desired. Specifically, we estimate Γ by

minimizing the residual sum-of-squares,

‖PnX− ṼΓ>‖2F .

Here, ‖ · ‖F denotes the Frobenius matrix norm. The minimizer is given by

Γ̃ = X>Ṽ(Ṽ>Ṽ)−1. (2.3)

Write Γ̃ = (Γ̃1, . . . , Γ̃d). The estimate of SY |X is then given by span(Γ̃).

After some further manipulations, Γ̃j can be shown to equal the jth principal

component direction of PnX. Thus, the first d principal component score vectors

of PnX produce a sufficient reduction. Consequently, our method coincides with
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that of Cook (2007) under a PC regression model. The PC regression model is

the same as the inverse regression model (2.1), except the former assumes ε is

normally distributed, and it employs a maximum likelihood estimation.

2.3. A toy example

Before we proceed, we consider a simple simulation with p = 5 and d = 2.

Observations on (X , Y ) were generated from the inverse regression model (2.1),

as follows. First, Y = y was sampled from a normal distribution with mean 0

and variance 4. Then, X y = x y was generated according to X y = Γvy + ε,

where Γ = (Γ1,Γ2)
>, with Γ1 = (1, 0, 0, 0, 0)> and Γ2 = (0, 1, 0, 0, 0)>, and

vy = (y, y2/3)>. The error vector was sampled from a normal distribution with

mean vector 0 and covariance matrix ∆ = diag(1, 1, 5, 5, 5).

In the upper plot of Figure 1, the two-dimensional coordinates of 200 CMDS

samples are displayed, with each sample indexed according to the response value.

There appears to be little discernible relationship between the response and the

coordinates (i.e., principal component scores). This lack of pattern is to be

expected: aside from the subscript y, nothing on the right-hand side of (2.1) is

observable. Consequently, dimension reduction under this model is based solely

on the predictors, and hence is unsupervised. The lower plot shows the results

of applying the supervised reduction method in Section 4. We see that the

response increases as we move from left to right, and that the middle and extreme

response values are somewhat separated by the second coordinate. In other

words, some proportion of variability in the response can be explained using the

new coordinates.

As in this toy example, in many applications, the response is expected to

play an important role in supervising our reduction. Indeed, this is the main

motivation for most modern dimension-reduction methods, including those de-

veloped in the framework of sufficient dimension reduction. We elaborate on this

in the next section.

3. A Supervised Inverse Regression Model

To facilitate supervised reduction, we model the coordinate vectors as

vy = βf y,

where β ∈ Rd×r has rank d ≤ min(r, p), and f y ∈ Rr is a known vector-valued

function of y. Usually, f y is required to contain a reasonably flexible set of
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Figure 1. Two-dimensional plots of 200 samples from the inverse regression model in
(2.1). The simulation setup is described in the text. Top: The axes represent the first and
second CMDS coordinates. Bottom: The axes represent the first and second coordinates
produced by the supervised reduction method in Section 4.

basis functions, such as slice indicator functions or B-spline basis functions. This

parameterization is widely used in model-based reduction; see, for example, Cook

and Forzani (2008), Cook et al. (2012), and Wang and Zhu (2013). Replacing vy

in model (2.1) with βf y, we have the following model:

X y = µ + Γβf y + ε. (3.1)

We refer to this model as a supervised inverse regression model. Without loss of

generality, we assume that the sample mean vector of f y is zero.

The process of dimension reduction based on CMDS is essentially the same

as before. Note that, under (3.1),

dyy′ = ‖Γβf y − Γβf y′‖22 = f >y β
>βf y − 2f >y β

>βf y′ + f >y′β
>βf y′ .

Let π = (f >y1
β>βf y1

, . . . , f >yn
β>βf yn

)> ∈ Rn and F = (f y1
, . . . , f yn

)> ∈ Rn×r.
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In matrix form,

D = π1>n + 1nπ
> − 2Fβ>βF>.

Because PnF = F, a simple calculation shows that

β>β = −1

2
(F>F)−1F>DF(F>F)−1.

Substituting D with D̂, we have

(F>F)1/2β>β(F>F)1/2 ≈ −1

2
(F>F)−1/2F>D̂F(F>F)−1/2

= (F>F)−1/2F>XX>F(F>F)−1/2.

