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In the supplement material, we present the proof of Proposition 1, and Theorem 1, 2 and 3. The proof for supporting

lemmas are presented in Section S2. We also present simulated experiments in Section S3.

S1 Proofs of Technical Results

S1.1 Proof of Proposition 1

We consider the more general problem of finding the optimal future sequential adaptive

design after collecting n samples. Suppose that the first n responses are x1, ..., xn and

the first n experiment selection functions are j1, ..., jn. We need to decide the experiment

selection function for the (n + 1)’s sample, that is, jn+1(x1, ..., xn). We also need to decide

whether to stop the test or not and if the test is stopped, which hypothesis should be chosen.

We first consider the stopping rule. To describe the stopping rule, we define the loss function

L{(N,D), θ} = 1{D 6=θ} + cN, (S1.1)

1



and the conditional risk for a test procedure (J,N,D) of stopping the test with n samples,

E
[
L{(N,D), θ}

∣∣∣X1:n = x1:n, N = n
]
, (S1.2)

where we write x1:n as the abbreviation for the sequence (x1, ..., xn). Because E1{D 6=θ} =

P(θ = 0|X1:n = x1:n)1{D=1} + P(θ = 1|X1:n = x1:n)1{D=0}, it is straightforward that given

N = n and X1:n = x1:n, the optimal decision D is

D = 1 if P(θ = 1|X1:n = x1:n) ≥ P(θ = 0|X1:n = x1:n) and D = 0 otherwise. (S1.3)

We insert this to (S1.2) and obtain the minimal conditional risk for stopping the test with

n samples,

rs(x1:n, j1:n) = inf
D

E
[
L{(N,D), θ}

∣∣∣X1:n = x1:n, N = n
]

(S1.4)

= min{P(θ = 0|X1:n = x1:n),P(θ = 1|X1:n = x1:n)}+ nc.

We proceed to the minimal conditional risk for continuing the test with at least n+1 samples,

rc(x1:n, j1:n) = inf
(J,N,D)∈Ax1:n,j1:n

E
[
L{(N,D), θ}

∣∣∣X1:n = x1:n

]
, (S1.5)

where the set Ax1:n,j1:n consists of all the sequential adaptive designs that have j1:n as the

first n experiment selection function and do not stop with x1:n as the first n observations.

Clearly, the optimal test should continue to collect more samples if the minimal condi-

tional risk for continuing the test is smaller than the minimal conditional risk for stopping

the test. That is, the test is stopped if and only if

g(x1:n, j1:n) ≤ 0,
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where g is the maximal reduced conditional risk,

g(x1:n, j1:n) = rs(x1:n, j1:n)− rc(x1:n, j1:n). (S1.6)

The function g(x1:n, j1:n) determines a continuing region {(X1, ..., Xn) : g(X1:n, j1:n) > 0} for

the sequence of samples. We further explore the shape of the continuing region. We abuse

the notation a little and define the log-likelihood function

l(x1:n, j1:n) = log
(∏n

i=1 f1,δi(xi)∏n
i=1 f0,δi(xi)

)
, (S1.7)

where δi = ji(x1:i−1) is the i-th selected experiment for i = 1, ...n. The following lemma,

whose proof is provided in Section S2, shows that the function g depends only on the log-

likelihood ratio.

Lemma 1. There exists a function h : R→ R such that for all sequence of observations x1:n

and experiment selection functions j1:n,

g(x1:n, j1:n) = h(l(x1:n, j1:n)).

According to Lemma 1 and the previous analysis, the optimal stopping rule is determined

through the continuing region of the likelihood ratio. That is, the stopping time for the

optimal design is

N∗ = inf{n : l(X1:n, j
∗
1:n) /∈ C},

where

C = h−1(0,∞). (S1.8)
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and j∗1:n is the sequence of experiment selection functions for the optimal design. Further-

more, we describe the shape of the continuing region C in the following lemma, whose proof

is given in Section S2.

Lemma 2. If a > b > log π0

π1
and a ∈ C, then b ∈ C. Similarly, if a < b < log π0

π1
and a ∈ C,

then b ∈ C.

Lemma 2 implies that the continuing region is an interval that C = (B,A) for some

boundary values A and B. This completes our proof for Proposition 1(ii). In addition, we

have

P(θ = 0|X1, ..., Xn) =
π0

π0 + π1eln
and P(θ = 1|X1, ..., Xn) =

π1e
ln

π0 + π1eln
. (S1.9)

We insert this to (S1.3) and Proposition 1(iii) is proved.

