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S1. Justifications for κv

Recall U = (W, δ,D,X). It is easy to see that

E(D(1− V )|U ) = P (D(1− V ) = 1|U) = P (D1 = D0 = 1|U)P (V = 0|D1 = D0 = 1,U)

= P (D1 = D0 = 1|U)P (V = 0|D1 = D0 = 1,W1 = min(T1, C), δ1 = I(T1 ≤ C),X)

= P (D1 = D0 = 1|U)P (V = 0|X).

The last equality uses the aforementioned assumption that censoring is independent of the

instrumental variable V conditional on X and the assumption of joint independence of

(D1, D0, T1, T0) and V conditional on X.

Similarly, E((1−D)V |U) = P (D1 = D0 = 0|U)P (V = 1|X). It then follows that

κv = E

{
1− D(1− V )

P (V = 0|X)
− (1−D)V

P (V = 1|X)
|U
}
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= 1− P (D1 = D0 = 1|U)− P (D1 = D0 = 0|U ) = P (D1 > D0|U).

The result above indicates that κv is always nonnegative. The justification for using

the projected weight E(κ|U) follows from the arguments in Abadie et al. (2002)

S2. Regularity conditions and proofs of Theorems 1–2

We first introduce some new notation. Define

Ūn,κ(β) =
1√
n

n∑
i=1

∫ ∞
0

κi

[
Zi −

{
s

(1)
c (β, s)

s
(0)
c (β, s)

}]
dMi(s),

En,κ(β, t) =
S

(1)
n,κ(β,t)

S
(0)
n,κ(β,t)

, En,κ̂(β, t) =
S

(1)
n,κ̂(β,t)

S
(0)
n,κ̂(β,t)

, ec(β, t) = s
(1)
c (β,t)

s
(0)
c (β,t)

, Vn,κ(β, t) =
S

(2)
n,κ(β,t)

S
(0)
n,κ(β,t)

−

En,κ(β, t)
⊗2, Vn,κ̂(β, t) =

S
(2)
n,κ̂(β,t)

S
(0)
n,κ̂(β,t)

−En,κ̂(β, t)
⊗2, and vc(β, t) = s

(2)
c (β,t)

s
(0)
c (β,t)

− ec(β, t)⊗2. Let

Σ0 =

∫ ∞
0

vc(β0, t)s
(0)
c (β0, t)h0(t)dt. (B.1)

We let ‖ · ‖ denote Euclidean norm.

Proof of Theorem 1: Define φ(α,O) ≡ 1 − D(1−V )
1−ψ(α,X)

− (1−D)V
ψ(α,X)

, and Qn(α,β) =

n−1/2Un,φ(α,O)(β). ThenQn(α0,β) = n−1/2Un,κ(β) andQn(α̂,β) = n−1/2Un,κ̂(β). Under

conditions (C1)-(C3), we have ‖∂Qn(α,β)/∂α‖ is bounded in a neighborhood of α = α0.

Given α̂ is a consistent estimator of α0 (i.e condition (C5)), applying Taylor expansion to

Qn(α̂,β) around α = α0 implies that

sup
β∈B
‖n−1/2{Un,κ̂(β)−Un,κ(β)}‖ →a.s. 0. (B.2)
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By the Glivenko-Cantelli Theorem (van der Vaart and Wellner, 1996), we can show

under conditions (C1)-(C2) that

sup
β∈B,t

‖n−1S(j)
n,κ(β, t)− s(j)

c (β, t)‖ →a.s. 0, j = 0, 1.

Given condition (C3), this implies supβ∈B,t ‖En,κ(β, t)− ec(β, t)‖ →a.s. 0. Then,

sup
β∈B
‖Un,κ(β)− Ūn,κ(β)‖ ≤ n−1/2

n∑
i=1

∫ ∞
0

‖En,κ(β, s)− ec(β, s)‖dMi(s)

≤ sup
β∈B,t

‖En,κ(β, t)− ec(β, t)‖ · {n−1/2

n∑
i=1

∫ ∞
0

dMi(s)} = o(1), a.s. (B.3)

By the results in Abadie (2003) and an application of the Glivenko-Cantelli Theorem

(van der Vaart and Wellner, 1996), we get

sup
β∈B
‖Ūn,κ(β)− µc(β)‖ = o(1), a.s. (B.4)

