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Abstract: We present a general approach for computing the convergence rates

of nonparametric penalized regression estimators under misspecified smoothness,

where the true regression function lies in the closure, but not the interior, of the

space of smooth functions characterized by the penalty. The proposed approach

uses an approximating/representative sequence that has a finite (but growing)

penalty value. Here, to establish consistency, we balance the rate at which the

penalty grows, with the approximation error of the representative sequence. We

apply these ideas to the two most commonly used nonparametric penalties: total

variation and Sobolev semi-norms. We give an upper bound for the rate at which

we can estimate a function that exhibits bounded l + 1th-order total-variation

or Sobolev complexity, using a kth-order total-variation or Sobolev penalty (for

k > l + 1) respectively. Our bounds have a simple form that depends on k and l.

In particular, we show that using total-variation penalties, we will achieve a rate

better than n−1/2 for any l ≥ 0 and k ≥ 1. We evaluate the sharpness of our

bounds based on total-variation penalties using a simulation. Empirically, for l = 0

our bound appears to be sharp; however for l ≥ 1, there appears to be a small gap

between our upper bound and the empirical rate.

Key words and phrases: Misspecification, non-parametric estimation, penalized re-

gression, sobolev, total-variation.

1. Introduction

Suppose we observe independently drawn (x, y) pairs, with x ∈ X , y ∈ R,

and

yi = f∗ (xi) + εi, (1.1)

where εi are independent, with E [εi|xi] = 0, and var (εi|xi) = σ2
ε for all i. Further

suppose, we aim to estimate the regression function f∗. Rather than assuming

that f∗ has a specific parametric form, we can estimate it more flexibly by making
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an assumption about its smoothness or structure. For instance, we can assume

that f∗ has k bounded derivatives, or that it is monotone. These assumptions

can be encoded using a functional, P (f), which is small (or finite) when f has the

desired structure, and large (or infinite) when it does not. Penalized regression

is a popular method for estimating f∗ in this context (van de Geer (2000)). The

penalized estimator is given by

f̂ ← argmin
f∈F

1

2
‖y − f‖2n + λnP (f) , (1.2)

where ‖y − f‖2n ≡ (1/n)
∑n

i=1 (yi − f(xi))
2 denotes the empirical norm, λn > 0

is a penalty parameter, and F is a class on which P (·) is defined. In many

cases, the penalized estimate f̂ has good properties. In particular, if f∗ ∈ FCP ≡
{f : X → R s.t. P (f) ≤ C}, for some C, and FCP is not too large, then, for prop-

erly chosen λn, f̂ is a rate-optimal estimator for f∗ (in a minimax sense over FCP
(van de Geer (2000))).

When X = R, a popular classical choice is the kth-order Sobolev penalty,∫
x

∣∣f (k)(x)
∣∣2 dx. Using this penalty, (1.2), can be calculated by solving a sim-

ple linear system (Craven and Wahba (1978)). We consider the following semi-

norm version of the Sobolev penalty: P 2
k (f) ≡ [

∫
x

∣∣f (k)(x)
∣∣2 dx]1/2. There is an

equivalence between the solutions to (1.2) with P 2
k (f), and [P 2

k (f)]2, though the

appropriate choice of λn is different for the two penalties (van de Geer (2000)).

An increasingly popular modern choice is the kth-order total-variation semi-

norm: Pk(f) ≡ supx1,...,xM

∑
|f (k−1)(xm+1) − f (k−1)(xm)|, where the supremum

is taken over all partitions x1 < · · · < xM . If the function f has a kth-order

derivative, then Pk(f) =
∫
x

∣∣f (k)(x)
∣∣ dx. This penalty is popular because (a) for

f∗, a piecewise (k − 1)-order polynomial, it permits a faster convergence rate

than that of a Sobolev penalty, (b) it results in fitted functions that are (k− 1)-

order splines with data-adaptively determined knots (Tibshirani (2014)), and (c)

the fitted function can be obtained from asymptotically equivalent formulations

that are efficient to compute (Mammen and van de Geer (1997); Ramdas and

Tibshirani (2016)).

If f∗ ∈ Fk ≡ {f : R→ R | f is k times weakly differentiable, Pk(f) <∞}, it

is well known that solving (1.2) with P = Pk results in an estimate f̂ that achieves

the minimax rate,
∫
X (f̂(x)− f∗(x))2dP (x) = Op(n

−2k/(2k+1)), for functions over

this class with Pk(f) ≤ Pk(f
∗) (Tibshirani (2014)). In practice, one will rarely,

if ever, know that Pk(f
∗) <∞. Nonetheless, the penalized estimator (1.2) is still

commonly used, often assuming a certain order k of differentiability. It is thus
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natural to ask whether f̂ is still a sensible estimator when these differentiability

conditions are not met.

