Supplementary materials for: Envelopes for elliptical

Liliana Forzani* and Zhihua Su ${ }^{\ddagger}$

${ }_{4} \mathbf{A} \quad$ Technical details in Section 4.2: Derivatives of m_{i} with respect to β
${ }_{5} \quad$ and Σ

6 Using equation (119) from [13], we get

$$
\frac{\partial m_{i}}{\partial \beta}=-2 \Sigma^{-1}\left(Y_{i}-\mu_{Y}-\beta\left(X_{i}-\mu_{X}\right)\right)\left(X_{i}-\mu_{X}\right)^{T}
$$

${ }_{7}$ On the other hand, for $F(X) \in \mathbb{R}^{m \times p}$ and $G(X) \in \mathbb{R}^{p \times q}$, (see [6]), we have

$$
\frac{\partial \operatorname{vec}(F(X) G(X))}{\partial \operatorname{vec}^{T}(X)}=\left(G(X)^{T} \otimes I_{m}\right) \frac{\partial \operatorname{vec}(F(X))}{\partial \operatorname{vec}^{T}(X)}+\left(I_{q} \otimes F(X)\right) \frac{\partial \operatorname{vec}(G(X))}{\partial \operatorname{vec}^{T}(X)} .
$$

8 Now take $X=\Sigma, F(\Sigma)=\Sigma$ and $G(\Sigma)=\Sigma^{-1}$, then

$$
0=\left(\Sigma^{-1} \otimes I_{r}\right) \frac{\partial \operatorname{vec}(\Sigma)}{\partial \operatorname{vec}^{T}(\Sigma)}+\left(I_{r} \otimes \Sigma\right) \frac{\partial \operatorname{vec}\left(\Sigma^{-1}\right)}{\partial \operatorname{vec}^{T}(\Sigma)},
$$

[^0]which yields
$$
\frac{\partial \operatorname{vec}\left(\Sigma^{-1}\right)}{\partial \operatorname{vec}^{T}(\Sigma)}=-\left(\Sigma^{-1} \otimes \Sigma^{-1}\right)
$$

Therefore

$$
\frac{\partial m_{i}}{\partial \operatorname{vec}(\Sigma)}=-\left[\left(\Sigma^{-1} \otimes \Sigma^{-1}\right) \operatorname{vec}\left(\left(Y_{i}-\mu_{Y}-\beta\left(X_{i}-\mu_{X}\right)\right)\left(Y_{i}-\mu_{Y}-\beta\left(X_{i}-\mu_{X}\right)^{T}\right)\right]^{T}\right.
$$

or equivalently

$$
\frac{\partial m_{i}}{\partial \Sigma}=-\Sigma^{-1}\left[Y_{i}-\mu_{Y}-\beta\left(X_{i}-\mu_{X}\right)\right]\left[Y_{i}-\mu_{Y}-\beta\left(X_{i}-\mu_{X}\right)^{T}\right] \Sigma^{-1}
$$

B Proof of Proposition 1

We calculate the asymptotic distributions for the MLE estimator of model (1), the reduced-rank regression estimator, the envelope estimator and the reduced-rank envelope estimator.

The MLE estimator of model (1): $\operatorname{avar}\left\{\sqrt{n} \operatorname{vec}\left(\widehat{\beta}_{\text {std }}\right)\right\}$

From [1], [2], [8], [9], [10], [11], or [15] to compute the asymptotic variance of the estimator we need to compute the information matrix.

