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Additional simulation results

In this section, we show some additional simulation results for Simulated Examples 1 and 2,

where we set σ = 6 and keep all the other set ups the same. The results are shown in Tables

S1 and S2. The information we obtain is similar to that from the scenarios with σ = 2.

Additional sensitivity study

In this section, we investigate how the performance of our method depends on the sample

size, dimensionality, and noise level for Simulated Example 2, as a supplement to Section 5.2.

In particular, we consider n = 100 or 500, p = 500, 1000, 2000 or 5000 and σ = 2 or 6 in

the Simulated Example 2. We illustrate the MSE, ‖β̂ − β0‖2, FN and FP against different

values of p for each configuration of sample size and noise level in Figure S1.

One can see from the plots that the performance of PCS does not change much as

the dimensionality p increases from 500 to 5000. In general, it is robust as sample size,
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Table S1: Results for simulated example 1. For each method, we report the average MSE,
l2 distance, FN and FP over 100 replications (with standard errors given in parentheses).

Method MSE ‖β̂ − β0‖2 FN FP
p = 1000, σ = 6

Elnet 52.11 (0.59) 3.31 (0.07) 0.81 (0.09) 1.85 (0.26)
SIS-Elnet 50.68 (0.53) 3.15 (0.07) 0.63 (0.08) 1.81 (0.20)
LASSO 52.52 (0.57) 3.96 (0.06) 1.50 (0.10) 1.13 (0.17)
SIS-LASSO 50.88 (0.54) 3.91 (0.06) 1.44 (0.10) 1.03 (0.13)
SIS-Ridge 119.9 (1.01) 4.59 (0.01) 0.00 (0.00) 12.00 (0.00)
SIS-PACS 52.50 (0.67) 3.40 (0.06) 0.00 (0.00) 4.86 (0.04)
PCS 41.68 (0.38) 1.67 (0.07) 0.06 (0.04) 0.00 (0.00)
PRCS 43.12 (0.37) 2.04 (0.08) 0.06 (0.04) 2.05 (0.14)

p = 5000, σ = 6
Enet 55.57 (0.64) 3.55 (0.06) 0.99 (0.11) 2.47 (0.29)
SIS-Enet 53.86 (0.60) 3.45 (0.07) 0.99 (0.10) 1.83 (0.19)
LASSO 55.95 (0.64) 4.16 (0.06) 1.77 (0.12) 1.55 (0.17)
SIS-LASSO 53.78 (0.61) 4.02 (0.06) 1.68 (0.10) 1.22 (0.13)
SIS-Ridge 123.29 (1.03) 4.68 (0.01) 0.00 (0.00) 12.00 (0.00)
SIS-PACS 56.45 (0.74) 3.80 (0.04) 0.00 (0.00) 4.94 (0.03)
PCS 42.76 (0.42) 1.96 (0.11) 0.25 (0.07) 0.04 (0.02)
PRCS 43.16 (0.47) 2.11 (0.11) 0.25 (0.07) 0.80 (0.09)

dimensionality or signal to noise ratio (SNR) vary.

Additional technical proofs

Proof of Corollary ??. First note that
W 2
pn−ap,n
bp,n

≥ x is equivalent to

log(1−W 2
pn) ≤ log(1− ap,n − bp,nx), (1)

where log(1−W 2
pn) = Tpn. The RHS of (1) can be further expressed as

log(1− ap,n − bp,nx) = log
(
1− 2

n− 2
p−4/(n−2)cp,nx− (1− p−4/(n−2)cp,n)

)
= log

(
p−4/(n−2)(1− 2

n− 2
x)cp,n

)
= −4 log p

n− 2
+ log(1− 2

n− 2
x) + log cp,n.

(2)
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Table S2: Results for simulated example 2. The format of this table is the same as Table
S1.

