Supplementary Materials: Penalized Linear Regression with Pairwise Screening

Siliang Gong, Kai Zhang and Yufeng Liu^{*}

Additional simulation results

In this section, we show some additional simulation results for Simulated Examples 1 and 2, where we set $\sigma = 6$ and keep all the other set ups the same. The results are shown in Tables S1 and S2. The information we obtain is similar to that from the scenarios with $\sigma = 2$.

Additional sensitivity study

In this section, we investigate how the performance of our method depends on the sample size, dimensionality, and noise level for Simulated Example 2, as a supplement to Section 5.2. In particular, we consider n = 100 or 500, p = 500, 1000, 2000 or 5000 and $\sigma = 2$ or 6 in the Simulated Example 2. We illustrate the MSE, $\|\hat{\beta} - \beta_0\|_2$, FN and FP against different values of p for each configuration of sample size and noise level in Figure S1.

One can see from the plots that the performance of PCS does not change much as the dimensionality p increases from 500 to 5000. In general, it is robust as sample size,

^{*}Siliang Gong is Ph.D. candidate (E-mail: siliang@live.unc.edu), Department of Statistics and Operations Research; Kai Zhang is Assistant Professor (E-mail: zhangk@email.unc.edu), Department of Statistics and Operations Research; and Yufeng Liu is Professor (E-mail: yfliu@email.unc.edu), Department of Statistics and Operations Research, Department of Genetics, Department of Biostatistics, Carolina Center for Genome Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.

Table S1: Results for simulated example 1. For each method, we report the average MSE, l2 distance, FN and FP over 100 replications (with standard errors given in parentheses).

Method	MSE	$\ \hat{oldsymbol{eta}}-oldsymbol{eta}_0\ _2$	FN	FP				
	p =	$= 1000, \sigma =$	6					
Elnet	$52.11 \ (0.59)$	3.31(0.07)	$0.81 \ (0.09)$	1.85(0.26)				
SIS-Elnet	$50.68 \ (0.53)$	3.15(0.07)	$0.63\ (0.08)$	1.81(0.20)				
LASSO	$52.52 \ (0.57)$	$3.96\ (0.06)$	1.50(0.10)	$1.13 \ (0.17)$				
SIS-LASSO	$50.88 \ (0.54)$	$3.91 \ (0.06)$	1.44(0.10)	1.03(0.13)				
SIS-Ridge	119.9(1.01)	4.59(0.01)	$0.00\ (0.00)$	12.00(0.00)				
SIS-PACS	$52.50 \ (0.67)$	$3.40\ (0.06)$	$0.00\ (0.00)$	4.86(0.04)				
PCS	41.68(0.38)	1.67(0.07)	0.06(0.04)	$0.00\ (0.00)$				
PRCS	43.12(0.37)	2.04(0.08)	0.06(0.04)	2.05(0.14)				
$p = 5000, \sigma = 6$								
Enet	55.57 (0.64)	3.55(0.06)	0.99(0.11)	2.47(0.29)				
SIS-Enet	$53.86\ (0.60)$	3.45(0.07)	0.99(0.10)	1.83(0.19)				
LASSO	55.95(0.64)	4.16(0.06)	1.77(0.12)	$1.55 \ (0.17)$				
SIS-LASSO	53.78(0.61)	4.02(0.06)	1.68(0.10)	1.22(0.13)				
SIS-Ridge	123.29(1.03)	4.68(0.01)	$0.00\ (0.00)$	12.00(0.00)				
SIS-PACS	56.45(0.74)	3.80(0.04)	$0.00\ (0.00)$	4.94(0.03)				
PCS	42.76(0.42)	1.96(0.11)	0.25~(0.07)	0.04~(0.02)				
PRCS	43.16(0.47)	2.11(0.11)	0.25(0.07)	0.80(0.09)				

dimensionality or signal to noise ratio (SNR) vary.