In this study, we explore what happens if we use penalty Pk when, in fact,

f∗ 6∈ Fk. In particular, we examine the behavior of the estimator when f∗ ∈
Fl+1 for some l + 1 < k. We find that the penalized estimator (1.2) remains

consistent, and give an upper bound on its convergence rate. Our upper bound

for the rate depends on both k and l; however, for all k and l, the bound obeys

‖f̂ − f‖2n = op
(
n−1/2

)
. To prove these results, we discuss a simple and general

framework for bounding the mean squared error (MSE) of penalized estimators

when f∗ lies in the closure of F∞P = {f |P (f) <∞}. Next, we use this general

framework to derive results for functions of bounded variation. Then, we extend

these results to upper bound convergence rates in two additional scenarios: 1)

the true regression function lies in the lth-order Sobolev class (i.e., P 2
l (f∗) <∞),

but we do not have f∗ ∈ Fk, and the total-variation penalty Pk is used; and 2)

a higher-order Sobolev penalty is used in the estimation, but the true f∗ lies in

a lower-order Sobolev or total-variation class. The theoretical tools we use are

not new (Mammen and van de Geer (1997); van de Geer (2000)): However, to

the best of our knowledge, their application to rates of convergence when there

is a mismatch between the penalty-induced structure and the true structure is

novel. This can be applied to many nonparametric regression problems: For most

P that encode smoothness, the `2-closure of F∞P contains all square integrable

functions.

Somewhat similar ideas in approximation theory have been used previously

in the context of nonparametric estimation. In particular, wavelet approxima-

tions have been developed for estimation in Besov spaces (Donoho and Johnstone

(1995)), and ridgelets and curvelets have been proposed for more general multi-

variate spaces (Candes (1998); Starck, Candès and Donoho (2002)). In addition,

approximation results have been given for neural networks (Barron (1993)). To

the best of our knowledge, however, these ideas have not previously been applied

to nonparametric estimation based on penalized regression, where the structure

induced by the penalty does not match the true structure of the underlying re-

gression function.

For low dimensional problems, there are so-called adaptive estimation pro-

cedures that achieve near minimax rates over a collection of orders (e.g., kernel

smoothers based on Lepski procedures (Lepski and Spokoiny (1997)), and some

wavelet-thresholding estimators (Donoho and Johnstone (1995))). Nevertheless,

our results are useful. In practice, penalized regressions with Sobolev or total-
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variation-based penalties are still common (despite being nonadaptive). Thus, it

is of interest to analyze the performance of procedures employed in the current

practice of statistics (Szczesniak et al. (2013); Saâda-Bouzid et al. (2017); Omra-

nian et al. (2016); Tibshirani (2014)). Furthermore, many adaptive procedures

(e.g., Lepski-type) are difficult to employ in higher-dimensional additive/sparse-

additive models, where the degree of smoothness may vary by component. Al-

though we do not analyze such scenarios directly, the ideas presented in this

paper may be extended to do so.

2. Framework

Suppose we have n pairs of data (xi, yi) generated as in (1.1), although

with X = [−1, 1]. Furthermore suppose εi ∼ N(0, σ2) are drawn independently

(although our results require only subGaussian tails). Here, we estimate f∗ using

f̂ by solving the penalized regression problem given in (1.2), for a given choice

of P and λn. Let F = {f : R→ R | P (f) <∞}.
Before moving on, we give an intuitive overview of our approach. Our ap-

proach has two components:

i) Suppose f∗ 6∈ F . For an arbitrarily chosen candidate representative fO ∈ F ,

we show that the error from a penalized regression comes from two sources:

(a) the distance from fO to f∗, and (b) the rate at which we could have

estimated fO if it were the true conditional mean. Here, the choice of

penalty P is captured in the latter source.

ii) We choose a sequence of representatives fO0 , f
O
1 , . . . in F that converges to

f∗. Because f∗ 6∈ F , we have that P
(
fOk
)
→ ∞. Our goal in choosing

this sequence is to balance the aforementioned two sources of error in order

to derive a tight upper bound on the convergence rate of our penalized

estimator.

Note that the sequence of representatives fO0 , f
O
1 , . . . in (ii) is just a tool to prove

the rates of convergence. This sequence is not actually used to construct our

penalized regression estimator.

