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S1. Proof of Lemma 2.1

To prove this lemma we will first state and prove two short sub-lemmas:

Lemma S1.1. Suppose f̂ , f ⇤
and fO

are functions that map to R. Then,
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The proof follows from arithmetic. This lemma is not new, and has been

recently used to analyze the MSE of misspecified models in a parametric

context [26]. This can be thought of as a generalized law of cosines.

Lemma S1.2. If f̂ is defined according to (12), and fO 2 F is any other
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function, then
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Proof. The proof follows from the KKT conditions. For ✏ 2 [0, 1] define

f✏ = f̂ + ✏
⇣
fO � f̂

⌘
. Because F is convex, f✏ 2 F for all ✏ 2 [0, 1]. Now,

let’s consider the one dimensional problem

✏̂ ⌘ argmin
✏2[0,1]

1

2
ky � f✏k2n + �P (f✏) . (S1.1)

Because f̂ minimizes (12), we know ✏̂ = 0 minimizes (S1.1). Thus, since

the objective is convex, 0 must be in the sub-di↵erential of the objective in

(S1.1) evaluated at ✏ = 0. Taking the sub-gradient at ✏ = 0 we get
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for some sub-gradient Ṗ
⇣
f̂
⌘

of P (f✏) evaluated at ✏ = 0. Now by the

definition of a sub-gradient we know that
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Ṗ
⇣
f̂
⌘
, fO � f̂

E
 P

�
fO

�
�

P
⇣
f̂
⌘
. Plugging this into (S1.2) we get
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Now we combine these results to prove Lemma 2.1.
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Proof of Lemma 2.1. We begin by using the result of Lemma S1.1
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Now, we can continue with the first term on the RHS by remembering that

y = f ⇤(x) + ✏, and then applying Lemma S1.2
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Putting things together, we get
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as desired.

S2. Proof of theorem 2.2

We first note that since

H (�, {f 2 F |P (f)  1} , k·k
n
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for all � > 0, n � 1. Now, given any ✏ > 0, using Lemma 8.4 of van de Geer

[25] we have that
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with probability at least 1 � ✏ (where C✏ depends only on ✏). But from

Lemma 2.1, we have
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Plugging (S1.3) in here, we get
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Now, from Young’s inequality (ab  ap/p + bq/q for 1/p + 1/q = 1) with

p = 4/(2� ↵), and q = 4/(2 + ↵), we get
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for some C̃✏. Plugging this in to (S1.4) we get
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We will break the remainder of the argument into two cases: P
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⌘
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Plugging this into (S1.5), we get
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This completes the proof.
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S3. Details for Estimating Classes with bounded l-th order TV

Our eventual goal in this section is to characterize the convergence rate

obtained using the penalized estimator (12) with penalty Pk when the true

function f ⇤ is not in Fk, but is in Fl+1 for some l + 1 < k. In building up

to this, and illustrating our method of proof, we give bounds on rates of

convergence in the following illustrative examples:

1. Estimating a function in F1 using Pk (k > 1):

(a) Piecewise constant function with one knot.

(b) Piecewise constant function with multiple knots.

(c) Arbitrary function in F1.

2. Estimating a function in Fl+1 using Pk (k > l + 1 � 2):

(a) l-th order spline with one knot.

(b) l-th order spline with multiple knots.

(c) Arbitrary function in Fl+1.

S3.1 Estimating a function in F1, using Pk

In this section, we prove Lemma 3.1, giving an upper bound on the rate for

estimating a function f ⇤ 2 F1 with a k-th order total variation penalty, Pk,
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for k > 1.

As discussed in Section 3.2, the main idea here is to approximate the

indicator function, I {x > 0}, by what we will call the k-th order soft indi-

cator function:

I�
k
(x) ⌘ ��1

Z
x

�1
bk�1

✓
t
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◆
dt,

where bk�1 denotes the cardinal b-spline of order k � 1, scaled to have

support on [�1, 1]. bk�1 is a piecewise polynomial of order k � 1, that

is non-negative, and integrates to 1 [24]. Because of this, I�
k
2 Fk; I�k is

monotonic with support on [��, �]; and we have I�
k
(��) = 0 and I�

k
(�) = 1.

Before we continue, we note that for the class Fk with our penalty Pk,

we get an entropy as in (24) with ↵ = 1/k [1]. Thus, the term depending

on the entropy of our class (27) becomes

n
�2
2+↵P

2↵
2+↵ (f) = n�2k/(2k+1)P 2/(2k+1) (f) . (S3.1)

We will prove Lemma 3.1 first for piecewise constant functions with a single

knot; then with multiple knots; and finally for general functions in F1.