Without loss of generality we assume that $\mu_{Y}=0$ and $\mu_{X}=0$. The log-likelihood function for the elliptical linear multivariate regression (1) is given by

$$
\begin{equation*}
L=-\frac{1}{2} \log |\Sigma|+\log g\left[(Y-\beta X)^{T} \Sigma^{-1}(Y-\beta X)\right] . \tag{1}
\end{equation*}
$$

The Fisher information matrix for $\left(\operatorname{vec}^{T}(\beta), \operatorname{vech}^{T}(\Sigma)\right)$ is given by

$$
J_{h}=\left(\begin{array}{ll}
J_{11} & J_{12} \\
J_{21} & J_{22}
\end{array}\right)
$$

Let $U=\Sigma^{-1 / 2}(Y-\beta X)$. We will prove that

$$
\begin{align*}
A & \equiv E\left[\left.\left(\frac{g^{\prime}\left(U^{T} U\right)}{g\left(U^{T} U\right)}\right)^{2} U U^{T} \right\rvert\, X\right]=N_{X} I_{r} \tag{2}\\
B & \equiv E\left(\left.U \frac{g^{\prime}\left(U^{T} U\right)}{g\left(U^{T} U\right)} \right\rvert\, X\right)=0 \tag{3}\\
C & \equiv E\left[\left.\left(\frac{g^{\prime}\left(U^{T} U\right)}{g\left(U^{T} U\right)}\right)^{2} \operatorname{vec}\left(U U^{T}\right) U^{T} \right\rvert\, X\right]=0 \tag{4}\\
D & \equiv E\left[\left.\frac{g^{\prime}\left(U^{T} U\right)}{g\left(U^{T} U\right)}\left(U U^{T}\right) \right\rvert\, X\right]=-\frac{1}{2} I_{r} \tag{5}\\
E & \equiv E\left[\left.\left(\frac{g^{\prime}\left(U^{T} U\right)}{g\left(U^{T} U\right)}\right)^{2} \operatorname{vec}\left(U U^{T}\right) \operatorname{vec}^{T}\left(U U^{T}\right) \right\rvert\, X\right]=M_{X}\left(I_{r^{2}}+K_{r r}\right)+M_{X} \operatorname{vec}\left(I_{r}\right) \operatorname{vec}^{T}\left(I_{r}\right)(6)
\end{align*}
$$

where $N_{X}=E\left[\left.\left(\frac{g^{\prime}\left(U^{T} U\right)}{g\left(U^{T} U\right)}\right)^{2} U^{T} U \right\rvert\, X\right] / r, M_{X}=E\left[\left.\left(\frac{g^{\prime}\left(U^{T} U\right)}{g\left(U^{T} U\right)}\right)^{2}\left(U^{T} U\right)^{2} \right\rvert\, X\right] /(r(r+2))$ and $K_{r r} \in$ $\mathbb{R}^{r^{2} \times r^{2}}$ denotes a commutation matrix that for an arbitrary matrix $A \in \mathbb{R}^{r \times r}, \operatorname{vec}\left(A^{T}\right)=K_{r r} \operatorname{vec}(A)$.

Since

$$
\frac{\partial \operatorname{vec}\left(\Sigma^{-1}\right)}{\operatorname{vec}^{T}(\Sigma)}=-\left(\Sigma^{-1} \otimes \Sigma^{-1}\right)
$$

we get

$$
\frac{\partial L}{\partial \operatorname{vech}^{T}(\Sigma)}=-\frac{1}{2} E_{r}^{T} \operatorname{vec}\left(\Sigma^{-1}\right)-E_{r}^{T} \frac{g^{\prime}\left(U^{T} U\right)}{g\left(U^{T} U\right)}\left(\Sigma^{-1 / 2} \otimes \Sigma^{-1 / 2}\right) \operatorname{vec}\left(U U^{T}\right)
$$