Write the eigen-decomposition of the term in the last line as

(F>F)−1/2F>XX>F(F>F)−1/2 =

r∑
j=1

ρjφjφ
>
j ,

where ρ1 ≥ · · · ≥ ρr ≥ 0 are the eigenvalues, and φ1, . . . ,φr are the corresponding

eigenvectors. A solution for β is then given by

β̃ = (ρ
1/2
1 φ1, . . . , ρ

1/2
d φd)>(F>F)−1/2.

Furthermore,

ṽy = β̃f y,

and the vector of coordinates ṽy∗ associated with a new observation x y∗ is, again,

computed from (2.2).

4. Reduction When ∆ is Unknown

4.1. The proposed method

In practice, ∆ is seldom known in advance, and thus has to be estimated

from the data. Throughout this paper, we estimate ∆ using the residual sample

covariance matrix from the multivariate linear regression of X y on f y:

∆̂ =
1

n
X>(In −PF)X,

where PF = F(F>F)−1F> is the hat matrix. The asymptotic properties of ∆̂

can be found in Lemmas 1 and 2 in the Supplementary Material. Theorem 3.1 of
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Cook and Forzani (2008) shows that this estimator and the maximum likelihood

estimator under normality of errors are different, but related.

We fix ∆ at ∆̂, and base the analysis on the standardized data X∆̂
−1/2

. For

simplicity, we focus on the supervised inverse regression model (3.1). Replacing

X with X∆̂
−1/2

, we compute

(F>F)−1/2F>X∆̂
−1

X>F(F>F)−1/2,

and its eigen-decomposition
r∑

j=1

ρ̂jφ̂jφ̂
>
j .

We estimate β and vy as

β̂ = (ρ̂
1/2
1 φ̂1, . . . , ρ̂

1/2
d φ̂d)>(F>F)−1/2

and

v̂y = β̂f y.

Define ŝi = ‖v̂yi
‖22 − ‖∆̂

−1/2
(x y∗ − x yi

)‖22. Let ŝ = (ŝ1, . . . , ŝn)> and V̂ =

(v̂y1
, . . . , v̂yn

)>. Then, the vector of coordinates of a new observation x y∗ is

predicted by

v̂y∗ =
1

2
(V̂>V̂)−1V̂>ŝ. (4.1)

We refer to this method as supervised reduction via inverse regression (SRIR).

As mentioned earlier, the advantage of working with coordinate vectors is

that a reduction can be performed without needing to estimate Γ or SY |X . Nev-

ertheless, there are situations in which the inferential target is SY |X , as is the

case in a traditional sufficient dimension reduction. To conduct a reduction in

the original predictor space, we have to determine both ∆ and Γ. In general,

it is infeasible to find a closed-form expression for these estimators, and so we

usually need an alternating procedure. Fortunately, the estimate ∆̂ has nothing

to do with Γ, suggesting a one-step estimate for Γ. Specifically, we estimate Γ

by minimizing the residual sum-of-squares

RRS(Γ) = ‖PnX∆̂
−1/2 − V̂Γ>∆̂

−1/2‖2F
= trace{(PnX− V̂Γ>)∆̂

−1
(PnX− V̂Γ>)>}.
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The solution is

Γ̂ = X>V̂(V̂>V̂)−1 = X>Fβ̂
>

(β̂F>Fβ̂
>

)−1. (4.2)

Note that Γ̂ depends on ∆̂ (and, hence, the observed responses yi) through β̂.

Finally, we estimate SY |X using span(∆̂
−1

Γ̂).

4.2. Theoretical properties

The limiting behavior of v̂y∗ is considered in the following theorem.

Theorem 1. Assume that vY = βfY has finite sixth moments, and that ε has

finite fourth moments. Then, for some d× d rotation matrix R,

v̂y∗ = R(vy∗ + Γ>∆−1εy∗) +OP

(
1√
n

)
.

For two d-dimensional random vectors V 1 and V 2, let Σ1,Σ2, and Σ12 de-

note the covariance matrix of V 1, the covariance matrix of V 2, and the covari-

ance matrix between V 1 and V 2, respectively. To assess the prediction accuracy,

we use the multiple correlation coefficient, which is defined as the positive square

root of

ρ2(V 1,V 2) =
1

d
trace(Σ12Σ

−1
2 Σ>12Σ

−1
1 ).

