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1. Proof of Proposition 1 and Corollary 1

Consider the following constraint optimization scheme in (3.2):

min
θ,v

l(θ) + P (v),

s.t. Dβ = v,

(11)

where l(θ) is the original objective function, P (v) =
∑
i<j Pτ (‖vij‖, λf ) is the penalty function,

θ = (α′,β′)′, β = ({β′i}1≤i≤N )′ and (v = {v′ij}1≤i<j≤N )′ are the aggregated grand parameter

vectors, and D is the matrix defined in Section 3.2, yielding the pairwise constraints βi −βj −

vij = 0 for 1 ≤ i < j ≤ N . The corresponding augmented Lagrangian function is

Lκ(θ,v,λ) = l(θ) + P (v) +
κ

2
‖Dβ − v‖2 + λT (Dβ − v),

where λ = (λ′ij)
′
1≤i<j≤N is the Lagrangian multiplier and κ is the fixed augmented parameter.
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To establish the convergence of the ADMM algorithm, we assume the following regularity

conditions (?) on the objective function l(θ) and the penalty function P (v).

R1. (coercivity) g(θ,v) = l(θ)+P (v) is coercive on the feasible set, that is, g(θ,v)→∞

if ‖(θ′,v′)′‖ → ∞ on the set {θ,v : Dβ = v}, and g(θ,v) is lower bounded on the

feasible set ;

R2. (smoothness) l(θ) and P (v) are Lipschitz differentiable, that is, the gradients of l(θ)

and P (v) are Lipschitz continuous with Lipschitz constants Ll and Lp, respectively ;

R3. (Lipschitz sub-minimization paths) For any u ∈ Im(D), where Im(D) denotes

the image of matrix D, there is a unique minimizer θ̂(u) = argminθ{l(θ) : Dβ = u},

and the mapping θ̂(u) : Im(D) → RNp+q is Lipschitz continuous, that is, there exists

Cl > 0, for any u1,u2 ∈ Im(D), such that ‖θ̂(u1)− θ̂(u2)‖ ≤ Cl‖u1 − u2‖.

We establish the convergence results of the proposed ADMM algorithm based on the

following properties summarized by ?.

P1. (Continuity) Lκ(θ,v,λ) is continuous with respect to (θ,v,λ);

P2. (Boundedness) Lκ(θ(s),v(s),λ(s)) is lower bounded, and {θ(s),v(s),λ(s)} is bounded ;

P3. (Sufficient Descent) There exists C1(κ) > 0 such that for any sufficiently large κ,

Lκ(θ(s),v(s),λ(s))−Lκ(θ(s+1),v(s+1),λ(s+1)) ≥ C1(κ)
(
‖D(β(s+1) − β(s))‖2 + ‖v(s+1) − v(s)‖2

)
;

P4. (Bounded subgradient) There exists C2(κ) > 0 and d(s) ∈ ∂Lκ(θ(s),v(s),λ(s)), where
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∂ denotes the general subgradient operator, such that

‖d(s)‖ ≤ C2(κ)
(
‖D(β(s+1) − β(s))‖+ ‖v(s) − v(s−1)‖

)
.

Suppose P1-P4 hold for the generated sequence {θ(s),v(s),λ(s)}, it is standard to show that

the sequence has at least one limit point, and each limit point a stationary point. P2 implies that

the sequence (θ(s),v(s),λ(s)) converges subsequentially, that is, limt→∞(θ(st),v(st),λ(st)) =

(θ∗,v∗,λ∗), where each limit point is bounded. By P2 and P3, Lκ(θ(s),v(s),λ(s)) is monotoni-

cally decreasing and lower bounded, yielding that ‖D(β(s+1)−β(s))‖ → 0 and ‖v(s+1)−v(s)‖ →

0 as s → ∞. Thus, by P4, we have ‖d(s+1)‖ → 0, in particular, ‖d(st)‖ → 0. By continuity in

P1, it follows that limt→∞ Lκ(θ(st),v(st),λ(st)) = Lκ(θ∗,v∗,λ∗) and thus 0 ∈ ∂Lκ(θ∗,v∗,λ∗).

Note that the convergence results based on P1-P4 is general and also applies to the non-

differentiable objective functions. In this paper, we assume lNn(θ) and P (v) are differentiable

(R2), and thus the subgradient “∂” can be simply replaced by the regular gradient “∇”.

Next, we check P1-P4 with regulation conditions R1-R3 assumed. P1 holds naturally given

R3. In order to show P2-P4, we first give some useful lemmas under R1-R3.

Lemma 1. Im(D) ⊂ Im(IpN(N−1)/2), where Im(IpN(N−1)/2) is the identity matrix.