Additional technical proofs

Proof of Corollary ??. First note that $\frac{W_{pn}^2 - a_{p,n}}{b_{p,n}} \ge x$ is equivalent to

$$\log(1 - W_{pn}^2) \le \log(1 - a_{p,n} - b_{p,n}x),\tag{1}$$

where $\log(1 - W_{pn}^2) = T_{pn}$. The RHS of (1) can be further expressed as

$$\log(1 - a_{p,n} - b_{p,n}x) = \log\left(1 - \frac{2}{n-2}p^{-4/(n-2)}c_{p,n}x - (1 - p^{-4/(n-2)}c_{p,n})\right)$$

= $\log\left(p^{-4/(n-2)}(1 - \frac{2}{n-2}x)c_{p,n}\right)$
= $-\frac{4\log p}{n-2} + \log(1 - \frac{2}{n-2}x) + \log c_{p,n}.$ (2)

Method	MSE	$\ \hat{oldsymbol{eta}}-oldsymbol{eta}_0\ _2$	FN	FP
	<i>p</i> =	$= 1000, \sigma =$	- 6	
Elnet	45.03(0.35)	3.73(0.03)	2.28(0.07)	1.30(0.59)
SIS-Elnet	45.08(0.35)	3.75(0.02)	2.31(0.07)	1.53(0.51)
LASSO	45.03(0.36)	3.74(0.03)	2.35(0.06)	0.12(0.04)
SIS-LASSO	45.09(0.35)	3.75(0.02)	2.43(0.06)	0.12(0.04)
SIS-Ridge	46.08(0.30)	3.90(0.00)	1.07(0.07)	20.07(0.07)
SIS-PACS	45.45(0.34)	3.91(0.02)	1.07(0.07)	4.03(0.06)
PCS	44.01 (0.46)	3.51(0.06)	2.2(0.08)	0.24(0.05)
PRCS	44.98(0.35)	3.73(0.03)	2.37(0.07)	0.14(0.04)
	<i>p</i> =	$= 5000, \sigma =$	6	
Elnet	45.78(0.35)	3.84(0.01)	2.48(0.07)	1.09(0.67)
SIS-Elnet	45.77(0.35)	3.84(0.02)	2.47(0.05)	0.77(0.36)
LASSO	45.78(0.35)	3.84(0.01)	2.57(0.05)	0.20(0.04)
SIS-LASSO	45.75(0.35)	3.83(0.02)	2.50(0.05)	0.15(0.04)
SIS-Ridge	46.14(0.35)	3.90(0.00)	1.42(0.06)	20.42(0.06)
SIS-PACS	45.76(0.38)	3.85(0.02)	2.46(0.06)	0.76(0.06)
PCS	45.80(0.36)	3.85(0.01)	$2.61 \ (0.05)$	0.12(0.04)
PRCS	45.79(0.36)	3.84(0.02)	2.62(0.05)	0.13(0.05)

Table S2: Results for simulated example 2. The format of this table is the same as Table S1.

(i) Sub-Exponential Case

If $\log(p)/n \to 0$ as $n \to \infty$, then we have

$$c_{p,n} = \left(\frac{2}{n-2}B\left(\frac{1}{2}, \frac{n-2}{2}\right)\sqrt{1-p^{-4/(n-2)}}\right)^{\frac{2}{n-2}}$$
$$= \left(\sqrt{\left(\frac{(n-2)\pi}{2} + o(1)\right)\left(1-e^{-\frac{4\log p}{n-2}}\right)}\right)^{\frac{2}{n-2}}$$
$$= \left(\frac{(n-2)\pi}{2} \cdot \frac{4\log p}{n-2}(1+o(1))\right)^{\frac{2}{n-2}}$$
$$= \exp\left\{\frac{1}{n-2}\left(\log(2\pi\log p) + o(1)\right)\right\} \text{ for large enough } n.$$