2.1. Illustrative example

First, we consider an illustrative example; the theory for this example is

discussed in Section 3. Here, we estimate the function f∗ = I(x > 0) using func-

tions in F2 =
{
f
∣∣ f is 2 times weakly differentiable,

∫
x

∣∣f ′′
(x)
∣∣ dx <∞}. Note
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Figure 1. These figures show a sequence of representatives in F2 used to approximate
f∗ = I(x > 0). The left figure shows our sequence of soft indicators, approximating our
original indicator function f∗. Iδ with larger δ are indicated by darker shades of green.

On the right, we show the trade-off between
∥∥f∗ − Iδ∥∥2

n
on the y-axis, and P2

(
Iδ
)

on
the x-axis for varying δ.

that f∗ 6∈ F2 (it is not twice, weakly differentiable), though we do have f∗ ∈ F1.

However, we can approximate f∗ using what we will call the soft indicator func-

tion, Iδ ∈ F2, defined as

Iδ(x) =


0, x ≤ −δ,
(x+δ)

+

2δ , −δ ≤ x ≤ δ,
1, δ ≤ x.

In the left plot of Figure 1, we can see that as δ → 0, our soft indicator function

visually approximates f∗ increasingly well; however, its first derivative changes

increasingly sharply (P2

(
Iδ
)
→ ∞). In particular, the right plot of Figure 1

explicitly shows the trade-off between
∥∥f∗ − Iδ∥∥2

n
and P2

(
Iδ
)

as δ varies. Given

a sequence δn → 0, we can define a sequence of approximators fOn ≡ Iδn .

2.2. Representative inequalities

We now discuss the tools needed to bound the convergence rate for the

estimation error of the penalized regression in (1.2) with a penalty P , when f∗

lives in the closure of F , but not necessarily in its interior. As noted below,

similar results appear elsewhere in the literature, often as intermediate steps in

establishing other properties. We present the results here in the minimal form

required for our use.

We begin with a basic inequality that does not require f∗ to be in F . Here,

we use a representative fO ∈ F . This is similar to the usual basic inequalities

used in van de Geer (2000), Bühlmann and van de Geer (2011), and elsewhere.

However, with a little extra work, we have ‖f̂−fO‖2n on the left-hand-side, which
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we need in the proof of the next theorem.

Lemma 1. Define f∗ as in (1.1) (potentially not in F), and f̂ as in (1.2) (in

F). Let fO be any other function in F . Suppose P is convex. Let 〈h, g〉n =

(1/n)
∑n

i=1 h (xi) g (xi) for any functions h, g. Then,∥∥∥f̂ − f∗∥∥∥2

n
+
∥∥∥f̂ − fO∥∥∥2

n
+ 2λP

(
f̂
)
≤
∥∥fO − f∗∥∥2

n
+ 2

〈
ε, f̂ − fO

〉
n

+ 2λP
(
fO
)
.

(2.1)

The proof of this lemma is given in the online Supplement Material Sec-

tion S.1, and is a straightforward calculation. Similar ideas appear in the two-

point inequality and two point margin of van de Geer (2016) which are used to

establish oracle inequalities in sparse parametric regression, and in Sadhanala

and Tibshirani (2017), who focus on additive modeling.

Now, given a sequence of representatives fO0 , f
O
1 , . . .∈F , with

∥∥fOn − f∗∥∥2

n
→

0, we combine an argument in van de Geer (2000) with the basic inequality above

to establish an upper bound for the rate of convergence of f̂ to f∗.

Before stating our first result, we review the definition of metric entropy. For

F , a subset of our space F , the covering number with respect to the empirical

norm, N (δ, F, ‖·‖n), is defined as the minimum number of balls of radius δ (with

respect to the empirical norm) that are required such that F is a subset of the

union of those balls. The metric entropy is defined as the log of the covering

number: H (δ, F, ‖·‖n) ≡ logN (δ, F, ‖·‖n). Modifying the arguments and results

of Theorem 10.2 of van de Geer (2000), we arrive at the following results.

Theorem 1. Suppose data are generated as in (1.1), and f̂ is defined as in

(1.2), for some λn > 0. Suppose P is a seminorm, and F is a linear subspace

of L2[−1, 1]. Let fO0 , f
O
1 , . . . ∈ F , with P

(
fOk
)
> 0 for all k. Suppose the metric

entropy of F has a polynomial bound, given by

H (δ, {f ∈ F |P (f) ≤ 1} , ‖·‖n) ≤ Aδ−α, (2.2)

for some A > 0 and α ∈ (0, 2).