For the rest of the proof, we consider the optimal experiment selection. Considering the

best choice between stopping the test and continuing the test, the minimal conditional risk

given the first n samples x1:n is defined as

Un(x1:n, j1:n) = min{rs(x1:n, j1:n), rc(x1:n, j1:n)}. (S1.10)

The optimal (n+ 1)-th experiment selection jn+1(x1:n) minimizes the future conditional risk

jn+1(x1:n) = arg inf
jn+1(x1:n)

E
[
Un+1(X1:n+1, j1:n+1)

∣∣∣X1:n = x1:n

]
. (S1.11)

Just a clarification that if the test is stopped with the first n samples, then the choice of

jn+1(x1:n) and does not affect the conditional risk and is thus arbitrary. We simplify the
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conditional expectation in the above display

Un+1(X1:n+1, j1:n+1) = min{rc(X1:n+1, j1:n+1), rs(X1:n+1, j1:n+1)}

=rs(X1:n+1, j1:n+1)− g(X1:n+1, j1:n+1)+,

where the function g is defined in (S1.6) and x+ = max(x, 0). According to Lemma 1 and

(S1.4), we have

E
[
Un+1(X1:n+1, j1:n+1)

∣∣∣X1:n = x1:n

]
= (n+ 1)c+ E

[
u(ln+1)|X1:n = x1:n

]
, (S1.12)

where the function u is defined as

u(l) = min{ π0

π0 + π1el
,

π1e
l

π0 + π1el
} − h(l)+,

and h(l) is defined in Lemma 1. Consequently, (S1.11) can be written as

jn+1(x1:n)

= arg infjn+1(x1:n)

{
P(θ = 0|X1:n = x1:n)E[u(ln+1)|X1:n = x1:n, θ = 0]

+P(θ = 1|X1:n = x1:n)E[u(ln+1)|X1:n = x1:n, θ = 1]
}
. (S1.13)

Notice that ln+1 = ln + log
f1,jn+1(x1:n)(Xn+1)

f0,jn+1(x1:n)(Xn+1)
and posterior of θ is given in (S1.9). Therefore,

(S1.13) can be written as

jn+1(x1:n) = arg inf
jn+1(x1:n)

v
(
ln, jn+1(x1:n)

)
for some bivariate function v. Let the function j∗(l) = arg infδ v(l, δ). Then, we have

jn+1(x1:n) = j∗(ln), and Proposition 1(i) is proved.
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S1.2 Proof of Theorem 1

Similar to the proof of Proposition 1, the stopping rule for the truncated test is determined

by the maximal reduced conditional risk function

g†(x1:n, j1:n) = rs(x1:n, j1:n)− r†nc(x1:n, j1:n),

where rs is defined in (S1.4), and r†nc is defined similarly to (S1.5),

r†nc = inf
(J,N,D)∈ATx1:n,δ1:n

E
[
L{(N,D), θ}

∣∣∣X1:n = x1:n

]
and ATx1:n,j1:n

consists of all sequential adaptive design that belongs to Ax1:n,j1:n and has a

truncation length T . Similar to Lemma 1, we establish the following lemma, whose proof is

similar to the proof of Lemma 1 and that of Lemma 2.

Lemma 3. There exists a function h† : R× Z+ → R such that

g†(x1:n, j1:n) = h†(l(x1:n, j1:n), n). (S1.14)

In addition, for n = 1, ..., T−1, let Cn = h(·, n)−1(0,+∞), then we have that if a > b > log π0

π1

and a ∈ Cn, then b ∈ Cn; if a < b < log π0

π1
and a ∈ Cn, then b ∈ Cn. Furthermore,

Cn+1 ⊂ Cn ⊂ C, where C is defined in (S1.8).

With the aid of Lemma 3, Theorem 1 can be proved similarly as that of Proposition 1.

We omit the details.
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S1.3 Proof of Theorem 2

For a truncated test with truncation length T , we consider the minimal conditional risk with

n samples

V T
n (x1:n, j1:n) = inf

(J,N,D)∈ATx1:n,j1:n

E
[
L{(N,D), θ}

∣∣∣X1:n = x1:n

]
.

According to Lemma 3, V T
n (x1:n, j1:n) depends only on the log-likelihood ratio statistic l that

is defined in (S1.7). We abuse the notation a little and write

V T
n (a) = inf

(J,N,D)∈ATx1:n,j1:n

E
[
L{(N,D), θ}

∣∣∣l(X1:n, j1:n) = a
]
.