Then

$$
\begin{aligned}
J_{11} & =4 E\left[\left(\frac{g^{\prime}\left(U^{T} U\right)}{g\left(U^{T} U\right)}\right)^{2}\left(X \otimes \Sigma^{-1 / 2}\right) U U^{T}\left(X^{T} \otimes \Sigma^{-1 / 2}\right)\right] \\
& =4 E\left(\left(X \otimes \Sigma^{-1 / 2}\right) A\left(X^{T} \otimes \Sigma^{-1 / 2}\right)\right) \\
& =4 E\left(N_{X}\left(X X^{T} \otimes \Sigma^{-1}\right)\right)=4\left(\widetilde{\Sigma}_{X} \otimes \Sigma^{-1}\right), \\
J_{12} & =2 E\left(\frac{g^{\prime}\left(U^{T} U\right)}{g\left(U^{T} U\right)}\left(X \otimes \Sigma^{-1 / 2}\right) U\left[\operatorname{vec}^{T}\left(U U^{T}\right)\left(\Sigma^{-1 / 2} \otimes \Sigma^{-1 / 2}\right) \frac{g^{\prime}\left(U^{T} U\right)}{g\left(U^{T} U\right)} E_{r}+\frac{1}{2} \operatorname{vec}^{T}\left(\Sigma^{-1}\right) E_{r}\right]\right) \\
& =2 E\left(\left(X \otimes \Sigma^{-1 / 2}\right) C^{T}\left(\Sigma^{-1 / 2} \otimes \Sigma^{-1 / 2}\right) E_{r}+\left(X \otimes \Sigma^{-1 / 2}\right) B \frac{1}{2} \operatorname{vec}^{T}\left(\Sigma^{-1}\right) E_{r}\right) \\
& =0,
\end{aligned}
$$

33

$$
\begin{aligned}
J_{22}= & E\left(\left[\frac{1}{2} E_{r}^{T} \operatorname{vec}\left(\Sigma^{-1}\right)+E_{r}^{T} \frac{g^{\prime}\left(U^{T} U\right)}{g\left(U^{T} U\right)}\left(\Sigma^{-1 / 2} \otimes \Sigma^{-1 / 2}\right) \operatorname{vec}\left(U U^{T}\right)\right]\right. \\
= & {\left.\left[\operatorname{vec}^{T}\left(U U^{T}\right)\left(\Sigma^{-1 / 2} \otimes \Sigma^{-1 / 2}\right) \frac{g^{\prime}\left(U^{T} U\right)}{g\left(U^{T} U\right)} E_{r}+\frac{1}{2} \operatorname{vec}^{T}\left(\Sigma^{-1}\right) E_{r}\right]\right) } \\
& \quad+\frac{1}{2} E_{r}^{T}\left(\Sigma^{-1 / 2} \otimes \Sigma^{-1 / 2}\right) \operatorname{vec}(D) \operatorname{vec}^{T}\left(\Sigma^{-1}\right) E_{r}+\frac{1}{2} E_{r}^{T} \operatorname{vec}\left(\Sigma^{-1}\right) \operatorname{vec}^{T}(D)\left(\Sigma^{-1 / 2}\right) E_{r}+E_{r}^{T}\left(\Sigma^{-1 / 2}\right) E_{r} \\
= & -\frac{1}{4} E_{r}^{T} \operatorname{vec}\left(\Sigma^{-1}\right) \operatorname{vec}^{T}\left(\Sigma^{-1 / 2}\right) E\left(\Sigma^{-1 / 2} \otimes \Sigma^{-1 / 2}\right) E_{r} \\
& +E_{r}^{T}\left(\Sigma^{-1 / 2} \otimes \Sigma^{-1 / 2}\right) E\left[M_{X}\left(I_{r^{2}}+K_{r r}\right)+M_{X} \operatorname{vec}\left(I_{r}\right) \operatorname{vec}^{T}\left(I_{r}\right)\right]\left(\Sigma^{-1 / 2} \otimes \Sigma^{-1 / 2}\right) E_{r} \\
= & 2 M E_{r}^{T}\left(\Sigma^{-1} \otimes \Sigma^{-1}\right) E_{r}+\left(M-\frac{1}{4}\right) E_{r}^{T} \operatorname{vec}\left(\Sigma^{-1}\right) \operatorname{vec}^{T}\left(\Sigma^{-1}\right) E_{r},
\end{aligned}
$$

from which we establish (7) - (9). Now we prove (2)-(6).
Proof of (2): Since the distribution of U given X is symmetric, for any orthogonal matrix V, U and
$V U$ should have the same distribution. As a consequence,