It follows from (B.2),(B.3), and (B.4) that

sup
β∈B
‖n−1/2Un,κ̂(β)− µc(β)‖ = o(1), a.s. (B.5)

By condition (C4), µc(β) is a concave function with a unique maximizer β = β0. Sup-

pose β̂ does not converge to β0, a.s. Then P (E) > 0, where E={∃ a subsequence nk such

that β̂nk → β∗ 6= β0}. By the definition of β̂, we have n−1/2Un,κ̂(β̂nk) ≥ n−1/2Un,κ̂(β0)

in E , which implies µc(β
∗) ≥ µc(β0) given (B.5). This contradicts the fact that β0 is the

unique maximizer of µc(β). Therefore, we have β̂ →a.s. β0.
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Proof of Theorem 2: Define Ai(β) =
∫∞

0
κi{Zi − En,κ(β, s)}dNi(s), Âi(β) =∫∞

0
κ̂i{Zi − En,κ̂(β, s)}dNi(s). Then

0 = Un,κ̂(β̂) = Un,κ(β̂) + n−1/2

n∑
i=1

{Âi(β̂)−Ai(β̂)}. (B.6)

Given the consistency of β̂, the Taylor expansion of Un,κ(β) around β = β0 gives

Un,κ(β̂) ≈ Un,κ(β0)−ϕn(β0)
√
n(β̂ − β0) + o(1), (B.7)

where ϕn(β) = 1
n

∑n
i=1

∫∞
0
κiVn,κ(β, s)dNi(s), and ≈ means the difference is o(1), a.s.

On the other hand, we can write

n−1/2

n∑
i=1

{Âi(β)−Ai(β)} = n−1/2

n∑
i=1

(κ̂i − κi){Zi −En,κ(β, s)}dMi(s)

−n−1/2

n∑
i=1

κ̂i{En,κ̂(β, s)−En,κ(β, s)}dMi(s).

Define Dφ(α,O) = ∂φ(α,O)/∂αT . Note that Dφ(α0,O) is bounded under conditions

(C2). This implies supi |κ̂i−κi| = o(1), a.s. given condition (C5). By the Taylor expansion

of φ(α,Oi) around α = α0 and condition (C6), we have

n1/2(κ̂i − κi) = φ(α̂,Oi)− φ(α0,Oi) ≈Dφ(α0,Oi)n
1/2(α̂−α0)

= n−1/2

n∑
j=1

Dφ(α0,Oi)Iα(α0,Oj) ≡ n−1/2

n∑
j=1

Iκ(α0, Oj, Oi) (B.8)

Given these results, we can further approximate n−1/2
∑n

i=1{Âi(β)−Ai(β)} as follows.

First, using the fact that supi |κ̂i−κi| = o(1), a.s. and applying the Glivenko-Cantelli

Theorem to En,κ and En,κ̂, we get

n−1/2

n∑
i=1

{Âi(β)−Ai(β)} ≈ n−1/2

n∑
i=1

(κ̂i − κi){Zi − ē(α0,β, s)}dMi(s)
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−n−1/2

n∑
i=1

κi{ē(α̂,β, s)− ē(α0,β, s)}dMi(s) ≡ (I)− (II) (B.9)

where ē(α,β, t) = s̄(1)(α,β, t)/s̄(0)(α,β, t) and s̄(j)(α,β, t) = E[φ(α,O)Y (t)Z⊗j

exp{βTZ}|D1 > D0], j = 0, 1, 2.

Secondly, plugging in (B.8) into (I), coupled with standard manipulations, leads to

(I) = n−1/2

n∑
i=1

(
n−1

n∑
j=1

[
Iκ(α0,Oi,Oj)

∫ ∞
0

{Zj − ec(β, s)}dMj(s)

])

≈ n−1/2

n∑
i=1

IA,(I)(α0,β,Oi), (B.10)

where IA,(I)(α0,β,Oi) = EO
[
Iκ(α0,Oi,O)

∫∞
0
{Z − ec(β, s)}dM(s)

]
and EO stands for

expectation with respect to O.