Because ATx1:n,j1:n
is increasing in T , so V T

n (a) is non-increasing in T for all n = 0, 1, 2, ... and

a ∈ R. We write V ∞n (a) = limT→∞ V
T
n (a), for each a ∈ R. For each T , V T

n (a) follows the

Bellman equation

V T
n (a) = min

{
Φn(a), inf

δn+1

E
[
V T
n+1

(
l + log

f1,δn+1(Xn+1)

f0,δn+1(Xn+1)

) ∣∣∣ l(X1:n, j1:n) = a

]}
, (S1.15)

where Φn(a) is the minimal conditional risk for stopping with n samples

Φn(a) = min{ π0

π0 + π1ea
,

π1e
a

π0 + π1ea
}+ nc.

Let T →∞ in (S1.15) and by monotone convergence theorem, we have

V ∞n (a) = min
{

Φn(a), inf
δn+1

E
[
V ∞n+1

(
a+ log

f1,δn+1(Xn+1)

f0,δn+1(Xn+1)

)
|l(X1:n, j1:n) = a

]}
. (S1.16)

Let (J∗, N∗, D∗) be the optimal non-truncated test procedure that is defined in (4.16). Ac-

cording to Proposition 1, there exists experiment selection function j∗ such that j∗n+1(X1:n) =

j∗(l(X1:n, j
∗
1:n)). Let δ∗n+1 = j∗(l(X1:n, j

∗
1:n)) be the stochastic process of experiment selection.
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We define the following stochastic process

Wn = V ∞n (l(X1:n, j
∗
1:n)).

According to (S1.16), the process {Wn : n ≥ 0} is a sub-martingale with respect to the

filtration Gn = σ(l∗m,m ≤ n), where we define the stochastic process l∗m = l(X1:m, j
∗
1:m). To

see why {Wn : n ≥ 0} is a sub-martingale,

Wn = V ∞n (l∗n) ≤ inf
δn+1

E
[
V ∞n+1

(
l∗n + log

f1,δn+1(Xn+1)

f0,δn+1(Xn+1)

) ∣∣∣ l∗n]
≤E

[
V ∞n+1

(
l∗n + log

f1,j∗n+1(X1:n)(Xn+1)

f0,j∗n+1(X1:n)(Xn+1)

) ∣∣∣ l∗n
]

=E
[
V ∞n+1(l∗n+1)|l∗n

]
= E(Wn+1|Gn).

Note that {Wn∧N∗ : n = 1, 2, ...} is uniformly integrable, where n∧N∗ = min(n,N∗). Using

optional stopping theorem, we have

E[WN∗ ] ≥ W0 = V ∞0 (0). (S1.17)

According to (S1.16), we have WN∗ ≤ ΦN∗(l
∗
N∗). The above display together with (S1.17)

gives

E[ΦN∗(l
∗
N∗)] ≥ V ∞0 (0).

Note that E[ΦN∗(l
∗
N∗)] = min(J,N,D)∈AR(J,N,D) and V ∞0 (0) = limT→∞min(J,N,D)∈AT R(J,N,D).

Consequently,

lim
T→∞

min
(J,N,D)∈AT

R(J,N,D) ≤ min
(J,N,D)∈A

R(J,N,D). (S1.18)

The converse inequality is obvious. Since for any T , AT ⊆ A,

min
(J,N,D)∈AT

R(J,N,D) ≥ min
(J,N,D)∈A

R(J,N,D),
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which implies that,

lim
T→∞

min
(J,N,D)∈AT

R(J,N,D) ≥ min
(J,N,D)∈A

R(J,N,D). (S1.19)

We complete the proof by combining (S1.18) and (S1.19).

S1.4 Proof of Theorem 3

We first define the filtration Fk as the σ-field generated by both the θ1, ..., θk and the ob-

servations X1,1:N1 , ..., Xk,1:Nk , where Xk,1:Nk denotes the responses to object k. In addition,

let

Yk = E
[
L((Nk, Dk), θk)|Fk−1

]
,

where the loss function L is defined in (S1.1). Note that θk is independent with Fk−1.

Therefore,

Yk = R̃(π1, π̂
(k−1)
1 ),

where

R̃(π1, π̂
(k)
1 ) = π0P(Dk = 1|π̂(k−1)

1 , θk = 0) + π1P(Dk = 0|π̂(k−1)
1 , θk = 1)

+cπ0E(Nk|π̂(k−1)
1 , θk = 0) + cπ1E(Nk|π̂(k−1)

1 , θk = 1). (S1.20)

We notice the that c ≤ π̂
(k−1)
1 ≤ 1 − c, so the conditional expectations E(Nk|π̂(k−1)

1 , θk = 0)

and E(Nk|π̂(k−1)
1 , θk = 1) are bounded. Also notice that R̃ is a linear function in π1 and thus

Lipschitz in π1, so there exists a positive number κ1 such that

|R̃(π1, π̂
(k−1)
1 )− R̃(π̂

(k−1)
1 , π̂

(k−1)
1 )| ≤ κ1|π1 − π̂(k−1)

1 |. (S1.21)
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Because π̂(k−1) is consistent and (S1.21), we have

R̃(π1, π̂
(k−1)
1 )− R̃(π̂

(k−1)
1 , π̂

(k−1)
1 )

k→∞−−−→ 0 in probability.