S3.2 Estimating Piecewise Constant Functions With A Single

Knot

First we consider estimating f ⇤, a piecewise constant function with a single

jump. Without loss of generality suppose f ⇤(x) = �0 ⇤ I {x > 0}. We use
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our k-th order soft indicator function to give approximating functions in

Fk: In particular, we choose fO

�
⌘ �0I�k .

It is straightforward to show that
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outside of [��, �], and monotonically moves from 0, to �0, in that interval.

The second follows from basic calculus (given in detail in Section S1.6)

Remembering our earlier entropy bound (S1.6), and recalling the result

of Theorem 2.2, we now need to balance

�2
0�(n) and n�2k/(2k+1) [�(n)]�2(k�1)/(2k+1) �2/(2k+1)

0 .
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Noting that �0 = P1(f ⇤), we have the rate in (38).

S3.3 Estimating a Piecewise Constant Function With Multiple

Knots

We now generalize the result of the previous section to a function f ⇤ with

multiple jumps: f ⇤(x) = �0 +
P

J

j=1 �j ⇤ I {x > dj}. We can approximate
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each jump by a k-th order soft indicator function; and define our approxi-

mator fO

�
as the sum of all of these functions:
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Thus, that
��f ⇤ � fO

�

��2

n
<
⇠
�P1 (f ⇤)2. This exactly mirrors what we saw in

the previous section. So choosing �(n) = n�2k/(4k�1)P1 (f ⇤)�4k/(4k�1), again

gives us the rate in (38).

One noteworthy aspect of the above result is that the number of knots

does not show up in the rate — only the total variation shows up. This

will be key in the next section, where we get identical bounds for general

functions in F1.
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S3.4 Estimating a General Function in F1

We now prove Lemma 3.1 in its general form. Suppose that f ⇤ is any

function in F1. Here we use the result of Birman and Solomyak [4] that for

any �, there exists a piecewise constant function function f̃ � such that
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for a constant C̃ that does not depend on f ⇤. More explicitly, f̃ �(x) = �0,�+
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Thus, using the same argument as before, we get the rate in (38).
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S3.5 Estimating a function in Fl+1 using Pk (k > l + 1 � 2)

In this section, we prove Lemma 3.2 about the estimation of functions with

l + 1 order bounded variation, using Pk, where k > l + 1; and l � 1. We

will again prove this Lemma in stages: First for a spline with a single knot;

then a spline with multiple knots; and finally an arbitrary element of Fl+1.

S3.6 Estimating a Natural Spline of order l with 1 knot

Suppose f ⇤(x) = �0xlI(x � 0). Now, we approximate f ⇤ by our represen-
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for some constant C1, which can again be seen from the discussion in Sec-

tion S1.6. Note that here we use weak derivatives.
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Now using repeated integration (l times), and the fact that f ⇤(��) =
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�
(��), we get that, for any x,
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For some constant C2. Thus we have that
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3k�l�
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us our rate in (39).

S3.7 Estimating A Spline of Order l with multiple knots

Now suppose f ⇤(x) = f ⇤
0 (x) +

P
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+, where f ⇤
0 is an order l
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j=1 �j. We will use the same method

of construction/proof as in Section S1.3.3. We let fO

�
be given by

fO

�
(x) ⌘ f ⇤

0 (x) +
JX

j=1

�j 
�

k,l
(x� dj) .



S3. DETAILS FOR ESTIMATING CLASSES WITH BOUNDED L-TH
ORDER TV

Since Pk is a semi-norm, it obeys the triangle inequality; so,
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Additionally, using the arguments of Section S1.3.6, we have
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S3.8 Estimating a general function in Fl+1

We now prove Lemma 3.2 in its general form. Suppose that f ⇤ lives in

Fl+1, the class of bounded l+ 1-th order total variation. This is equivalent

to saying that f ⇤
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As before, we can explicitly write f̃ �

l
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P
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���f ⇤ � f̃ �

���
n

 C1�Pl+1 (f ⇤), for some C1.