This measure takes the maximum value of one when V 1 and V 2 are linearly

related, and takes the minimum zero when the components of the two vectors

are uncorrelated; see Hall and Mathiason (1990) and Li and Dong (2009). We

have the following corollary.

Corollary 1. Assume the conditions of Theorem 1. Then,

ρ2(v̂Y ∗ , vY ∗) =
1

d
trace[Var(vY ∗){Var(vY ∗) + Id}−1] +OP

(
1√
n

)
,

where the covariances in ρ2(v̂Y ∗ , vY ∗) are taken with respect to the joint distri-

bution of Y ∗ and εY ∗.

We now consider the situation in which f y is misspecified. Denote by

{Var(f Y )}−1Cov(f Y , vY ) = UΛV>

the singular value decomposition of {Var(f Y )}−1Cov(f Y , vY ); that is, U =

(U1, . . . ,Ud) is r × d with orthonormal columns, V = (V1, . . . ,Vd) is d × d
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orthogonal, and Λ is a d × d diagonal matrix with diagonal entries λ1 ≥ λ2 ≥
· · · ≥ λd ≥ 0. Let Φ = (λ1U1, . . . , λdUd)>.

Theorem 2. Assume that fY has finite sixth moments, and that vY and ε both

have finite fourth moments. If Cov(fY , vY ) has full column rank, that is, λd > 0,

then

v̂y∗ = R(c + Avy∗ + AΓ>Ω−1εy∗) +OP

(
1√
n

)
,

for some d× d rotation matrix R, where

c =
1

2
{ΦVar(fY )Φ>}−1{E(ΦfY f

>
Y Φ>ΦfY )− E(ΦfY v

>
Y vY )},

A = {ΦVar(fY )Φ>}−1ΦCov(fY , vY ),

and

Ω = Var(X)− ΓCov(vY , fY ){Var(fY )}−1Cov(fY , vY )Γ>.

This result indicates that, up to an affine transformation, that is, a linear

transformation followed by a translation, the conclusion of Theorem 1 remains

valid, given that f Y and vY are sufficiently correlated. From a dimension reduc-

tion point of view, we can treat vy∗ and c + Avy∗ as the same reduction.

The following theorem gives the consistency of the subspace estimation.

Theorem 3. Assume the conditions of Theorem 1 or Theorem 2 hold. Then,

span(∆̂
−1

Γ̂) is a
√
n-consistent estimate of SY |X.

Let Σ̂ = X>PFX. Define Sd(∆̂, Σ̂) as the span of ∆̂
−1/2

multiplied by

the first d eigenvectors of ∆̂
−1/2

Σ̂∆̂
−1/2

. One connection between our one-

step subspace estimate and the maximum likelihood estimate is captured in the

following theorem.

Theorem 4. Assume that fy is correctly specified. Then, span(∆̂
−1

Γ̂)=Sd(∆̂, Σ̂).

Consequently, if ε is normally distributed, then span(∆̂
−1

Γ̂) is the maximum

likelihood estimate of SY |X.

4.3. Choice of d

In practice, the structural dimension d is unknown, and thus the choice

of d is essential to the proposed method. In the literature, there are two useful

techniques for determining d: one is based on a sequential test (Li (1991)), and the

other uses an information criterion (Zhu, Miao and Peng (2006)). Let d0 denote
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the true dimension. To estimate d0, we propose using the Bayesian information

criterion (Zhu, Zhu and Feng (2012)). With

BICd =

∑d
j=1 ρ̂

2
j∑r

k=1 ρ̂
2
k

− log(n)

n
× d(d+ 1)

2
,

the estimated dimension is

d̂ = arg max
1≤d≤r

BICd. (4.3)

Theorem 5. Assume the conditions of Theorem 1 or Theorem 2 hold. Then, d̂

converges to d0, in probability.

5. Numerical Studies

In this section, we first conduct Monte Carlo simulation studies to assess the

finite-sample performance of the proposed method. We then apply our method

in an analysis of a real data set.

5.1. Simulations

Throughout the simulation study, we considered the structural dimension

d = 2, the sample size n = 200, and the number of predictors p ∈ {10, 20}. We set

∆ = (θ|i−j|), with θ taking 0 or 0.5. Let Γ01 = (1, 1,−1,−1, 0, . . . , 0)>/2, Γ02 =

(1, 0, 1, 0, 1, 0, . . . , 0)>/
√

3, and Γ0 = (Γ01,Γ02). Set Γ = Γ0(Γ
>
0 ∆−1Γ0)

−1/2.