Lemma 2. For sequence {θ(s),v(s),λ(s)}, there exists a constant M > 0 such that, ∀s1, s2 ∈ N,

‖θ(s1) − θ(s2)‖ ≤M‖Dβ(s1) −Dβ(s2)‖.

Lemma 3. There exists Cp > 0, ∀s ∈ N, such that ‖λ(s+1) − λ(s)‖ ≤ Cp‖v(s+1) − v(s)‖.
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Proof of Lemma 1- Lemma 3 : Lemma 1 is trivial. Given R3, Lemma 2 directly follows

the results of Lemma 1 in ? by noting that the primal feasibility constraint can be rewritten as

diag (0q×q,D)θ = (01×q,v
′)′, where diag(·, ·) denotes a block-diagonal matrix. For Lemma 3,

since v(s+1) minimizes Lκ(θ(s+1),v,λ(s)), we have

∇P (v(s+1))− λ(s) − κ(Dβ(s+1) − v(s+1)) = 0,

and thus λ(s+1) = ∇Pτ (v(s+1)) by noting λ(s+1) = λ(s) + κ(Dβ(s+1) − v(s+1)). Hence,

‖λ(s+1) − λ(s)‖ = ‖∇P (v(s+1))−∇P (v(s))‖ ≤ Lp‖v(s+1) − v(s)‖

holds based on the Lipschitz continuity on ∇P by R2. �

Next we show P3 holds with a sufficiently large κ.

Proof of P3 : Since θ(s+1) minimizes Lκ(θ,v(s),λ(s)), it satisfies the optimality condition:

0 = ∇βl(θ(s+1)) +DTλ(s) + κDT (Dβ(s+1) − v(s)),

0 = ∇αl(θ(s+1)).
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Thus, the descent by updating θ can be controlled by

Lκ(θ(s),v(s),λ(s))− Lκ(θ(s+1),v(s),λ(s))

= l(θ(s))− l(θ(s+1)) + (Dβ(s) −Dβ(s+1))Tλ(s) +
κ

2

(
‖Dβ(s) − v(s)‖2 − ‖Dβ(s+1) − v(s)‖2

)
= l(θ(s))− l(θ(s+1)) +

(
Dβ(s) −Dβ(s+1)

)T
λ(s) +

κ

2

(
Dβ(s) −Dβ(s+1)

)T
(Dβ(s) − v(s) +Dβ(s+1) − v(s))

= l(θ(s))− l(θ(s+1)) +
κ

2
‖Dβ(s) −Dβ(s+1)‖2 +

(
Dβ(s) −Dβ(s+1)

)T
(λ(s) + κ(Dβ(s+1) − v(s)))

= l(θ(s))− l(θ(s+1))−∇βl(θ(s+1))T (β(s) − β(s+1)) +
κ

2
‖Dβ(s) −Dβ(s+1)‖2

≥ −Ll
2
‖θ(s) − θ(s+1)‖2 +

κ

2
‖Dβ(s) −Dβ(s+1)‖2

≥ κ−MLl
2

‖Dβ(s) −Dβ(s+1)‖2,

where the first inequality holds because of

|l(θ(s))− l(θ(s+1))−∇βl(θ(s+1))T (β(s) − β(s+1))| = |l(θ(s))− l(θ(s+1))−∇θl(θ(s+1))T (θ(s) − θ(s+1))|

≤ Ll
2
‖θ(s) − θ(s+1)‖2

by condition R2, and the second inequality holds based on Lemma 2.
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Next we consider updating (v,λ) with κ ≥ 2Lp:

Lκ(θ(s+1),v(s),λ(s))− Lκ(θ(s+1),v(s+1),λ(s+1))

= Pτ (v(s))− Pτ (v(s+1)) + (Dβ(s+1) − v(s))Tλ(s) − (Dβ(s+1) − v(s+1))Tλ(s+1)

+
κ

2

(
‖Dβ(s+1) − v(s)‖2 − ‖Dβ(s+1) − v(s+1)‖2

)
= P (v(s))− P (v(s+1))−∇P (v(s+1))T (v(s) − v(s+1)) +

κ

2
‖v(s) − v(s+1)‖2 − 1

κ
‖λ(s) − λ(s+1)‖2

≥ −Lp
2
‖v(s) − v(s+1)‖2 +

κ

2
‖v(s) − v(s+1)‖2 −

L2
p

κ
‖v(s) − v(s+1)‖2

≥ κ− 2Lp
2

‖v(s) − v(s+1)‖2 ≥ 0,

where the first inequality holds based on R2 and Lemma 3. By adding the above results together,

it follows that

Lκ(θ(s),v(s),λ(s))−Lκ(θ(s+1),v(s+1),λ(s+1)) ≥ κ−MLl
2

‖D(β(s)−β(s+1))‖2+
κ− 2Lp

2
‖v(s)−v(s+1)‖2.