We define our representative as

fO

�
(x) ⌘ f ⇤

0 (x) +
J(�)X

j=1

�j,� 
�

k,l
(x� dj,�)

Using the same argument as in S1.3.7 we see that

Pk

�
fO

�

�
 C2Pl+1 (f ⇤)

�k�l�1

and

��f ⇤ � fO

�

��
n


���f ⇤ � f̃�
���
n

+
���f̃� � fO

�

���
n

 C1�Pl+1 (f
⇤) + C2�Pl+1 (f

⇤)

= C3�Pl+1 (f
⇤) .
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This mirrors the result from Section S1.3.6. Thus for the same choice of �(n)

we get the rate in (39). This can be extended estimating general f ⇤ 2 Fl+1

using essentially identical arguments as in Sections S1.3.8 and S1.3.7.

S4. Details for Estimation with Sobolev Penalties

We now sketch similar results when we use Sobolev Penalties in our esti-

mation procedure and/or when the true function lies in a class of bounded

first order Total Variation.

First we consider estimating f ⇤, a piecewise constant function with a

single jump using P (·) = P d

k
for d > 1, k � 1. Without loss of generality

suppose f ⇤(x) = �0⇤I {x > 0}. We now use our k+1-th order soft indicator

function to give approximating functions in Fd

k
: In particular, we choose

fO

�
⌘ �0I�k+1. Note in the case of a total-variation penalty (d = 1) we were

able to use a k-th order soft indicator (and got a correspondingly better

rate)

As before, it is straightforward to show that

��f ⇤ � fO

�

��2

n
 2�2

0� and P d

k

�
fO

�

�
 C�0

�k

The second inequality follows again from basic calculus (given in detail in

Section S1.6)



S5. ESTIMATING A FUNCTION IN FL+1 WITH PD

K

The entropy of the k-th order sobolev class is also given by (S1.6) [25],

and recalling the result of Theorem 2.2, we now need to balance

�2
0�(n) and n�2k/(2k+1) [�(n)]�2k/(2k+1) �2/(2k+1)

0 .

These terms are balanced by �(n) = n�2k/(4k+1)��4k/(4k+1)
0 . Plugging this

in to (25) gives

���f̂ � f ⇤
���
2

n


���f̂ � fO

�(n)

���
2

n

+Op

�
�nP

�
fO

�(n)

��
= Op

✓
n

�2k
4k+1�

4k+2
4k+1
0

◆
.

Noting that �0 = P1(f ⇤), we have the rate in (38).

To extend this to estimating a general function in f ⇤ 2 F1, we first

extend the above result to the estimation of piecewise constant functions

with multiple knots. The proof follows almost exactly as the proof in Sec-

tion S1.3.3. Here again, we can employ the triangle inequality because P d

k

is a norm. Finally, by mirroring the argument in Section S1.3.4 we get the

result in Lemma 4.3.

S5. Estimating a function in Fl+1 with P d

k

We now bound our convergence rates when using a kth-order Sobolev

penalty, where the true function lies in a class of bounded l + 1-th order

total variation for 2  l + 1 < k.
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K

We begin, as in Section S1.3.6, by restricting f ⇤ to be a Natural Spline of

order l with 1 knot. Suppose f ⇤(x) = �0xlI(x � 0). Now, we approximate

f ⇤ by our representative fO

�
(x) = �0 �

k+1,l(x) 2 Fd

k
, with

 �

k,l
(x) ⌘ l! ��1

Z
x

�1
· · ·

Z
t2

�1| {z }
(l+1) times

bk�l

✓
t1
�

◆
dt1 · · · dtl+1

We note that in Section S1.3.6 we were able to use  �

k,l
; however  �

k,l
62 Fd

k
.

As in Section S1.3.6, we get that

��f ⇤(x)� fO

�
(x)

��2

n
 C1�

2
0�

2 and Pk

�
fO

�

�
 C2�0

�k�l

for some constants C1, C2. This implies that we need to balance

�2
0�(n)

2 and n�2k/(2k+1) [�(n)]�2(k�l)/(2k+1) �2/(2k+1)
0 ,

which are balanced by �(n) ⇠ n� k

3k�l+1�
� 2k+1

3k�l+1
0 . Plugging this in to (25)

gives us

���f̂ � f ⇤
���
2

n


���f̂ � fO

�(n)

���
2

n

+Op

�
�nP

�
fO

�(n)

��
= Op

✓
n

�2k
3k�l+1�

2k�2l
3k�l+1
0

◆
.