Method MSE ‖β̂ − β0‖2 FN FP
p = 1000, σ = 6

Elnet 45.03 (0.35) 3.73 (0.03) 2.28 (0.07) 1.30 (0.59)
SIS-Elnet 45.08 (0.35) 3.75 (0.02) 2.31 (0.07) 1.53 (0.51)
LASSO 45.03 (0.36) 3.74 (0.03) 2.35 (0.06) 0.12 (0.04)
SIS-LASSO 45.09 (0.35) 3.75 (0.02) 2.43 (0.06) 0.12 (0.04)
SIS-Ridge 46.08 (0.30) 3.90 (0.00) 1.07 (0.07) 20.07 (0.07)
SIS-PACS 45.45 (0.34) 3.91 (0.02) 1.07 (0.07) 4.03 (0.06)
PCS 44.01 (0.46) 3.51 (0.06) 2.2 (0.08) 0.24 (0.05)
PRCS 44.98 (0.35) 3.73 (0.03) 2.37 (0.07) 0.14 (0.04)

p = 5000, σ = 6
Elnet 45.78 (0.35) 3.84 (0.01) 2.48 (0.07) 1.09 (0.67)
SIS-Elnet 45.77 (0.35) 3.84 (0.02) 2.47 (0.05) 0.77 (0.36)
LASSO 45.78 (0.35) 3.84 (0.01) 2.57 (0.05) 0.20 (0.04)
SIS-LASSO 45.75 (0.35) 3.83 (0.02) 2.50 (0.05) 0.15 (0.04)
SIS-Ridge 46.14 (0.35) 3.90 (0.00) 1.42 (0.06) 20.42 (0.06)
SIS-PACS 45.76 (0.38) 3.85 (0.02) 2.46 (0.06) 0.76 (0.06)
PCS 45.80 (0.36) 3.85 (0.01) 2.61 (0.05) 0.12 (0.04)
PRCS 45.79 (0.36) 3.84 (0.02) 2.62 (0.05) 0.13 (0.05)

(i) Sub-Exponential Case

If log(p)/n→ 0 as n→∞, then we have

cp,n =
( 2

n− 2
B(

1

2
,
n− 2

2
)
√

1− p−4/(n−2)
) 2
n−2

=

(√((n− 2)π

2
+ o(1)

)
(1− e−

4 log p
n−2 )

) 2
n−2

=

(
(n− 2)π

2
· 4 log p

n− 2
(1 + o(1))

) 2
n−2

= exp

{
1

n− 2

(
log(2π log p) + o(1)

)}
for large enough n.
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(a) MSE (b) Estimation error

(c) FN (d) FP

Figure S1: Performance of PCS against different dimensionality p.

Hence for large enough n,

n log(1− ap,n − bp,nx) = −4n log p

n− 2
+ n log(1− 2

n− 2
x) + log 2π + log log p+ o(1)

= log log p− 4 log p+ n log(1− 2

n− 2
x) + log 2π + o(1)

(3)
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Let y = n log(1− 2
n−2x)+log 2π, then the RHS of (2) becomes log log p−4 log p+y+o(1).

Combing with (1) we get

lim
n→∞

P

(
W 2
pn − ap,n
bp,n

≥ x

)
= lim

n→∞
P (nTpn ≤ n log(1− ap,n − bp,nx))

= lim
n→∞

P (nTpn ≤ log log p− 4 log p+ y)

(4)

As p = pn →∞ as n→∞, we have

lim
n→∞

P

(
W 2
pn − ap,n
bp,n

≥ x

)
= lim

n→∞,p→∞
P

(
W 2
pn − ap,n
bp,n

≥ x

)
= lim

n→∞
lim
p→∞

P

(
W 2
pn − ap,n
bp,n

≥ x

)
( as the convergence is uniform in n)

=1− lim
n→∞

Gn(x),

where Gn(x) = I(x ≤ n−2
2

) exp
{
− 1

2

(
1− 2

n−2x
)n−2

2
}

+ I(x > n−2
2

).