With a sufficiently large κ > max(MLl, 2Lp), let C1(κ) = max(κ−MLl
2

,
κ−2Lp

2
), the proof is

completed. This also indicates that if κ is large enough, all sub-optimization-problems are

solvable and the generated sequence of function values of Lκ is monotonically decreasing. �

Based on the above results, we prove P2 and the following lemma.

Lemma 4. lim
s→∞

‖D(β(s+1)−β(s))‖2 = 0, lim
s→∞

‖v(s+1)−v(s)‖2, and lim
s→∞

‖λ(s+1)−λ(s)‖2 = 0.

Proof of P2 and Lemma 4 : By R2, Lκ(θ(s),v(s),λ(s)) is lower bounded; From P3, we

have Lκ(θ(s),v(s),λ(s)) ≤ Lκ(θ(0),v(0),λ(0)) for all s ∈ N, implying that Lκ is also upper

bounded and thus g(θ(s),v(s)) is upper bounded. Given R1, we have (θ(s),v(s)) bounded.
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Moreover, by the proof of Lemma 3, λ(s) = −∇P (v(s)) is also bounded. The first two terms

in Lemma 4 directly follows P2 and P3 by noting that Lκ(θ(s),v(s),λ(s)) converges. The last

term holds based on Lemma 3. Lemma 4 also implies that lims→∞ ‖r(s)‖ = 0 by noting that

r(s) = 1
κ

(λ(s+1) − λ(s)).

Next we we show the results of P4 regarding the bounded subgradient. Note that by R2,

Lκ is differentiable and thus we are using the gradient instead.

Proof of P4 : Note that

‖∇vLκ(θ(s),v(s),λ(s))‖ = ‖∇vP (v(s))− λ(s) − κ(Dβ(s) − v(s))‖

= ‖λ(s) − λ(s−1)‖

≤ Lp‖v(s) − v(s−1)‖,

and

‖∇θLκ(θ(s),v(s),λ(s))‖ = ‖∇βl(θ(s)) +DTλ(s) + κDT (Dβ(s) − v(s))‖

= ‖∇βl(θ(s))−∇θl(β(s+1)) + κDTD(β(s) − β(s+1))‖

≤ Ll‖θ(s) − θ(s+1)‖+ κλmax(D)‖D(β(s) − β(s+1))‖

≤ (LlM + κλmax(D))‖D(β(s+1) − β(s))‖,

where λ2
max(D) is the largest eigenvalue ofDTD, and the last inequality holds based on Lemma
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2. Moreover, we have

‖∇λLκ(θ(s),v(s),λ(s))‖ = ‖Dβ(s) − v(s)‖

=
1

κ
‖λ(s) − λ(s−1)‖

≤ Lp
κ
‖v(s) − v(s−1)‖.

Let C2(κ) = max(Lp, LlM + κλmax(D),
Lp

κ
), we have

‖∇Lκ(θ(s),v(s),λ(s))‖ ≤ C2(κ)

(
‖D(β(s+1) − β(s))‖+ ‖v(s) − v(s−1)‖

)
. �

Consequently, we complete the proof that, under the regularity conditions R1-R3, prop-

erties P1-P4 hold for the ADMM algorithm applied to the problem (11), and thus Propo-

sition 1 holds. Next, we show Corollary 1 by checking the regulation conditions R1-R3 on

the considered negative log-quasi-likelihood function lNn(θ) and the MCP penalty function

Pτ (v) =
∑
i<j P (‖vij‖, λf ).

Proof of Corollary 1 : The coercivity (R1) of lNn(θ) naturally holds if the binary outcomes

of each individual are not perfectly separable, that is,

lim sup
‖θ‖→∞

n∑
j=1

2(yij −
1

2
)sign(XT

ijβi +ZTijα) < n, 1 ≤ i ≤ N.

Thus, g(θ,v) is coercive and also lower bounded by 0. In addition, note that the Jacobian

matrices ∇2lNn(θ) and ∂ ◦ ∇P (v) are both bounded, hence, lNn(θ) and P (v) are Lipschitz

differentiable (R2). In fact, R1 and R2 hold for a variety of penalty functions including the

MCP and the SCAD as well as some non-differentiable functions such as the Lp-norm (p > 1)
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and the TLP, following a similar verification.