This is the rate we have in Lemma 4.4. Mirroring the arguments of Sec-

tions S1.3.8, and S1.3.7, we can extend this to estimating arbitrary func-

tions, f ⇤, in Fl+1.
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S6. Properties of our B-spline representative

Here we discuss some properties of B-splines that were used in constructing

our estimates. We first let bk�1 denote the cardinal b-spline of order k � 1,

scaled to have support on [�1, 1]. bk�1 is a piecewise k�1 order polynomial,

that is non-negative, and integrates to 1 [24].

Before moving further, for m < k � 1, let b(m)
k�1(x0) denote

b(m)
k�1(x0) ⌘

@m

@xm
bk�1(x)

����x=x0

and let Hk�1,m�1 =
R ���b(m�1)

k�1 (x)
��� dx for m  k, where this is defined based

on weak derivatives for k = m.

Now we will consider properties of f �(x) ⌘ �0 ⇤ ��1
R

x

�1 bk�1

�
t

�

�
dt. We

note that f � is a k-th order spline (only its last derivative changes non-

smoothly); and we have f �(x) = 0 for x  �� and f �(x) = �0 for x � � (by

properties of bk�1).

We also note that

@m

@xm
f �(x)

����x=x0 = �0�
�1

✓
@m�1

@xm�1
bk�1 (x/�)

����x=x0

◆

= �0�
�1

✓
1

�m�1

◆
b(m�1)
k�1 (x0/�)

=

✓
�0
�m

◆
b(m�1)
k�1 (x0/�)
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. Thus, for m  k we have

Z ����
@m

@xm
f �(x)

���� dx =
�0
�m

Z ���b(m�1)
k�1 (x/�)

��� dx

=
�0
�m�1

Z ���b(m�1)
k�1 (x)

��� dx

=
(Hk�1,m�1) �0

�m�1

where this is defined based on weak derivatives for m = k.

Also, note that for m < k, and any d > 1 an identical argument can be

used to show

(Z ����
@m

@xm
f �(x)

����
d

dx

)1/d

=

�
Hd

k�1,m�1

�
�0

�m�1

where we define Hd

k�1,m�1 =

⇢R ���b(m�1)
k�1 (x)

���
d

dx

�1/d

. Here we need m < k,

because the integral diverges to 1 using weak derivatives for m = k.

S7. Bounds for Empirically Selected �

Here we extend the discussion of bounds for the penalized estimator with

� selected empirically, that began in Section 3.1.

To begin, we consider why the optimal � should be a function of both k

(the smoothness induced by our penalty) and l (the true underlying smooth-

ness of f ⇤). We build our intuition from a simpler scenario: Kernel Density

Estimation (KDE) in R1
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Suppose, we use a k-th order kernel to estimate a density from iid

observations. Imagine that the true density g⇤ has only l < k bounded

derivatives. In this case, our KDE can give a minimax optimal estimate

(over the class of densities with bounded derivatives of order l). However,

to do this, we must use a bandwidth that depends on l. This is because,

for a given bandwidth, the variance of our estimator will be the same,

regardless of l; but the bias will be a function l (smoother g⇤ induce less

bias at a given bandwidth). Thus, to balance bias and variance we must

choose lower bias/higher variance estimates for less smooth functions.

Now, let us relate this back to the current problem. For penalized

estimators, � determines the bias/variance tradeo↵ of an estimator (lower �

indicates a lower bias, higher variance estimate). In this case, if l is smaller,

that would imply that f ⇤ is less smooth, and thus we need a smaller �-value.

This can also be directly observed in Theorem 2.2, where �n is selected to be

proportional to (P (fO

n
))�(

2�↵

2+↵
): As P (fO

n
) increases, we need �n to decrease

(if the function is more rough, we shouldn’t penalize roughness as much). In

addition, our approximation theory results indicate that as l gets smaller,

it takes a function fO

n
with larger Pk(fO

n
) to approximate f ⇤ well.

Even though the indicated � depends on the unknown quantity l, these

oracle bounds can still be useful in proving bounds for estimators with
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� selected by split-sample validation. In particular, suppose our data is

partitioned into a training subset, and a validation subset. For any given

�, f̂� is calculated by minimizing (12) (with that given �) over the training

data. �V is then selected as argmin
�2⇤

���f̂� � y
���
n,V

, the minimizer of the

empirical error over the validation data; where ⇤ is a search space for �.

Using recent work [11], one can shown that

���f̂�V � f ⇤
���
2

n,V

 min
�2⇤

���f̂� � f ⇤
���
2

n,V

+Rn(⇤) (S7.1)

where Rn(⇤) is some excess error that depends on the complexity of ⇤.