Note that 1− 2
n−2x = exp{ 1

n
(y − log 2π)}, plugging it into Gn(x) yields

lim
n→∞

Gn(x) = lim
n→∞

exp
{
− 1

2
exp

{n− 2

2n
(y − log 2π)

}}
= exp

{
− 1√

8π
exp(

1

2
y)
}
.

Hence part (i) of Corollary ?? follows.

• Exponential Case

When (log p)/n→ β ∈ (0, β) as n→∞, we have

cp,n =
( 2

n− 2
B(

1

2
,
n− 2

2
)
√

1− p−4/(n−2)
) 2
n−2

=

(
(n− 2)π

2
(1− e−4β) + o(1)

) 2
n−2

= exp

{
1

n− 2
log
((n− 2)π(1− e−4β)

2
) + o(1)

)}
for large enough n.
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It follows that for large enough n,

n log(cp,n) =
n

n− 2
log(n− 2) + log

(π(1− e−4β)

2

)
+ o(1)

= log log p− log β + log
(π(1− e−4β)

2

)
+ o(1)

Together with (2) we have

n log(1− ap,n − bp,nx)

= log log p− log β + log
(π(1− e−4β)

2

)
− 4 log p

n− 2
+ n log(1− 2

n− 2
x)

= log log p− 4 log p− 8β + n log(1− 2

n− 2
x) + log

(π(1− e−4β)

2β

)
+ o(1)

(5)

Let y = −8β+n log(1− 2
n−2x)+log

(
π(1−e−4β)

2β

)
, then the RHS of (5) becomes log log p−

4 log p+ y + o(1). Again combing with (1), we can still get (4).

Moreover,

lim
n→∞

Gn(x) = lim
n→∞

exp

{
− 1

2
exp

{
n− 2

2n

(
y + 8β − log

(π(1− e−4β)

2β

))}}
= exp

{
−
( β

π(1− e−4β)

)1/2
e(y+8β)/2},

which leads to the convergence result in part (ii).

• Super-Exponential Case

If log p/n→∞ as n→∞, then for large enough n,

cp,n =
( 2

n− 2
B(

1

2
,
n− 2

2
)
√

1− p−4/(n−2)
) 2
n−2 = exp

{ 1

n− 2
log
((n− 2)π

2

)}
.
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Combing with (2) we obtain

n log(1− ap,n − bp,nx)

=− 4n log p

n− 2
+ n log(1− 2

n− 2
x) +

n

n− 2
log 2π − n

n− 2
log(n− 2) + o(1)

=− 4n log p

n− 2
+ log n+ n log(1− 2

n− 2
x) + log

π

2
+ o(1).

(6)

Let y = n log(1− 2
n−2x)+log π

2
, then the RHS of (5) becomes −4n log p

n−2 +log n+y+o(1).

Moreover,

lim
n→∞

Gn(x) =1− lim
n→∞

exp
{
− 1

2
exp

{n− 2

2n

(
y − log

π

2

)}}
= exp

{
− 1√

2π
ey/2
}
.

Proof of Theorem 2. If Y is normally distributed, then conditioning onXi andXj, R
2
ij|Xi, Xj

is distributed as Beta(1, n−3
2

) [? ], which is independent of Xi, Xj. Therefore, the uncondi-

tional distribution of R2
ij is also Beta(1, n−3

2
).

P (R2
pn ≥ 1− p−(4+δ)/(n−3)) = P

(
max

1≤i<j≤p
R2
ij ≥ 1− p−(4+δ)/(n−3)

)
= P

(
∪1≤i<j≤p {R2

ij ≥ 1− p−(4+δ)/(n−3)}
)

≤ p(p− 1)

2
P ({R2

ij ≥ 1− p−(4+δ)/(n−3)})

=
p(p− 1)

2

(
p−(4+δ)/(n−3)

) (n−3)
2

= O(p−δ/2)→ 0,

as p→∞.
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