The next lemma shows that min R(J,N,D) is also continuous in π1. The proof for Lemma 4

is given in Section S2.

Lemma 4. Let R̄(π1) = min R(J,N,D) be the minimal Bayes risk corresponding to the

prior probability (1 − π1, π1), then the function R̄(π1) is continuous with respect to π1. In

addition, there exists a positive constant κ2 such that for all c ≤ π1, π
′
1 ≤ 1− c

|R̄(π1)− R̄(π′1)| ≤ κ2|π1 − π′1| (S1.22)

Note that R̃(π̂
(k−1)
1 , π̂

(k−1)
1 ) = R̄(π̂

(k−1)
1 ) and R̄(π1) = min R(J,N,D). By the continuity

of R̄(π1) in Lemma 4 and the assumption π̂(k−1) → π1 in probability, we have

R̃(π1, π̂
(k−1)
1 )−min R(J,N,D)

k→∞−−−→ 0 in probability.

Furthermore, according to (S1.21) and (S1.22),

|R̃(π1, π̂
(k−1)
1 )−min R(J,N,D)| ≤ (κ1 + κ2)|π̂(k−1)

1 − π1| ≤ κ1 + κ2.

The above display together with the dominated convergence theorem imply that

lim
k→∞

E|R̃(π1, π̂
(k−1)
1 )−min R(J,N,D)| = 0.

Consequently,

lim
K→∞

1

K

K∑
k=1

E|R̃(π1, π̂
(k−1)
1 )−min R(J,N,D)| = 0. (S1.23)
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For any ε > 0, we apply the Chebyshev’s inequality and obtain

P
(
| 1
K

k∑
k=1

R̃(π1, π̂
(k−1)
1 )−min R(J,N,D)| > ε

)
≤ 1

εK

K∑
k=1

E|R̃(π1, π̂
(k−1)
1 )−min R(J,N,D)|.

Recall Yk = R̃(π1, π̂
(k−1)
1 ), then the above inequality and (S1.23) give

1

K

K∑
k=1

Yk −min R(J,N,D)
K→∞−−−→ 0 in probability. (S1.24)

We proceed to the limit of LK = 1
K

∑K
k=1 L{(Nk, Dk), θk}. Note that

E
[
L{(Nk, Dk), θk}|Fk−1

]
= Yk.

Consequently,
∑K

k=1 L{(Nk, Dk), θk}−Yk is a martingale with respect to the filtration {FK :

K = 1, 2, ...}. Standard calculation for square integrable martingale yields

E
[ K∑
k=1

L{(Nk, Dk), θk} − Yk
]2

=
K∑
k=1

E[L{(Nk, Dk), θk} − Yk]2 ≤ κ3K.

for some positive constant κ3. We apply Chebyshev’s inequality to the above display

P
(
|LK −

1

K

K∑
k=1

Yk| > ε
)
≤ 1

K2ε2
E
[ K∑
k=1

L{(Nk, Dk), θk} − Yk
]2

≤ κ3

Kε2

for an arbitrary positive constant ε. This implies that

LK −
1

K

K∑
k=1

Yk
K→∞−−−→ 0 in probability. (S1.25)

We complete the proof by combining (S1.25) and (S1.24).
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S2 Proof of Supporting Lemmas

S2.1 Proof of Lemma 1

It is sufficient to show that if

l(x1:n, j1:n) = l(x̄1:n̄, j̄1:n̄), (S2.26)

then g(x1:n, j1:n) = g(x̄1:n̄, j̄1:n̄). If in the contrary, assume without loss of generality that

g(x1:n, j1:n) > g(x̄1:n̄, j̄1:n̄), then according to the definition of g, there exist (J,N,D) ∈

Ax1:n,j1:n such that

rs(x1:n, j1:n)− EJ
[
L{(N,D), θ}

∣∣∣X1:n = x1:n

]
> g(x̄1:n̄, j̄1:n̄).