As for condition R3, for any u ∈ Im(D), we can rewrite the constraint {β : Dβ = u} to

{β : βi = β1 + ui1, 1 ≤ i ≤ N,β1 ∈ Rp,u11 = 0}. Therefore, the objective function turns to

be lNn(θ|u) = lNn(α,β1|{ui1}2≤i≤N ), and the corresponding quasi-likelihood score function is

gNn(α,β1|u) =

N∑
i=1

DT
i V

−1
i

(
Yi − µi(α,β1|ui1)

)
,

which is analogues to the generalized estimating equation (?). Therefore, the Jacobian matrix of

gNn is well approximated by J(gNn) =
∑N
i=1D

T
i V

−1
i Di =

∑N
i=1X

T
i R
−1
i Xi, whose eigenvalues

are bounded and, in particular, are bounded away from zero under some regularity conditions.

Consequently, by R2, |gNn(α,β1|u1)−gNn(α,β1|u2)| is uniformly bounded by ‖u1−u2‖ for all

α and β1, and thus ‖ argmin
α,β1

gNn(α,β1|u1)−argmin
α,β1

gNn(α,β1|u2)‖ is also uniformly bounded

by ‖u1−u2‖ with some constant, yielding the condition R3. Therefore, Proposition 1 holds. �

2. Notations and Regularity Conditions

We define

CNn(θ) =

N∑
i=1

Di(θ)TAi(θ)−1/2R(ρ)−1Ai(θ)−1/2Di(θ),

and

DNn(θ) = −∂gNn(θ)

∂θT
,MNn(θ) = cov(gNn(θ)).

When the subgrouping membership is known, we define the following notations with respect

to η:

C∗Nn(η) =

N∑
i=1

D∗
i (η)TAi(η)−1/2R(ρ)−1Ai(η)−1/2D∗

i (η),
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and

D∗Nn(η) = −∂g
∗
Nn(η)

∂ηT
,M∗Nn(η) = cov(g∗Nn(η)).

Without loss of generality, we rearrange the order of subjects such that they are clustered

according to membership. Then the explicit form for C∗Nn(η) is:

C∗Nn(η) =



∑
i,G(i)=1

XT
i MiXi

∑
i,G(i)=1

XT
i MiZi

. . .
...∑

i,G(i)=K

XT
i MiXi

∑
i,G(i)=K

XT
i MiZi

∑
i,G(i)=1

ZTi MiXi · · ·
∑

i,G(i)=K

ZTi MiXi
∑
i

ZTi MiZi


,

where Mi = Ai(θ)1/2R(ρ)−1Ai(θ)1/2. For any fixed N , we simplify our notation for CNn(θ) to

be Cn(θ), similarly for DNn(θ),MNn(θ), QNn(θ), lNn(θ), C∗Nn(η), D∗Nn(η),M∗Nn(η), Q∗Nn(η)

and l∗Nn(η).

Regularity conditions:

(A1): Cn(θ0) and Mn(θ0) are positive definite.

(A2): For any given r > 0 and ζ > 0,

P

(
sup

θ∈Bn(r)

‖Cn(θ0)−1/2Dn(θ)Cn(θ0)−1/2 − I‖ < ζ

)
→ 1,

where Bn(r) = {θ : ‖τ−1/2
n Cn(θ0)1/2(θ − θ0)‖ ≤ r}.

(A3): C∗n(η0) and M∗n(η0) are positive definite.
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(A4): For any given r > 0 and ζ > 0,

P

(
sup

η∈B∗
n(r)

‖C∗n(η0)−1/2D∗n(η)C∗n(η0)−1/2 − I‖ < ζ

)
→ 1,

where B∗n(r) = {η : ‖τ−1/2
n C∗n(η0)1/2(η − η0)‖ ≤ r}.

(A5): There exist constants c1 and c2, such that c1 < λmin(R(ρ)) ≤ λmax(R(ρ)) < c2.

(A6): Assume that C1n < λmin(XT
i Xi) ≤ λmax(XT

i Xi) < C2n and C1n < λmin(ZTi Zi) ≤

λmax(ZTi Zi) < C2n for some constants C1 and C2.

(A7): Assume b = min
i,j
{σij} is bounded away from zero.

3. Proof of Theorem 1

We first show that for any fixed N , there exists a local minimizer θ̂ ∈ Bn(r) of our objective

function with probability going to 1. It suffices to prove that

P

{
inf

θ∗∈∂Bn(r)
Ln(r) > 0

}
→ 1,

where ∂Bn(r) is defined as the boundary of the Bn(r), and Ln(r) = Qn(θ∗) − Qn(θ0) =

ln(θ∗, ρ)− ln(θ0, ρ)︸ ︷︷ ︸
I(1)

+Pn(β∗)− Pn(β0)︸ ︷︷ ︸
I(2)

, where Pn(β) =
∑

1≤i<j≤N ρτ (βi − βj , λ).