Thirdly, assessing ē(α̂,β, s) − ē(α0,β, s) through the Taylor expansion and using

condition (C6), we derive that

(II) ≈ n−1/2

n∑
i=1

{
n−1

n∑
j=1

∫ ∞
0

φ(α0,Oj)Dē(α0,β, s)dMj(s)

}
Iα(α0,Oi)

≈ n−1/2

n∑
i=1

IA,(II)(α0,β,Oi) (B.11)

where Dē(α,β, t) = ∂ē(α,β, t)/∂α, and IA,(II)(α0,β,Oi) =

EO{
∫∞

0
φ(α0,O)Dē(α0,β, s) dM(s)} ·Iα(α0,Oi).

Define IA(α,β,Oi) = IA,(I)(α,β,Oi) − IA,(II)(α,β,Oi) and ai(β) =∫∞
0
κi {Zi − ec(β, s)} dMi(s). It follows from (B.6), (B.7), (B.9), (B.10), and (B.11) that

n1/2(β̂ − β0) ≈ {ϕn(β0)}−1{Ūn,κ(β0) + n−1/2

n∑
i=1

IA(α0,β0,Oi)}
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= n−1/2

n∑
i=1

{ϕn(β0)}−1{ai(β0) + IA(α0,β0,Oi)}

By the Central Limit Theory, we have

n1/2(β̂ − β0)→d N(0,Ω),

where

Ω = E([{ϕn(β0)}−1{ai(β0) + IA(α0,β0,O)}]⊗2). (B.12)

S3. Generalizations to complex survival settings

Survival data are often subject to complications other than random right censoring, for

example, left truncation, competing risks, and recurrent events. The proposed weighting

scheme can be readily adapted to accommodate these additional data complexities.

Left truncation: Suppose the survival time T is subject to left truncation by L.

We observe Õ ≡ (W̃ , δ̃, L̃, D̃, X̃, Ṽ ), where Õ follows the conditional distribution of

(W, δ, L,D,X, V ) given L < W . Let Õi ≡ (W̃i, δ̃i, L̃i, D̃i, X̃i, Ṽi) be the sample analogue

of Õ. Assume that (L,C) is independent of T given (V,D,X), and (L,C) is independent

of V given X.

Define Ñ(t) = I(L̃ < W̃ ≤ t, δ = 1), Ỹ (t) = I(W̃ ≥ t > L̃), and M̃(t) ≡ Ñ(t) −∫ t
0
Ỹ (s) exp(βT0 Z)h0(s)ds. The partial likelihood score equation under left truncation (An-

dersen et al., 2012) suggests that µ̃c(β0) = 0, where

µ̃c(β) = E

[∫ ∞
0

{
Z̃ − s̃

(1)
c (β, s)

s̃
(0)
c (β, s)

}
dM̃(s)

∣∣∣∣D1 > D0, L < W

]
,
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where s̃
(j)
c (β, s) = E(Ỹ (s)Z̃⊗jeβ

T Z̃|D1 > D0, L < W ) (j = 0, 1, 2). Applying the same

technique shown in (3), one can establish that

µ̃c(β) =
1

Pr(D1 > D0|L < W )
E

[
κ̃

∫ ∞
0

{
Z̃ − s̃

(1)
c (β, s)

s̃
(0)
c (β, s)

}
dM̃(s)

∣∣∣∣L < W

]
, (C.1)

where

κ̃ = 1− D̃(1− Ṽ )

Pr(Ṽ = 0|X̃, L < W )
− (1− D̃)Ṽ

Pr(Ṽ = 1|X̃, L < W )

and

s(j)
c (β, s) =

E(κlỸ (s)Z̃⊗jeβ
T Z̃|L < W )

Pr(D1 > D0, L < W )
, j = 0, 1, 2.

The result in (C.1) suggests a simple adaptation of the proposed method to the case

with random left truncation, where the main modification is to replace Zi, Yi(t), Ni(t) in

Un,κ(β) by Z̃i, Ỹi(t), Ñi(t) respectively. The weights κ̂ or κ̂v can be calculated in the same

way as in Section 2.3 and 2.5 based on D̃i, Ṽi, X̃i, W̃i observed under left truncation.