We use the superscript J in the expectation sign to indicate the expectation is computed

with the experiment selection rule J . We construct a sequential adaptive design (J̄ , N̄ , D̄) ∈

Ax̄1:n̄,j̄1:n̄
as follows. For any observations

x̄1, x̄2, ..., x̄n̄, y1, y2, ....

we first choose the experiment selection function

j̄n̄+m+1(x̄1:n̄, y1:m) = jn+m+1(x1:n, y1:m).

Next, for m = 1, 2, ..., to decide whether the test procedure (J̄ , N̄ , D̄) stops or not with

observations

x̄1, ..., x̄n̄, y1, ..., ym,
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we look at if (J,N,D) stop with observations

x1, ..., xn, y1, ..., ym

or not. If (J,N,D) stops with observations x1:n, y1:m then we let (J̄ , N̄ , D̄) stop with ob-

servations x̄1:n̄, y1:m, and otherwise we let the test (J̄ , N̄ , D̄) do not stop. Lastly, for the

decision D̄ with observations x̄1:n̄, y1:m, we also let it make the same decision as that of D

with observations x1:n, y1:m. In short, we let the sequential adaptive design (J̄ , N̄ , D̄) do

whatever the test procedure (J,N,D) do by replacing the first n̄ observations with x1:n.

We consider the reduced conditional risk for (J̄ , N̄ , D̄),

rs(x1:n̄, j1:n̄)− EJ̄
[
L{(N̄ , D̄), θ}

∣∣∣X1:n̄ = x̄1:n̄

]
. (S2.27)

Notice that for any possible sequence of observations

x̄1, ..., x̄n̄, y1, y2, ...

and

x1, ..., xn, y1, y2, ...

The decision D̄ = D, and the stopping time

N̄ − n̄ = N − n.

In addition, the posterior distribution of Xn+1, Xn+2, .... and Xn̄+1, Xn̄+2, ... are the same

with the same experiment selection rule J and J̄ for future experiments conditional on

X1:n = x1:n and X1:n̄ = x̄1:n̄ respectively. To see this point, notice that the conditional dis-

tribution Xn+1|θ,X1:n̄ = x̄1:n̄ has the density function fθ,j̄n+1(x̄1:n̄)(Xn+1) with the experiment
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selection rule J̄ . Since j̄n+1 (x̄1:n̄) = jn+1 (x1:n) by our construction, fθ,j̄n+1(x̄1:n̄)(Xn+1) =

fθ,jn+1(x1:n)(Xn+1), which implies that Xn+1|θ,X1:n̄ = x̄1:n̄ has the same conditional distribu-

tion using the experiment selection rule J as Xn+1|θ,X1:n = x1:n. The above claim directly

follows by an induction argument. Therefore, by (S2.26), for any given m, we have the same

conditional distribution for the sequence Xn+1:n+m|θ,X1:n = x1:n with selection rule J̄ and

Xn̄+1:n̄+m|θ,X1:n̄ = x̄1:n̄ with J . Furthermore, the posterior distributions of θ are the same

given X1:n = x1:n and X1:n̄ = x̄1:n̄ with selection rule J and J̄ respectively. Thus, we have

EJ̄
[
L{(N̄ , D̄), θ}

∣∣∣X1:n̄ = x̄1:n̄

]
− n̄c = EJ

[
L{(N,D), θ}

∣∣∣X1:n = x1:n

]
− nc. (S2.28)

Recall that

rs(x1:n̄, j1:n̄) = min{ π0

π0 + π1el(x̄1:n̄,j1:n̄)
,

π1e
l(x̄1:n̄,j1:n̄)

π0 + π1el(x̄1:n̄,j1:n̄)
}+ n̄c,

rs(x1:n, j1:n) = min{ π0

π0 + π1el(x1:n,j1:n)
,

π1e
l(x1:n,j1:n)

π0 + π1el(x1:n,j1:n)
}+ nc.

Further, by (S2.26),

rs(x̄1:n̄, j1:n̄)− n̄c = rs(x1:n, j1:n)− nc

The above display together with (S2.28) implies

g(x̄1:n̄, j̄1:n̄)

≥ rs(x1:n̄, j1:n̄)− EJ̄
[
L{(N̄ , D̄), θ}

∣∣∣X1:n̄ = x̄1:n̄

]
= rs(x1:n, j1:n)− EJ

[
L{(N,D), θ}

∣∣∣X1:n = x1:n

]
> g(x̄1:n̄, j̄1:n̄)

which contradicts with the assumption that g(x1:n, j1:n) > g(x̄1:n̄, j̄1:n̄).
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S2.2 Proof of Lemma 2

For a > b > log π0

π1
, let (x1:n, j1:n) and (x̄1:n̄, j̄1:n̄) be such that l(x1:n, j1:n) = a and l(x̄1:n̄, j̄1:n̄) =

b. We assume that g(x1:n, j1:n) > 0. For the rest of the proof, we are going to show

g(x̄1:n̄, j̄1:n̄) > 0.