Thus, if ⇤ ⌘ [�min,�max] with �min shrinking su�ciently quickly to 0, then

min�2⇤

���f̂� � f ⇤
���
2

n,V

is upper-bounded (we believe in some cases, sharply)

by the results in Lemma 3.1 and Lemma 3.2. Characterizing the behaviour

of Rn(⇤) here would result in upper bounds on the error of the estimator

obtained by solving the penalized regression problem (12) with � chosen

by split-sample validation. In particular [11] show that if the penalty is a

squared-sobolev-seminorm, and if �min decreases at a polynomial rate, then

Rn(⇤) is negligible. With slight modification (to move to the sobolev semi-

norm), this could be used to show that with Sobolev semi-norm penalties,

using split sample validation to select � would result in an estimator that

achieves our oracle rate. In this manuscript, we focus on bounding the

oracle error — we leave engaging further with error for empirically selected
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�, eg. using (S1.9), to future work.

S8. Additional Simulations

Here, we extend the simulation settings of Section 5 in two ways: First

we use non-gaussian errors. In particular, we use errors that are uniformly

distributed; and double-exponential. In both cases we center/scale our er-

rors to have mean 0 and variance 1. Our second modification is to include

additional functions for f ⇤. In particular, here we use still use a piecewise

constant and linear function, but now generate those functions to have knots

at a several (5 and 15 in our scenarios) random uniformly-generated loca-

tions (with random-sized jumps, also uniformly generated): These functions

are given below in Figures 5, and 7.

We see the results in the Figures 4, 6, and 8. We note that, for the

piecewise constant and linear functions with a single knot, when we generate

data with non-gaussian errors, the results remain largely unchanged, as seen

in Figure 4. The multi-knot functions also exhibit similar behaviour as seen

in Figures 6 and 8; with best performance for penalties that match the

maximal smoothness of the function (P1 for the piecewise constant and P2

for the piecewise linear), but still reasonable performance (and prediction

consistency) when overly ambitious penalties are employed. In particular
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using P3 for the piecewise-linear function gives quite strong performance.

It is also worth noting that these results are remarkably consistent across

the 3 error distributions.
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Figure 4: Average log(MSE) vs. log(n) for estimators with total variation

penalties of degree 1, 2 and 3, along with a parametric oracle. In the left

panels, data were generated using the regression function f ⇤(x) = 3⇤ I(x >

0.5); in the right panel, f ⇤(x) = 3(x � 0.5)+ was used. In the top panel,

✏i were uniformly distributed; in the bottom, from a double-exponential

distribution. MSE was calculated as the average over 100 simulations for

each nj = 200 ⇤ 1.5j for j = 1, . . . , 5.



S8. ADDITIONAL SIMULATIONS

x

0.0 0.2 0.4 0.6 0.8 1.0

−2
−1

0
1

2
3

f(x
)

Figure 5: Two additional f ⇤ functions used in simulations. On the left we

have a piecewise constant function (with 5 knots); on the right, we have a

piecewise linear function (also with 5 knots).
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Figure 6: Average log(MSE) vs. log(n) for estimators with total variation

penalties of degree 1, 2 and 3 estimating piecewise polynomial functions

with 5 knots. In the left panels, data were generated using the piecewise

constant regression function seen in the left panel of Figure 5; in the right

panel, the piecewise linear function in the right panel of Figure 5 was used.

In the top panel, ✏i were uniformly distributed; in the middle, from a double-

exponential distribution, and in the bottom, from a gaussian. MSE was

calculated as the average over 100 simulations for each nj = 100 ⇤ 1.5j for

j = 1, . . . , 5.
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Figure 7: Two additional f ⇤ functions used in simulations. On the left we

have a piecewise constant function (with 15 knots); on the right, we have a

piecewise linear function (also with 15 knots).
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Figure 8: Average log(MSE) vs. log(n) for estimators with total variation

penalties of degree 1, 2 and 3 estimating piecewise polynomial functions

with 15 knots. In the left panels, data were generated using the piecewise

constant regression function seen in the left panel of Figure 7; in the right

panel, the piecewise linear function in the right panel of Figure 7 was used.

In the top panel, ✏i were uniformly distributed; in the middle, from a double-

exponential distribution, and in the bottom, from a gaussian. MSE was

calculated as the average over 100 simulations for each nj = 100 ⇤ 1.5j for

j = 1, . . . , 5.
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