By Taylor expansion,

I(1) = ˙ln(θ0)T (θ∗ − θ0) +
1

2
(θ∗ − θ0)T l̈n(θ∗∗)(θ∗ − θ0),

where θ∗∗ is between θ0 and θ∗. Thus θ∗∗ ∈ Bn(r). As θ∗ ∈ ∂Bn(r), we have τ
−1/2
n Cn(θ0)1/2(θ∗−
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θ0) = rd for some vector d and ‖d‖ = 1. Therefore,

I(1) = τn

{
−rτ−1/2

n dTCn(θ0)−1/2gn(θ0) +
1

2
r2dTCn(θ0)−1/2Dn(θ∗∗)Cn(θ0)−1/2d

}
.

Let r =
√

2(Np+q)

c21ε
for some constant c1 > 0 and ε > 0, we have the following by the Chebychev

inequality:

P

(
τ−1/2
n ‖Cn(θ0)−1/2gn(θ0)‖ ≤

√
2(Np+ q)

ε

)
= P (τ−1/2

n ‖Cn(θ0)−1/2gn(θ0)‖ ≤ c1r)

≥ 1− E‖Cn(θ0)−1/2gn(θ0‖2

c21r
2τn

= 1− trace(Cn(θ0)−1Mn(θ0))

c21r
2τn

≥ 1− ε/2.

In addition, τ
−1/2
n |dTCn(θ0)−1/2gn(θ0)| ≤ ‖d‖ · ‖τ−1/2

n Cn(θ0)−1/2gn(θ0)‖ = Op(1). Therefore,

along with condition (A2), we have the second term in I(1) dominates when c1 is small enough

or r is large enough. This implies that I(1) > 0 for θ∗ ∈ ∂Bn(r) with probability tending to 1.

For I(2), we have I(2) = Pn1(β∗) − Pn1(β0) + Pn2(β∗) − Pn2(β0), where Pn1(β) =∑
G(i)=G(j)

ρτ (‖βi − βj‖, λ), and Pn2(β) =
∑

G(i)6=G(j)

ρτ (‖βi − βj‖, λ). Since Pn1(β0) = 0 and

Pn1(β∗) ≥ 0, we have I(2) ≥ Pn2(β∗) − Pn2(β0). Notice that for any i, j such that G(i) 6=

G(j), we have ‖β∗i − β∗j‖ ≥ min
G(i)6=G(j)

‖β0
i − β0

j‖ − 2 max
i
‖β∗i − β0

i‖ ≥ min
G(i)6=G(j)

‖β0
i − β0

j‖ −

2τ
1/2
n λmin(Cn(θ0))−1/2r ≥ τλ. Thus Pn2(β∗) and Pn2(β0) are the same constant.

Next, we show that we can recover the true subgroup membership for θ̂ ∈ Bn(r) when

n→∞.

For any pair i, j such that G(i) = G(j), we have ‖β̂i−β̂j‖ ≤ 2 max
i
‖β̂i−β0

i ‖+‖β0
i −β0

j ‖ ≤

2τ
1/2
n λmin(Cn(θ0))−1/2r → 0. This implies that β̂i and β̂j will be in the same group with

probability tending to 1. On the other hand, for any pair i, j such as G(i) 6= G(j), we have
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‖β̂i− β̂j‖ ≥ min
G(i)6=G(j)

‖β0
i −β0

j ‖−2 max
i
‖β̂i−β0

i ‖ → min
G(i)6=G(j)

‖β0
i −β0

j ‖ > 0. This implies that

β̂i and β̂j will be in different groups with probability tending to 1. This completes the proof.

4. Proof of Theorem 2

Notice that the Oracle estimators are obtained given the underlying subgrouping information

available. Therefore, it is equivalent to the estimators from the generalized estimating equations

(GEE) method, as the penalty term on pairwise coefficient distances disappears. Following ?

under conditions (C3), (A3) and (A4), we conclude that there exists η̂or ∈ B∗n(r) such that η̂or

is a consistent estimator of η0 and τ
−1/2
n ‖C∗n(η0)1/2(η̂or−η0)‖ = Op(1). Under conditions (A5),

(A7) and XTZ = 0, we can write C∗n(η0) as a block diagonal matrix, where the first K blocks

are O(
∑

i,G(i)=k

XT
i Xi) with respect to each k = 1, · · · ,K and the last block is O(

∑
i

ZTi Zi).

Therefore, the theorem result follows under condition (A6). This completes the proof.
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