We use the similar method as in the proof of Lemma 1. g(x1:n, j1:n) > 0 implies that there

exists (J,N,D) ∈ Ax1:n,j1:n such that

rs(x1:n, j1:n)− EJ
[
L{(N,D), θ}

∣∣∣X1:n = x1:n

]
> 0 (S2.29)

Now we construct the sequential adaptive design (J̄ , N̄ , D̄) ∈ Ax̄1:n̄,j̄1:n̄
the same way as that

in the proof of Lemma 1. Using the same arguments as in the proof of Lemma 1, we have

E0 :=EJ
[
L{(N,D), θ}

∣∣∣X1:n = x1:n, θ = 0
]
− nc

=EJ̄
[
L{(N̄ , D̄), θ}

∣∣∣X1:n̄ = x̄1:n̄, θ = 0
]
− n̄c, (S2.30)

and

E1 :=EJ
[
L{(N,D), θ}

∣∣∣X1:n = x1:n, θ = 1
]
− nc

=EJ̄
[
L{(N̄ , D̄), θ}

∣∣∣X1:n̄ = x̄1:n̄, θ = 1
]
− n̄c. (S2.31)

Notice that b > log π0

π1
and l(x̄1:n̄, j̄1:n̄) = b. Consequently,

rs(x̄1:n̄, j̄1:n̄) =
π0

π0 + π1eb
+ n̄c. (S2.32)
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We combine (S2.30), (S2.31) and (S2.32), and arrive at

rs(x1:n̄, j1:n̄)− EJ̄
[
L{(N̄ , D̄), θ}

∣∣∣X1:n̄ = x̄1:n̄

]
(S2.33)

=
π0

π0 + π1eb
− P(θ = 0|X1:n̄ = x̄1:n̄)× E0 − P(θ = 1|X1:n̄ = x̄1:n̄)× E1

=
π0

π0 + π1eb
− π0

π0 + π1eb
× E0 −

π1e
b

π0 + π1eb
× E1

=
π0(1− E0)− π1e

bE1

π0 + π1eb
.

Similarly, we have

rs(x1:n, j1:n)− EJ
[
L{(N,D), θ}

∣∣∣X1:n = x1:n

]
=
π0(1− E0)− π1e

aE1

π0 + π1ea
.

According to (S2.29) and the above display, we have

π0(1− E0)− π1e
aE1

π0 + π1ea
> 0, (S2.34)

which implies that

π0(1− E0)− π1e
aE1 > 0.

Because π0(1− E0)− π1e
bE1 > π0(1− E0)− π1e

aE1 and (S2.34), we have

π0(1− E0)− π1e
bE1

π0 + π1eb
> 0.

According to the above display, the definition of g and (S2.33), we have

g(x̄1:n̄, j̄1:n̄) ≥rs(x1:n̄, j1:n̄)− EJ̄
[
L{(N̄ , D̄), θ}

∣∣∣X1:n̄ = x̄1:n̄

]
≥π0(1− E0)− π1e

bE1

π0 + π1eb
> 0.

With similar arguments, if a < b < log π0

π1
and h(a) > 0, then we have h(b) > 0. We omit

the details.
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S2.3 Proof of Lemma 3

The proof of the first half of the Lemma is similar to that of Lemma 2, and is thus omitted.

That is, there exists h† satisfying (S1.14), and for each Cn, if a > b > log π0

π1
and a ∈ Cn

then, b ∈ Cn. We proceed to prove that

Cn ⊂ Cn−1.

It is sufficient to show that for each a ∈ Cn+1, we also have a ∈ Cn. Due to the symmetry

of the problem, we focus on the case where a > log π0

π1
. Let n̄ = n− 1 and let (x1:n, j1:n) and

(x̄1:n̄, j̄1:n̄) be such that l(x1:n, j1:n) = a and l(x̄1:n̄, j̄1:n̄) = a. We assume that g†(x1:n, j1:n) >

0. For the rest of the proof, we are going to show

g†(x̄1:n̄, j̄1:n̄) > 0.

We use the similar method as in the proof of Lemma 1. Note that g†(x1:n, j1:n) > 0 implies

that there exists (J,N,D) ∈ ATx1:n,j1:n
such that

rs(x1:n, j1:n)− EJ
[
L{(N,D), θ}

∣∣∣X1:n = x1:n

]
> 0, (S2.35)

where ATx1:n,j1:n
is defined similar to Ax1:n,j1:n but requires that N ≤ T . Now we construct

the sequential adaptive design (J̄ , N̄ , D̄) the same way as that in the proof of Lemma 1.