If we choose

λ−1
n = Op

(
n2/(2+α)P (2−α)/(2+α)

(
fOn
))
,

then, ∥∥∥f̂ − f∗∥∥∥2

n
≤
∥∥f∗ − fOn ∥∥2

n
+Op

(
λnP

(
fOn
))
. (2.3)
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The theorem is proved in the online Supplementary Material, Section S.2. A

similar result is given in the recent paper by Sadhanala and Tibshirani (2017) for

the more general case of additive models. From here, we can optimize (2.3) over

λn, choosing λn = n−2/(2+α)P (−2+α)/(2+α)
(
fOn
)
. Now, we need to choose our

sequence
{
fOn
}

to balance the two terms on the right-hand-side of (2.3): a term

that depends only on the approximation error of our representative sequence,∥∥f∗ − fOn ∥∥2

n
, (2.4)

and a term that depends only on the entropy of our class and on the complexity

(as measured by P (·)) of our approximating sequence,

λnP
(
fOn
)

= n−2/(2+α)P 2α/(2+α)
(
fOn
)
. (2.5)

Note that if f∗ is in F and Eq (2.2) holds for F with α < 2, then (2.5) is the

minimax rate for estimating f∗ over functions f ∈ F with P (f) ≤ P (f∗); this

is the rate achieved by a penalized regression estimator with a suitable choice of

λn.

To recap, we have shown that, for f∗ 6∈ F , given any sequence of represen-

tatives f0, f1, . . . ∈ F , we can characterize ‖f̂ − f∗‖2n as the sum of two terms,

a misspecification error (2.4), and an estimation error (2.5). The optimal choice

of our representative sequence
{
fOn
}

depends on f∗ and the penalty P (·). In

the next two sections, we focus on estimating regression functions with bounded

higher-order total-variation, and those with Sobolev smoothness.

3. Rates for Bounded Total-Variation Classes

Recall that the kth-order total variation of a function f is defined as

Pk(f) ≡ supx1,...,xM

M∑
m=1

∣∣∣f (k−1)(xm+1)− f (k−1)(xm)
∣∣∣ ,

where the supremum is taken over all partitions x1 < · · · < xM . Let Fk denote

the set of functions with bounded kth-order total variation. Then,

Fk ≡ {f : [−1, 1]→ R | f is k-times weakly differentiable and Pk (f) <∞} .

In this section, we investigate the convergence rate of the penalized estimator

in (1.2), with penalty Pk, when the true function f∗ is not in Fk, but is in Fl+1,

for some l + 1 < k. Specifically, by specializing our results in Theorem 1, we
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establish an upper bound for the convergence rate of the penalized estimator in

two cases: l = 0 and l ≥ 1.

As a reminder, if we had assumed that f∗ was in Fl+1, for some l + 1 ≥ k

(rather than <), then, in fact, we would have f∗ ∈ Fk, and the estimator would

converge at the minimax rate over any bounded subset of Fk.
For the results in this section, we assume there exists a universal L, such

that ‖f∗‖∞ ≤ L. We further assume that problem (1.2) is solved under the

constraint that ‖f̂‖∞ ≤ L. This is not necessary to prove our results, but greatly

eases the exposition. In addition we assume X = [−1, 1], and that we have a

fixed design, with evenly spaced xi. In particular, define the triangular array

xi,n = 2i/n− 1, for i ≤ n, and slightly alter the definition of our empirical norm:

‖g‖2n ≡ (1/n)
∑
g (xi,n)2. The following results can be shown for a random

design. In particular, in the case of Sobolev and total-variation-type penalties,

the entropy bounds in (2.2) hold with respect to ‖ · ‖∞, rather than just ‖ · ‖n
(Nickl and Pötscher (2007)). Thus, for any x, the entropy bounds in (2.2) hold,

making the transition to stochastic x relatively straightforward.

3.1. Choice of λ

Recall that, in practice, nonparametric functions are often estimated from

observed data by solving the penalized regression problem in (1.2) for a given

choice of P , with λ chosen using, for example, cross-validation. The results

in Lemma 2 and Lemma 3, give us the rates of convergence if we choose an

oracle λ-value (rather than selecting λ using cross-validation). In a number of

cases, these λ-values depend on both k and l, which are unknown, and thus

cannot be substituted into (1.2) for estimation. However, using recent ideas

(Feng and Simon (In Press)), these results can still be useful in understanding the

performance of a penalized regression estimator with λ selected by split-sample

validation. We discuss this further in Section S.7 of the online Supplementary

Material. We hope to engage with this further in future work.

Note that the “approximating sequences” we discuss below are technical tools

we use to show these rates; they are not used in the estimation procedure.