We used the cubic polynomial basis (y, y2, y3) to fit the model, and then

assessed the prediction accuracy on an independent test sample, {(x y∗i , y
∗
i )}, of

size 100. Let v̂y∗i be the predicted vector of coordinates of x y∗i . To measure

the closeness between v̂y∗i and vy∗i , we used the sample version of the multiple

correlation coefficient (MCC). For each configuration, the number of repetitions

was 200.

Example 1. To gain insight into the operating characteristics of the proposed

method, consider the model

X y = Γvy + ε,

where y is drawn from a normal distribution N(0, σ2), vy = (y, y2)>, and ε ∼
N(0,∆). By Corollary 1,

ρ2(v̂Y ∗ , vY ∗) = g2(σ) +OP

(
1√
n

)
.
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Figure 2. The estimated MCC curves, based on 200 data replications, for θ = 0 (dotted)
and θ = 0.5 (solid), along with the theoretical MCC curve g(σ) (longdashed). The error
bars indicate one standard deviation.

Here, g(σ) =
√
σ2/(2σ2 + 2) + σ4/(2σ4 + 1) is an increasing function of σ. Six

values of σ were explored: 0.5, 0.8, 1, 1.5, 2, and 3. Figure 2 depicts g(σ) and

its sample estimate under different configurations. We see there is an excellent

agreement between the theoretical prediction and the empirical behavior.

Next, we examine the behavior of our method in further detail. In addition

to the prediction accuracy, we also assessed its performance in terms of subspace

recovery. Specifically, we used the vector correlation coefficient (VCC) and the

trace correlation coefficient (TCC) to measure the closeness between the true

and estimated subspaces (Ye and Weiss (2003)). Let B̂ and B be basis matrices

for the estimated and true subspaces, respectively. Denote by ρ1 ≥ · · · ≥ ρd
the ordered eigenvalues of B̂>BB>B̂. VCC is defined as the positive square

root of q2(B̂,B) =
∏d

i=1 ρi, and TCC is defined as the positive square root of

r2(B̂,B) = d−1
∑d

i=1 ρi.
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Table 1. Means and standard deviations (in parentheses) of MCC, VCC, and TCC, over
200 data applications. ε is drawn from a multivariate t-distribution with five degrees of
freedom, and f y is correctly specified.

SRIR PC

MCC VCC TCC MCC VCC TCC

p = 10 θ = 0 0.737 (0.056) 0.900 (0.036) 0.949 (0.018) 0.725 (0.066) 0.845 (0.170) 0.929 (0.061)

θ = 0.5 0.740 (0.048) 0.916 (0.037) 0.958 (0.018) 0.456 (0.085) 0.120 (0.083) 0.406 (0.096)

p = 20 θ = 0 0.716 (0.055) 0.802 (0.047) 0.897 (0.025) 0.667 (0.081) 0.581 (0.279) 0.816 (0.103)

θ = 0.5 0.728 (0.055) 0.827 (0.048) 0.911 (0.025) 0.374 (0.085) 0.050 (0.049) 0.304 (0.077)

Example 2. Consider the model

X y = Γβf y + ε,

where f y = (y, |y|, y2)>, and ε has mean vector 0 and covariance matrix ∆.

Two types of nonGaussian errors were explored, with covariance structures as in

the previous example. In the first, ε is drawn from a multivariate t-distribution

with five degrees of freedom. In the second, each component of ε is uniformly

distributed on [−
√

3,
√

3]. For the coefficient matrix β, we set

β =

(
1 0 0

0 0 1

)
or

(
1 −0.5 0

0 0.5 1

)
.

This corresponds to the setting where the cubic polynomial basis is correctly

specified or misspecified. Finally, we generated Y from the standard normal

distribution. The averaged values of MCC, VCC, and TCC, and their standard

deviations, based on 200 data replications, are reported in Tables 1–4. From

Tables 1 and 3, we see that the prediction accuracy for the nonGaussian errors

is comparable with that under the Gaussian assumption (Figure 2, σ = 1).

Furthermore, our method performs well in terms of subspace estimation. In

general, the performance improves as the number of predictors decreases. From

Tables 2 and 4, we see that our method is robust to misspecification of the basis

functions, as expected from Theorems 2 and 3.