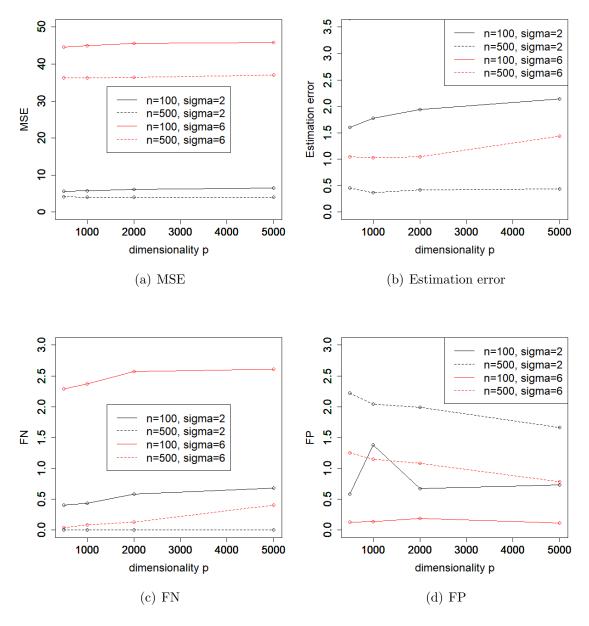


Figure S1: Performance of PCS against different dimensionality p.

Hence for large enough n,

$$n\log(1 - a_{p,n} - b_{p,n}x) = -\frac{4n\log p}{n-2} + n\log(1 - \frac{2}{n-2}x) + \log 2\pi + \log\log p + o(1)$$
$$= \log\log p - 4\log p + n\log(1 - \frac{2}{n-2}x) + \log 2\pi + o(1)$$
(3)

Let $y = n \log(1 - \frac{2}{n-2}x) + \log 2\pi$, then the RHS of (2) becomes $\log \log p - 4 \log p + y + o(1)$. Combing with (1) we get

$$\lim_{n \to \infty} P\left(\frac{W_{pn}^2 - a_{p,n}}{b_{p,n}} \ge x\right) = \lim_{n \to \infty} P\left(nT_{pn} \le n\log(1 - a_{p,n} - b_{p,n}x)\right)$$

$$= \lim_{n \to \infty} P\left(nT_{pn} \le \log\log p - 4\log p + y\right)$$
(4)

As $p = p_n \to \infty$ as $n \to \infty$, we have

$$\lim_{n \to \infty} P\left(\frac{W_{pn}^2 - a_{p,n}}{b_{p,n}} \ge x\right) = \lim_{n \to \infty, p \to \infty} P\left(\frac{W_{pn}^2 - a_{p,n}}{b_{p,n}} \ge x\right)$$
$$= \lim_{n \to \infty} \lim_{p \to \infty} P\left(\frac{W_{pn}^2 - a_{p,n}}{b_{p,n}} \ge x\right) \text{ (as the convergence is uniform in } n\text{)}$$
$$= 1 - \lim_{n \to \infty} G_n(x),$$

where $G_n(x) = I(x \le \frac{n-2}{2}) \exp\left\{-\frac{1}{2}\left(1 - \frac{2}{n-2}x\right)^{\frac{n-2}{2}}\right\} + I(x > \frac{n-2}{2}).$

Note that $1 - \frac{2}{n-2}x = \exp\{\frac{1}{n}(y - \log 2\pi)\}$, plugging it into $G_n(x)$ yields

$$\lim_{n \to \infty} G_n(x) = \lim_{n \to \infty} \exp\left\{-\frac{1}{2} \exp\left\{\frac{n-2}{2n}(y-\log 2\pi)\right\}\right\}$$
$$= \exp\left\{-\frac{1}{\sqrt{8\pi}} \exp\left(\frac{1}{2}y\right)\right\}.$$

Hence part (i) of Corollary ?? follows.

• Exponential Case

When $(\log p)/n \to \beta \in (0, \beta)$ as $n \to \infty$, we have

$$c_{p,n} = \left(\frac{2}{n-2}B(\frac{1}{2}, \frac{n-2}{2})\sqrt{1-p^{-4/(n-2)}}\right)^{\frac{2}{n-2}}$$
$$= \left(\frac{(n-2)\pi}{2}(1-e^{-4\beta})+o(1)\right)^{\frac{2}{n-2}}$$
$$= \exp\left\{\frac{1}{n-2}\log\left(\frac{(n-2)\pi(1-e^{-4\beta})}{2}\right)+o(1)\right\} \text{ for large enough } n.$$

It follows that for large enough n,

$$n\log(c_{p,n}) = \frac{n}{n-2}\log(n-2) + \log\left(\frac{\pi(1-e^{-4\beta})}{2}\right) + o(1)$$
$$= \log\log p - \log\beta + \log\left(\frac{\pi(1-e^{-4\beta})}{2}\right) + o(1)$$