3.2. Estimating f∗ ∈ F1 using Pk

We first consider estimating f∗ ∈ F1 using the penalty Pk, for k > 1. We

obtain the following result,

Lemma 2. Suppose f∗ ∈ F1, f̂ is given by solving (1.2), using P (·) = Pk(·) for
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k > 1, and λn = n−2k2/(4k−1)P1 (f∗)−(2k−1)2/(4k−1). Then,∥∥∥f̂ − f∗∥∥∥2

n
= Op

(
n−2k/(4k−1)P1 (f∗)(4k−2)/(4k−1)

)
. (3.1)

The main idea here is to use a two-stage approximation. First, we note that

any f∗ ∈ F1 can be approximated by a piecewise constant function f̃n(x) =∑J(n)
j=1 βj,nI (x > dj,n) with J(n) knots, d1,n, . . . , dJ(n),n (Birman and Solomyak

(1967)). However, f̃n 6∈ Fk. Thus, we also approximate the indicator function

I (x > 0) using what we refer to as the kth-order soft indicator function:

Iδk(x) ≡ δ−1

∫ x

−∞
bk−1

(
t

δ

)
dt.

Here, bk−1 denotes the cardinal b-spline of order k−1, scaled to have support on

[−1, 1]. Note that bk−1 is a piecewise k−1-order polynomial, which is nonnegative

and integrates to one(Udovičić (2010)). Importantly, this soft indicator is an

element of Fk. Therefore, our final representative becomes

fn(x) =

J(n)∑
j=1

βj,nI
δn
k (x− dj,n) .

From here, we can bound ‖fn − f∗‖2n and Pk (fn) as functions of δn, and select a

suitable δn to obtain the rates in (3.1). The details of the proof are given in the

online Supplementary Material Section S.3.1.

3.3. Estimating f∗ ∈ Fl+1 using Pk for 1 < l + 1 < k

We now give a similar result for estimating a regression function with (l+1)-

st order bounded variation, using a penalized regression with penalty Pk for

k > l + 1 > 1. In this case, we get:

Lemma 3. Let k > l + 1 ≥ 2. Suppose f∗ ∈ Fl+1, f̂ is given by solving (1.2),

using P (·) = Pk(·), and λn = n−k(k+1−l)/(3k−l)Pl+1(f∗)(1−2k)(k−l)/(3k−l). Then,

we have ∥∥∥f̂ − f∗∥∥∥2

n
= Op

(
n−2k/(3k−l)Pl+1 (f∗)(2k−2l)/(3k−l)

)
. (3.2)

Lemma 3 is not a generalization of Lemma 2. Here, we require l + 1 ≥ 2,

which allows us to use differentiability to obtain a slightly faster rate.

The crux of the argument is similar to the F1 case. We again use a two-stage

approximation, but our approximating sequence is different. Using a similar
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result to that in Section 3.2, f∗ ∈ Fl+1 can be approximated by an lth-order

spline: f̃n(x) =
∑J(n)

j=1 βj,n (x− dj,n)l+ (Birman and Solomyak (1967)). However,

f̃n is not in Fk. To derive an estimate that is in Fk, we approximate xl+ using

integrals of our kth-order soft-indicator function. In particular, we consider:

ψδk,l(x) ≡ l! δ−1

∫ x

−∞
· · ·
∫ t2

−∞︸ ︷︷ ︸
(l+1) times

bk−l−1

(
t1
δ

)
dt1 · · · dtl+1,

which is an element of Fk that closely approximates xl+. The approximation

becomes better as δ → 0. In addition, note that ∂lψδk,l/∂x
l = l!Iδk−l, which, in

particular, closely approximates ∂l
(
xl+
)
/∂xl = l!I(x ≥ 0). Our final representa-

tive becomes

fn(x) =

J(n)∑
j=1

βj,nψ
δn
k,l (x− dj,n) .

By selecting suitable δn we obtain our rates in (3.2). The details of the proof are

given in online Supplementary Material Section S.3.5.

3.4. A comparison of rates

The minimax rate for estimating a function in Fl+1 is n−(2l+2)/(2l+3). For

l = 0, this gives n−2/3. In comparison, our results show that using Pk with

k > 1 yields a rate of at least n−2k/(4k−1). This is substantially slower than the

minimax rate. However, it is always faster than n−1/2, which is the best rate one

can achieve using a linear smoother when estimating a function from F1 (Donoho

et al. (1995)). The n−1/2 rate is also the critical rate needed if the nonparametric

estimate of the regression function is used as an intermediate quantity when

estimating a path-wise differentiable functional (Bickel et al. (1998)). As long as

the regression function is estimated at a rate faster than n−1/2, we can be efficient

in our downstream estimate of that functional, and apply semi-parametric tools

to build asymptotically valid confidence intervals.