Because n̄ = n+ 1 > n, from the construction, we have N̄ = N̄ − n̄+ n̄ = N − n+ n̄ =

N − n + n− 1 = N − 1 ≤ T . Thus, (J̄ , N̄ , D̄) ∈ Ax̄T1:n̄,j̄1:n̄
. Using the same arguments as in

the proof of Lemma 2, we can see that

rs(x̄1:n̄, j̄1:n̄) =
π0

π0 + π1ea
+ n̄c. (S2.36)
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On the other hand, from the construction,

EJ
[
L{(N,D), θ}

∣∣∣X1:n = x1:n

]
− nc = EJ̄

[
L{(N̄ , D̄), θ}

∣∣∣X1:n̄ = x̄1:n̄

]
− n̄c. (S2.37)

Combining (S2.35), (S2.36) and (S2.37), we can see that g†(x̄1:n̄, j̄1:n̄) > 0. Therefore, a ∈

Cn̄ = Cn−1. This completes our proof.

S2.4 Proof of Lemma 4

We consider the Bayes risk when the prior probability is (1− π1, π1),

Rπ1(J,N,D) =(1− π1)P(D = 1|θ = 0) + π1P(D = 0|θ = 1)

+ c{π0E(N |θ = 0) + π1E(N |θ = 1)}.

Here we use the superscript π1 to indicate the prior. For fixed (J,N,D) the function

Rπ1(J,N,D) is linear in π1, and is thus continuous in π1. Let (Jπ1 , Nπ1 , Dπ1) be the optimal

procedure for the prior probability P(θ = 1) = π1. Then,

Rπ1(Jπ1 , Nπ1 , Dπ1) = min Rπ1(J,N,D) = R̄(π1).

Now we consider two prior probability π1 and π̃1. We have

R̄(π1)− R̄(π̃1) = min Rπ1(J,N,D)−Rπ̃1(J π̃1 , N π̃1 , Dπ̃1)

≤ Rπ1(J π̃1 , N π̃1 , Dπ̃1)−Rπ̃1(J π̃1 , N π̃1 , Dπ̃1)

and similarly,

R̄(π̃1)− R̄(π1) ≤ Rπ̃1(Jπ1 , Nπ1 , Dπ1)−Rπ1(Jπ1 , Nπ1 , Dπ1).

18
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Figure 2: Hitting boundaries for different truncation

lengths.

Furthermore, for all π ∈ [c, 1− c] the conditional expectations E(Nπ1|θ = 0) and E(Nπ1|θ =

0) are bounded by some positive number κ2. Therefore, the continuity of Rπ1(J,N,D) in π1

implies the continuity of R̄(π1), and we have

|R̄(π̃1)− R̄(π1)| ≤ κ2|π̃1 − π1|.
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Table 1: Performance of Ada-SPRT for different truncation lengths.

T = 5 T = 10 T = 15 T = 20

Stopping Time 5.000 9.276 12.301 14.505

Accuracy 0.857 0.926 0.961 0.977

Loss 14.468 7.672 4.240 2.630

S3 Simulated Experiments

S3.1 Effect of Truncation Length T

We first study the effect of the truncation length T for a single hypothesis. We simulate

M = 50 workers with quality parameters for worker i:

γi ∼ Uniform(0,
π

2
),

τ i00 = sin(γi), τ i11 = cos(γi).

A scatter plot of the generated τ i00 for 1 ≤ i ≤ M is shown in Figure 1. We generate 50

workers in this way such that no worker is dominantly worse than another. That is, there

does not exist a pair of workers i and i′ such that τ i00 < τ i
′

00 and τ i11 < τ i
′

11.

We consider a single hypothesis testing problem (i.e., labeling for a single object) with the

true label θ drawn from the Bernoulli distribution with π0 = π1 = 0.5. In this experiment,

since our main goal is to investigate the effect of truncation length T , we assume true π1 and

workers’ parameters are known for simplicity and set the parameter c = 2−12. We vary the

truncation length T = 5, 10, 15, and 20. For different truncation lengths, we plot the hitting

20
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Figure 3: Comparison between the Ada-SPRT and KL approaches.

boundaries in Figure 2. As one can see, given any fixed truncation length T , for different

sample sizes from 1 to T (on the x-axis of Figure 2), we have

B†(1) ≤ B†(2) ≤ ... ≤ B†(T ) = log
π0

π1

= 0 = A†(T ) ≤ A†(T − 1) ≤ ... ≤ A†(1).