We also compared our method with the principal components (PC) and

principal fitted components (PFC) methods of Cook and Forzani (2008). The

PC results are shown in the last three columns of Tables 1–4. SRIR appears to

dominate PC in most cases, especially when θ = 0.5. The PFC results are the

same as the SRIR results and, thus, are omitted. For subspace estimation, this
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Table 2. Means and standard deviations (in parentheses) of MCC, VCC, and TCC, over
200 data applications. ε is drawn from a multivariate t-distribution with five degrees of
freedom, and f y is misspecified.

SRIR PC

MCC VCC TCC MCC VCC TCC

p = 10 θ = 0 0.768 (0.046) 0.899 (0.036) 0.949 (0.018) 0.758 (0.057) 0.843 (0.187) 0.930 (0.067)

θ = 0.5 0.767 (0.050) 0.917 (0.039) 0.958 (0.019) 0.502 (0.069) 0.130 (0.098) 0.431 (0.082)

p = 20 θ = 0 0.752 (0.052) 0.815 (0.041) 0.903 (0.022) 0.711 (0.070) 0.607 (0.257) 0.834 (0.089)

θ = 0.5 0.752 (0.048) 0.826 (0.049) 0.911 (0.025) 0.457 (0.071) 0.058 (0.049) 0.353 (0.065)

Table 3. Means and standard deviations (in parentheses) of MCC, VCC, and TCC, over
200 data applications. Each component of ε is uniformly distributed on [−

√
3,
√

3], and
f y is correctly specified.

SRIR PC

MCC VCC TCC MCC VCC TCC

p = 10 θ = 0 0.745 (0.044) 0.931 (0.024) 0.965 (0.012) 0.747 (0.043) 0.946 (0.028) 0.973 (0.014)

θ = 0.5 0.742 (0.048) 0.942 (0.027) 0.971 (0.013) 0.436 (0.075) 0.097 (0.073) 0.377 (0.088)

p = 20 θ = 0 0.727 (0.048) 0.852 (0.034) 0.923 (0.018) 0.731 (0.049) 0.867 (0.052) 0.933 (0.025)

θ = 0.5 0.730 (0.049) 0.859 (0.042) 0.928 (0.021) 0.380 (0.074) 0.040 (0.037) 0.290 (0.066)

Table 4. Means and standard deviations (in parentheses) of MCC, VCC, and TCC, over
200 data applications. Each component of ε is uniformly distributed on [−

√
3,
√

3], and
f y is misspecified.

SRIR PC

MCC VCC TCC MCC VCC TCC

p = 10 θ = 0 0.776 (0.033) 0.934 (0.022) 0.967 (0.011) 0.777 (0.033) 0.944 (0.028) 0.972 (0.014)

θ = 0.5 0.769 (0.036) 0.944 (0.026) 0.971 (0.012) 0.488 (0.060) 0.111 (0.078) 0.411 (0.066)

p = 20 θ = 0 0.753 (0.037) 0.853 (0.034) 0.924 (0.018) 0.757 (0.039) 0.881 (0.049) 0.941 (0.024)

θ = 0.5 0.753 (0.045) 0.869 (0.037) 0.933 (0.019) 0.449 (0.065) 0.049 (0.045) 0.354 (0.058)

is expected, from Theorem 4, but for prediction, this comes as somewhat of a

surprise. We provide theoretical support for this conclusion in the Supplementary

Material.

Thus far, we have assumed that the value of the structural dimension is

known. Using Example 2, we evaluated the performance of the BIC-type criterion

(4.3). Tables 5 and 6 report the frequencies of decisions over 200 replications.

We see that the proportion of correctly identifying the true dimension is greater

than 80% in each configuration. We also see that a misspecification can have a

significant impact.
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Table 5. Selection frequencies of BIC over 200 data replications. ε is drawn from a
multivariate t-distribution with five degrees of freedom.

Correctly specified Misspecified

d̂ = 1 d̂ = 2 d̂ = 1 d̂ = 2
p = 10 θ = 0 2 198 39 161

θ = 0.5 2 198 31 169
p = 20 θ = 0 5 195 33 167

θ = 0.5 4 196 30 170

Table 6. Selection frequencies of BIC over 200 data replications. Each component of ε
is uniformly distributed on [−

√
3,
√

3].