For estimating a regression function in Fl+1, for l ≥ 1, our rate of n−2k/(3k−l)

is not too far from the optimal n−(2l+2)/(2l+3). It is always faster than n−2/3,

which is the rate one would achieve using P1 for functions in Fl+1. In addition,

as k, l→∞, with (k − l)/k → 0, our rate converges to the parametric rate n−1.

The empirical results of Section 5 lead us to conclude that our results in

Lemma 2, for the F1 case, are sharp (or nearly sharp). However, the results

in Lemma 3, for l + 1 ≥ 2, do not appear to be sharp. We believe that this is
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because our approximation ψδk,l(x) only agrees with ψl ≡ (x)l+ in its lth derivative

at x = δ; for instance, we do not even have ψδk,l(δ) = ψl(δ). Ideally, we would

have ψδk,l(δ) = ψl(δ) and ∂mψδk,l(δ)/∂x
m = ∂mψl(δ)/∂x

m, for all m ≤ l, or,

equivalently, an approximator with ψδk,l(x) = ψl(x), for all x ≥ δ. If such an

approximator could be found, then the misspecification error would become δ2l+1

(instead of δ2). If, in addition, Pk(ψ
δ
k,l) scales as 1/δk−l−1, then our convergence

rate in Lemma 3 would improve to n−2k(l+1)/(2k(2l+2)−1). This rate matches the

empirical results of Section 5.

4. Rates for Sobolev Classes

Many popular nonparametric procedures assume that f∗ has finite a Sobolev

semi-norm

P dk (f) =

(∫ ∣∣∣f (k)(x)
∣∣∣d dx)1/d

,

where, classically, d is taken to be two (Hastie and Tibshirani (1990); Craven

and Wahba (1978)). We define

Fdk =
{
f : [−1, 1]→ R

∣∣∣ f is k-times differentiable and P dk (f) <∞
}
.

In this section, we explore the convergence rates of the estimators obtained a)

using Sobolev semi-norms (P dk , d > 1) as penalties, and b) when f∗ lies in a

Sobolev space Fdl , for d > 1, rather than in a space of bounded total-variation. As

before, we are interested in cases where, for our given choice of penalty (Sobolev

or total-variation semi-norm), we have P (f∗) =∞.

First, note that Fdk ⊂ Fk, for all d ≥ 1. This follows from the simple Ld-norm

inequality (∫ ∣∣∣f (k)(x)
∣∣∣d dx)1/d

≥
∫ ∣∣∣f (k)(x)

∣∣∣ dx. (4.1)

In particular, this immediately gives us the following results when using a

kth-order total-variation penalty to estimate a function that actually lies in a

lower order Sobolev class,

Corollary 1. For d > 1, suppose f∗ ∈ Fd1 , f̂ is found by solving (1.2), using

P (·) = Pk(·) for k > 1, and λn = n−2k2/(4k−1)P1 (f∗)−(2k−1)2/(4k−1). Then,∥∥∥f̂ − f∗∥∥∥2

n
= Op

(
n−2k/(4k−1)P1 (f∗)(4k−2)/(4k−1)

)
. (4.2)
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Corollary 2. Let k > l + 1 ≥ 2 and d > 1. Suppose f∗ ∈ Fdl+1, and

f̂ is found by solving (1.2), using P (·) = Pk(·), and λn = n−k(k+1−l)/(3k−l)

Pl+1(f∗)(1−2k)(k−l)/(3k−l). Then,∥∥∥f̂ − f∗∥∥∥2

n
= Op

(
n−2k/(3k−l)Pl+1 (f∗)(2k−2l)/(3k−l)

)
. (4.3)

Note that the total-variation norms P1 (f∗) in Corollary 1 and Pl+1 (f∗) in

Corollary 2 are finite, owing to (4.1); these can be replaced with P d1 (f∗) and

P dl+1 (f∗), respectively; however, that would give a looser bound.

It is also of interest to know how a penalized estimator using a higher-order

Sobolev penalty performs when the true f∗ lies in a lower order Sobolev or total-

variation class. We begin by considering the use of P dk if f∗ is truly only in Pl,

for some l ≤ k. We obtain the following results.