Together with (2) we have

$$n \log(1 - a_{p,n} - b_{p,n}x)$$

$$= \log \log p - \log \beta + \log \left(\frac{\pi(1 - e^{-4\beta})}{2}\right) - \frac{4\log p}{n-2} + n \log(1 - \frac{2}{n-2}x)$$
(5)
$$= \log \log p - 4\log p - 8\beta + n \log(1 - \frac{2}{n-2}x) + \log \left(\frac{\pi(1 - e^{-4\beta})}{2\beta}\right) + o(1)$$

Let $y = -8\beta + n\log(1 - \frac{2}{n-2}x) + \log\left(\frac{\pi(1-e^{-4\beta})}{2\beta}\right)$, then the RHS of (5) becomes $\log\log p - 4\log p + y + o(1)$. Again combing with (1), we can still get (4).

Moreover,

$$\lim_{n \to \infty} G_n(x) = \lim_{n \to \infty} \exp\left\{-\frac{1}{2} \exp\left\{\frac{n-2}{2n}\left(y+8\beta - \log\left(\frac{\pi(1-e^{-4\beta})}{2\beta}\right)\right)\right\}\right\}$$
$$= \exp\left\{-\left(\frac{\beta}{\pi(1-e^{-4\beta})}\right)^{1/2} e^{(y+8\beta)/2}\right\},$$

which leads to the convergence result in part (ii).

• Super-Exponential Case

If $\log p/n \to \infty$ as $n \to \infty$, then for large enough n,

$$c_{p,n} = \left(\frac{2}{n-2}B(\frac{1}{2}, \frac{n-2}{2})\sqrt{1-p^{-4/(n-2)}}\right)^{\frac{2}{n-2}} = \exp\left\{\frac{1}{n-2}\log\left(\frac{(n-2)\pi}{2}\right)\right\}.$$

Combing with (2) we obtain

$$n\log(1 - a_{p,n} - b_{p,n}x) = -\frac{4n\log p}{n-2} + n\log(1 - \frac{2}{n-2}x) + \frac{n}{n-2}\log 2\pi - \frac{n}{n-2}\log(n-2) + o(1) \quad (6)$$
$$= -\frac{4n\log p}{n-2} + \log n + n\log(1 - \frac{2}{n-2}x) + \log\frac{\pi}{2} + o(1).$$

Let $y = n \log(1 - \frac{2}{n-2}x) + \log \frac{\pi}{2}$, then the RHS of (5) becomes $-\frac{4n \log p}{n-2} + \log n + y + o(1)$. Moreover,

$$\lim_{n \to \infty} G_n(x) = 1 - \lim_{n \to \infty} \exp\left\{-\frac{1}{2} \exp\left\{\frac{n-2}{2n}\left(y - \log\frac{\pi}{2}\right)\right\}\right\} = \exp\left\{-\frac{1}{\sqrt{2\pi}}e^{y/2}\right\}.$$

Proof of Theorem 2. If Y is normally distributed, then conditioning on X_i and X_j , $R_{ij}^2|X_i, X_j$ is distributed as Beta $(1, \frac{n-3}{2})$ [?], which is independent of X_i, X_j . Therefore, the unconditional distribution of R_{ij}^2 is also Beta $(1, \frac{n-3}{2})$.

$$\begin{aligned} P(R_{pn}^2 \ge 1 - p^{-(4+\delta)/(n-3)}) &= P\left(\max_{1 \le i < j \le p} R_{ij}^2 \ge 1 - p^{-(4+\delta)/(n-3)}\right) \\ &= P\left(\bigcup_{1 \le i < j \le p} \left\{R_{ij}^2 \ge 1 - p^{-(4+\delta)/(n-3)}\right\}\right) \\ &\le \frac{p(p-1)}{2} P\left(\left\{R_{ij}^2 \ge 1 - p^{-(4+\delta)/(n-3)}\right\}\right) \\ &= \frac{p(p-1)}{2} \left(p^{-(4+\delta)/(n-3)}\right)^{\frac{(n-3)}{2}} \\ &= O(p^{-\delta/2}) \to 0, \end{aligned}$$

as $p \to \infty$.