Correctly specified Misspecified

d̂ = 1 d̂ = 2 d̂ = 1 d̂ = 2
p = 10 θ = 0 0 200 29 171

θ = 0.5 1 199 32 168
p = 20 θ = 0 3 197 26 174

θ = 0.5 1 199 30 170

5.2. Boston housing data

We applied SRIR to Boston housing data (Harrison and Rubinfeld (1978)),

available in the MASS library in R. This data set has 14 variables and 506 ob-

servations, with each observation representing a census tract in Boston Standard

Metropolitan Statistical Areas. The variable of primary interest is the median

value, in thousands of dollars, of owner occupied homes. The 13 explanatory

variables include the per capita crime rate by town, average number of rooms

per house, and percentage of households with low socioeconomic status, among

others.

Fitting the supervised inverse regression model (3.1), with the cubic poly-

nomial basis, resulted in BIC choosing d = 2, suggesting that two linear com-

binations of the 13 predictors are sufficient. The top panel of Figure 3 shows a

two-dimensional plot of the 506 observations, with coordinates computed using

(4.1). We see a horseshoe-like pattern in the data cloud. We also see an as-

sociation between the response and the coordinates, similar to that in the toy

example. For comparison purposes, we also carried out CMDS. In the bottom

panel, the ordination of the first two CMDS coordinates is shown. The unsuper-

vised method failed to show any useful relationship.

Figure 4 shows plots of the response versus the SRIR coordinates. The
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Figure 3. Two-dimensional plots for the Boston housing data. Top: The axes represent
the first and second SRIR coordinates. Down: The axes represent the first and second
CMDS coordinates.

upper panel shows a strong linear relation between the response and the first

SRIR coordinate. In the lower panel, we see a nonlinear association between the

response and the second SRIR coordinate.

6. Discussion

Linear reduction methods aim to construct a few linear combinations of the

original predictors for subsequent analyses. Nearly all existing methods estimate

a subspace in the primal predictor-based space, and then obtain the set of reduced

predictors by projecting the original predictor vector onto this subspace. We have

proposed a principled reduction method in a dual sample-based space, based

on a supervised inverse regression model. Instead of estimating the subspace,

our method directly estimates the projection coordinates of the predictor vector

onto the subspace. The results extend the well-known duality between principal

component analysis and CMDS.
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Figure 4. Boston housing data. Top: Response versus the first SRIR coordinate. Down:
Response versus the second SRIR coordinate.

Computating SRIR has the same order of computation as that of the max-

imum likelihood estimation (Cook and Forzani (2008)). However, our method

has a smaller computational cost than that of the maximum likelihood method

in terms of generating the reduction for the observed data. Specifically, the com-

putational complexity of the former is O(d × n × r2), and that of the latter is

O(d× n× p2).
We have presented the theoretical properties of our method, supported by

simulation results. As with most reduction methods, we have adopted the tradi-

tional asymptotic reasoning of letting the sample size n→∞, with the number

of predictors p fixed. Our method requires the inverse of the residual sample

covariance matrix, and hence is problematic when p is comparable to, or even

larger than n. Regularized versions in the dual space have a strong practical

appeal, and are currently under investigation.
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Our method is related to a nonparametric multivariate analysis procedure

in ecological studies (Mcardle and Anderson (2001)), known as a permutation

multivariate analysis of variance. This procedure partitions the variability in

multivariate ecological data according to factors in an experimental design. The

underlying intuition is the duality between X>X, an inner product matrix in

the primal space, and XX>, an outer product matrix in the dual space, in the

sense that trace(X>X) = trace(XX>). This equivalence is important, because

an outer product matrix can be obtained from any symmetric distance matrix

D = (dij) ∈ Rn×n (Gower (1966)). In particular, for a p × p positive-definite

matrix B, if we let dij(B) = (x i− x j)
>B(x i− x j), then XBX> = −PnDPn/2,

where Pn is the centering matrix. Similarly to the permutation multivariate

analysis of variance, we can extend our supervised reduction method, based solely

on measures of distance or dissimilarity between pairs of observations, without

assuming the inverse regression model. Alternatively, under a notion of nonlinear

sufficient reduction (Zhang et al. (2008)), it is possible to derive a kernel extension

of the proposed method. These topics are left to future research.

Supplementary Material

The online Supplementary Material contains proofs of the relevant lemmas

and theorems.
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