This observation is consistent with our result in Theorem 1.

Now for each truncation length T , we generate 50,000 independent replications and run

Ada-SPRT for each replication. In Table 1, we report the average of (1) the stopping time

N , (2) the labeling accuracy 1{D=θ}, and (3) the loss 1{D 6=θ} + cN over 50,000 replications.

As can be seen from Table 1, as the truncation length increases, both the stopping time and

accuracy increase simultaneously. However, the average loss, which consists of labeling error

and cost, decreases as T becomes larger.
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S3.2 Comparison with the asymptotically optimal KL-information

Approach

We compare the proposed Ada-SPRT procedure with an asymptotically optimal Kullback-

Leibler (KL) approach from Chernoff (1959). The worker selection rule of the KL approach

is based on workers’ KL information, where the KL information for worker δ ∈ I given θ = 0

and θ = 1 is defined as

KL(0, δ) = E
[
log

f0,δ(X)

f1,δ(X)

∣∣θ = 0

]
, and KL(1, δ) = E

[
log

f1,δ(X)

f0,δ(X)

∣∣θ = 1

]
.

At time n, let π(θ = 0|l) and π(θ = 1|l) be the posterior probabilities under the current

log-likelihood ratio l. Then the worker selection rule of the KL approach is

j(l, n) =


arg maxδ∈I KL(0, δ), if π(θ = 0|l) > π(θ = 1|l),

arg maxδ∈I KL(1, δ), otherwise.

That is, the worker with the largest KL information at the posterior mode of θ is selected.

In terms of the stopping rule, this KL approach adopts flat boundaries

A = − log c+ log

(
π0 maxδ∈I KL(1, δ)

π1

)
and B = log c+ log

(
π0

π1 maxδ∈I KL(0, δ)

)
,

where the second terms in both A and B take the prior information and the worker pool qual-

ity into account. The algorithm stops once the log-likelihood ratio l crosses the boundaries,

i.e., l ≥ A or l ≤ B, or the sample size n has reached the truncation length T . The decision

is based on the posterior probabilities upon stopping, that is, D = arg maxd∈{0,1} π(θ = d|l).

To compare the Ada-SPRT and KL approaches, the same worker pool in Section S3.1 is

used. We consider three possible values of the class prior π1: (1) π1 = 0.8 (highly unbalanced
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class) (2) π1 = 0.65 (moderately unbalanced class) (3) π1 = 0.5 (balanced class). We set

c = 2−12 and vary the truncation length T = 5, 10, 15, 20, 25. For each π1, c, and T , 500, 000

independent replications are generated. Results are summarized in Figure 3, where for

each choice of π1, we report the average accuracy as a function of average stopping time

under varying truncation length T . According to Figure 3, the proposed Ada-SPRT method

performs substantially better than the KL procedure under a finite sample setting.

S3.3 Class Prior and Empirical Bayes Estimator

In this simulated experiment, we consider the multiple hypotheses testing problem in Section

5, i.e., labeling multiple objects. In particular, we generate K = 100 objects with true label

θk from the Bernoulli distributions with true class prior π1. We consider three possible values

of π1: (1) π1 = 0.8 (highly unbalanced class) (2) π1 = 0.65 (moderately unbalanced class)

(3) π1 = 0.5 (balanced class). For each π1, we compare three following procedures:

1. Ada-SPRT with true class prior π1;

2. Ada-SPRT with empirical Bayes estimation of the class prior π1 in Algorithm 2;

3. Ada-SPRT with the mis-specified class prior 0.5. Note that in the third case when

π1 = 0.5, it is the same as the Ada-SPRT with the true class prior.

We vary the cost parameter c = 2−ρ with ρ = 7, 8, ..., 12, which leads to different stopping

times. For each choice of π1, we report in Figure 4 the average accuracy as a function of

average stopping time (i.e., 1
K

∑K
k=1Nk where Nk is the stopping time for the k-th object)

for truncated test with T = 10 (right panels) over 5,000 independent replications. As
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Figure 4: Performance of empirical Bayes estimation for different class priors.

can be seen from Figure 4, the performance of Ada-SPRT with empirical Bayes estimation

is close to Ada-SPRT with true prior especially when the stopping time goes large. In

addition, the performance of Ada-SPRT with empirical Bayes estimation achieves much

better performance than Ada-SPRT with a mis-specified class prior, which demonstrates the

effectiveness of using empirical Bayes estimation.

References

Chernoff, H. (1959). Sequential design of experiments. The Annals of Mathematical Statistics,

30(3):755–770.

24