Competing risks: Consider a typical competing risks setting with K types of com-

peting failures. Let T = min(T1, . . . , TK), where Tk denotes the latent event time to failure

type k (k = 1, . . . , K). Let C denote time to random censoring for T , which satisfies the

same censoring assumptions stated in Section 2.3. Let W = min(T,C) and define η as 0

if T > C and the type of failure otherwise. We observe (T, η, V,D,X).

When the interest lies in the minimal event time T , one can simply apply the proce-

dures in Section 2.3-2.5 to the observed data on (T, I(η 6= 0), V,D,X). This is appropriate

because T , when treated as a survival outcome of interest, is only subject to random cen-

soring by C, and I(η 6= 0) indicates whether T is observed or not.
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When the interest pertains to a specific type of failure, say type k, we propose to

consider the following variant of model (1) to define the causal treatment effect of interest:

hk(t;D,X) = hk,0(t) exp{βd,kD + βTx,kX}, (C.2)

where hk(t;D,X) is the type-k cause-specific hazard function for compliers defined as

hk(t;D,X) = lim
∆t→0

Pr(t ≤ T ≤ t+ ∆t|T ≥ t, δ = k,D1 > D0, D,X)

∆t
,

and hk,0(t) is an unspecified baseline cause-specific hazard at time t for type k. Under

model (C.2), βd,k represents the causal treatment effect on the type-k cause-specific hazard

for compliers after adjusting for covariates in X. When all subjects are compliers, one

can estimate model (C.2) using a slightly modified partial likelihood score equation, which

is (2) with I(η = k) replacing δ (Kalbfleisch and Prentice, 2011). Following the same

arguments for justifying the weighting technique presented in Section 2.3, we can show

that incorporating κ̂ or κ̂v into this modified score equation yields an unbiased estimating

equation for βx,k. In other words, naively treating the competing risks for type-k failure as

independent censoring events and applying the proposed IV method for randomly censored

data lead to legitimate estimation and inference for the causal treatment effect on the type-

k cause-specific hazard.

Recurrent events: In survival settings, the event of interest may occur repeatedly

over time. The proportional hazards model can be naturally extended to a proportional

intensity model to accommodate recurrent events (Andersen and Gill, 1982). Let T (j)
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denote the j-th recurrent event. Define N∗(t) =
∑∞

j=1 I(T (j) ≤ t) and N r(t) =
∑∞

j=1 I(L <

T (j) ≤ R), which respectively represent the underlying and the observed counting processes

of recurrent events. Here (L,R] denotes the time window in which recurrent events are

observed. We assume L and R are independent of V givenX and are independent of T (j)’s

conditional on (V,D,X). Let Y r(t) = I(L < t ≤ R), which denotes the at-risk process. A

causal proportional intensity model is defined similarly to the Cox’s proportional hazards

model (1):

λ(t) = λ0(t) exp{βr,dD + βTr,xX}, (C.3)

where λ(t) denotes the intensity function associated with N∗(·) given compliers (i.e. D1 >

D0), and λ0(t) is an unspecified baseline intensity function. The causal treatment effect

on the recurrent events for compliers is captured by βr,d. As shown by Andersen and Gill

(1982), in the setting where all subjects are compliers, βr,d can be estimated by equation

(2) with N r(·) in place of N(·) and Y r(·) in place of Y (·). Adapting the weighting technique

developed in Section 2.3 and 2.5, we can similarly modify the estimating equation for βr,d

by incorporating weights κ̂ or κ̂v. That is, we can obtain an unbiased estimate for βr,d by

solving the equation (7) with N r(·) and Y r(·) in place of N(·) and Y (·).

S4. Supplemental Figures and Tables

Below we provide two figures showing the objective function and estimating function sur-

faces for the three proposed estimators. These were selected to demonstrate the numerical
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issues present in the approach and why convergence sometimes fails, and the benefits of

the modified and truncated weight κ̂v,tr. The figures also demonstrate why we prefer to

utilize the objective function over the estimating equation.
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Figure 1: Non-converged dataset from simulation 2 case 1. The left

column shows the objective function for κ, κv, κv,tr, respectively. The

right column shows the estimating function plots for methods, κ, κv,

κv,tr, respectively
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Figure 2: Dataset from scenario 2 case 1 with converged estimate. The

left column shows the objective function for κ, κv, κv,tr, respectively.

The right column shows the estimating function plots for κ, κv, κv,tr,

respectively
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