Lemma 4. Suppose f∗ ∈ F1, f̂ is found by solving (1.2), using P (·) = P dk (·) for

k > 1 and d > 1, and λn = n−(2k2+4k)/(4k+1)P1 (f∗)−(4k2−1)/(4k+1). Then,∥∥∥f̂ − f∗∥∥∥2

n
= Op

(
n−2k/(4k+1)P1 (f∗)(4k+2)/(4k+1)

)
. (4.4)

Lemma 5. Let k > l + 1 ≥ 2. Suppose f∗ ∈ Fl+1, f̂ is given by solv-

ing (1.2), using P (·) = P dk (·) for d > 1, and λn = n−k(k+2−l)/(3k−l+1)

Pl+1(f∗)−(2k(k+2−2l)+1)/(3k−l+1). Then, we have∥∥∥f̂ − f∗∥∥∥2

n
= Op

(
n−2k/(3k−l+1)Pl+1 (f∗)(2k−2l)/(3k−l+1)

)
. (4.5)

The proofs of these lemmas are given in the online Supplementary Material

Sections S.4 and S.5. Note, that we use ψδk+1,l(x) ∈ Fdk to approximate xlI(x ≥
0). This differs from the situation in Section 3.3, where we could use ψδk,l(x) ∈ Fk;
in this case, however, ψδk,l(x) 6∈ Fdk for d > 1. This is largely responsible for the

slightly worse rate than those of Lemmas 2, and 3.

By again using the seminorm inequality in (4.1), we can immediately extend

the results in Lemmas 4 and 5 to the case where f∗ lies in a lower-order Sobolev

class.

Corollary 3. Suppose f∗ ∈ Fd1 , f̂ is found by solving (1.2), using P (·) = P dk (·)
for k > 1 and d > 1, and λn = n−(2k2+4k)/(4k+1)P1 (f∗)−(4k2−1)/(4k+1). Then,∥∥∥f̂ − f∗∥∥∥2

n
= Op

(
n−2k/(4k+1)P1 (f∗)(4k+2)/(4k+1)

)
. (4.6)
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Corollary 4. Let k > l + 1 ≥ 2. Suppose f∗ ∈ Fdl+1, f̂ is found by

solving (1.2), using P (·) = P dk (·) for d > 1, and λn = n−k(k+2−l)/(3k−l+1)

Pl+1(f∗)−(2k(k+2−2l)+1)/(3k−l+1). Then,∥∥∥f̂ − f∗∥∥∥2

n
= Op

(
n−2k/(3k−l+1)Pl+1 (f∗)(2k−2l)/(3k−l+1)

)
. (4.7)

Once again, these results hold with Pl+1 (f∗) and P1 (f∗) replaced with

P dl+1 (f∗) and P d1 (f∗), respectively. However, the bounds are looser.

As in the case of Lemma 3, we do not believe the results in Lemma 5 or

those in Corollaries 2 and 4 are tight. As discussed in Section 3.4, an approx-

imating spline with more matching derivatives outside our shrinking interval,

would immediately obtain a faster rate.

5. Simulation

To empirically evaluate the sharpness (or lack thereof) of the rates shown in

Section 3, we ran a set of simulation experiments. For varying values of n, we

used xi = {1/n, 2/n, . . . , 1}, and generated yi as

yi = f∗ (xi) + εi,

where εi are independent and identically distributed (i.i.d.) and from various

distributions (Gaussian, uniform, and double-exponential). We used piecewise-

constant and piecewise-linear functions for f∗. In this section we present the

results for εi drawn from N(0, 1); and f∗ piecewise-constant and piecewise-linear

with a single knot. Simulations using other settings are given in Section S.8 of

the online Supplementary Material.

Here we use the piecewise constant f∗1 (x) ≡ 3 ∗ I(x > 0.5) to evaluate the

rate in Lemma 2, and the piecewise linear f∗2 (x) = 3(x − 0.5)+ for Lemma 3.

We used nj = 200 ∗ 1.5j for j = 1, . . . , 6, and ran 400 simulations for each n. In

each simulation, we evaluated the MSE of the penalized regression with P1, P2,

and an approximation to P3, known as `1 trend filtering (Tibshirani (2014)); we

also considered the oracle model, where we fit a parametric model with a zero-

th-order or first-order spline, with a single knot at 0.5. Unfortunately, an exact

fit for P3 is computationally difficult. However, the quadratic trend filtering

estimator that we use can be fit efficiently using the method of Ramdas and

Tibshirani (2016). This is also a penalized estimator and has been shown to be

asymptotically equivalent to a penalized regression with penalty P3 (Tibshirani
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Table 1. Estimated slope (and standard error) of the regression of log(MSE) on log(n)
for our estimator based on total variation penalty, as well as an oracle estimator. In
this example, slopes were calculated based on 400 simulated experiments with each of
nj = 200∗1.5j (j = 1, . . . , 6). The results in the first column correspond to data generated
from f∗1 (x) ≡ 3∗I(x > 0.5); those in the second column are based on f∗2 (x) = 3(x−0.5)+.

Estimator/Penalty slope for f∗1 slope for f∗2
P1 -0.831 (0.021) -0.656 (0.012)
P2 -0.572 (0.006) -0.863 (0.025)
P3 -0.548 (0.005) -0.780 (0.018)

oracle -0.967 (0.036) -0.943 (0.037)
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Figure 2. Average log(MSE) vs. log(n) for estimators with total-variation penalties
of degree 1, 2, and 3, along with a parametric oracle. In the left panel, data were
generated using the regression function f∗(x) = 3∗I(x > 0.5); in the right panel, f∗(x) =
3(x− 0.5)+ was used. The MSE was calculated as the average over 400 simulations for
each nj = 200 ∗ 1.5j , for j = 1, . . . , 6.

(2014)). These estimates were all fit using the R package glmgen. To select λ,

we used an oracle procedure. For each penalty/simulation, we tried a range of

λ-values, and selected the value that minimized the MSE, ‖f∗ − f̂λ‖2n. We then

reported the MSE of the estimator with that optimal λ-value.

Table 1 and Figure 2 show the results of estimating the piecewise con-

stant and linear regression functions, f∗1 and f∗2 , respectively. Here, we regress

log(MSE) on log(n). The slope of this regression provides an estimate of the

exponent in our convergence rates. In the first column of Figure 1, based on

our theory, we would expect to see a slope of −4/7 = −0.571 when using P2

(rate for F1 with k = 2), and −6/11 = −0.545 when using P3 (rate for F1

with k = 3). The rates from our simulations are very close to these theoreti-

cal rates. These findings suggest that our bound in Lemma 2 is sharp. Note

that P1 achieves a faster rate than the minimax −2/3 over F1. This is because
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the penalized estimator using a kth-order total-variation penalty can adapt and

achieve a near-parametric rate when estimating a function that is a piecewise

(k−1)-degree polynomial (Guntuboyina et al. (2017)). In the second column, we

expect to see −2/3 when using P1 (the minimax rate for functions of bounded

first-order TV), and a rate of at least −3/4 using P3 (rate for l + 1 = 2, with

k = 3). The simulations appear to suggest a slightly faster rate for P3, indicating

that the upper bound in Lemma 3 may not be sharp. In fact, our empirical

rate matches our hypothesized convergence rate from Section 3.4: For k = 3 and

l = 1, the hypothesized rate reduces to −18/23 ≈ −0.782. This is the rate our

bound would obtain if we could find a slightly better behaved approximating

sequence. Finally, using P2, we see an empirical rate that is slightly faster than

the minimax rate over F2; this, again, is in line with the work of Guntuboyina

et al. (2017).

6. Discussion

W have discussed a framework for proving the convergence rates of penalized

regression estimators under misspecified smoothness, when P (f∗) = ∞. In this

framework, the error from a penalized regression comprises two parts: (a) the

distance from fO, any representative in F , to f∗; and (b) the rate at which we

could have estimated fO if it were the true conditional mean; the latter rate

involves a term P
(
fO
)
. We applied this framework to the estimation of func-

tions with bounded (l + 1)st-order total-variation or Sobolev variation, using a

k > l + 1 order total-variation, or Sobolev penalty. We provide a bound on

the convergence rate, and show, in particular, that when using a total-variation

penalty, for any l, k the rate is faster than n−1/2. The n−1/2 rate is the critical

rate needed if the nonparametric estimate of the regression function is to be used

as an intermediate quantity for estimating a path-wise differentiable functional

(Bickel et al. (1998)). As long as the regression function is estimated at a rate

faster than n−1/2, we can in general be efficient in our downstream estimate of

that functional, and apply semi-parametric tools to build asymptotically valid

confidence intervals. Applications of these flexible methods are becoming in-

creasingly popular in causal inference (Chernozhukov et al. (2016)), where it is

critical to guarantee that the estimators of the nuisance parameters obtain this

rate.

We conducted a simulation experiment to evaluate the sharpness of our

bounds using total-variation penalties. The results show that our bound in
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Lemma 2 appears sharp, whereas that in Lemma 3 does not. We suspect that

this is because of the approximating sequence we chose. We can obtain a tighter

bound by constructing an approximating sequence that matches on lower-order

derivatives.

The proposed framework can be applied more generally. For example, using

the results from Sadhanala and Tibshirani (2017), it would be straightforward

to derive similar rates for additive models. In addition, it might be of interest to

consider general multivariate penalized smoothers.

Supplementary Material

The online Supplementary Material contains formal proofs of all results (lem-

mas and theorems) in the manuscript, an in-depth discussion of the tuning pa-

rameter λ, and additional simulation results.
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