$$
\begin{aligned}
A & =E\left[\left.\left(\frac{g^{\prime}\left(U^{T} U\right)}{g\left(U^{T} U\right)}\right)^{2} U U^{T} \right\rvert\, X\right] \\
& =E\left[\left.\left(\frac{g^{\prime}\left(U^{T} V^{T} V U\right)}{g\left(U^{T} V^{T} V U\right)}\right)^{2} V U U^{T} V^{T} \right\rvert\, X\right] \\
& =V E\left[\left.\left(\frac{g^{\prime}\left(U^{T} U\right)}{g\left(U^{T} U\right)}\right)^{2} \operatorname{vec}(U) \operatorname{vec}^{T}(U) \right\rvert\, X\right] V^{T} \\
& =V A V^{T} .
\end{aligned}
$$

Using Proposition 2.14 of [7], we have

$$
A=N_{X} I_{r}
$$

To find N_{X}, notice that $\operatorname{tr}(A)=r N_{X}$. So we have

$$
N_{X}=\frac{1}{r} \operatorname{tr}(A)=\frac{1}{r} E\left[\left.\left(\frac{g^{\prime}\left(U^{T} U\right)}{g\left(U^{T} U\right)}\right)^{2} U^{T} U \right\rvert\, X\right]
$$

Proof of (3): We prove (3) using the same technique as that in the proof of (2). For any $r \times r$ orthogonal matrix V,

$$
B=V E\left(\left.U \frac{g^{\prime}\left(U^{T} U\right)}{g\left(U^{T} U\right)} \right\rvert\, X\right)=V B
$$

Let e_{i} denote the vector of all zeros except that its i element is one. Take V to be the permutation matrix such that $V e_{i}=e_{j}, V e_{j}=e_{i}$ and $V e_{k}=e_{k}$ for $k=1, \ldots, k \neq i, j$. Then B must be proportional to a vector of 1 's. In other words, $B=c 1_{r}$, where 1_{r} is the vector of r one's. Then for any orthogonal matrix V, we have $c=c \sum_{j=1}^{r} v_{i j}$ for $i=1, \ldots, r$. Therefore $c=0$ and (3) follows.

Proof of (4): Using the same reasoning, for any orthogonal matrix V,

$$
\begin{equation*}
C=(V \otimes V) C V^{T} \tag{10}
\end{equation*}
$$

We first take V to have the following form

$$
V=\left(\begin{array}{cc}
1 & 0 \\
0 & V_{-i}
\end{array}\right)
$$

where V_{-i} is any $(r-1) \times(r-1)$ orthogonal matrix. Then we have $V e_{1}=e_{1}$. Let c_{1} denote the first column of C. Then we have

$$
c_{1}=(V \otimes V) c_{1} .
$$

Let M_{1} be an $r \times r$ matrix such that $\operatorname{vec}\left(M_{1}\right)=c_{1}$. Then we have

$$
\operatorname{vec}\left(M_{1}\right)=(V \otimes V) \operatorname{vec}\left(M_{1}\right)=\operatorname{vec}\left(V M_{1} V^{T}\right) .
$$

If we partition the matrix M_{1} the same way as we partition V. Then by Proposition 2.14 of [7], M_{1} must have the following structure

$$
M_{1}=\left(\begin{array}{cc}
d_{1} & 0 \\
0 & f_{1} I_{r-1}
\end{array}\right)
$$

where d_{1} and f_{1} are constants. Similarly, we take V such that $V^{T} e_{i}=e_{i}$. Then we can construct M_{i} such that $\operatorname{vec}\left(M_{i}\right)=c_{i}$, where c_{i} is the i th column of C. By the previous discussion M_{i} must be a diagonal matrix where the i th diagonal element is d_{i} and the rest are f_{i}.

Now we want to prove $d_{i}=f_{i}$ for all i. Let V be a permutation matrix such that for $i \neq j$,

Proof of (6): By the definition of E, for any orthogonal matrix V,

$$
E=(V \otimes V) E\left(V^{T} \otimes V^{T}\right)
$$

constants. Since E is symmetric,

$$
E=K_{r r} E=c K_{r r}+a I_{r^{2}}+2 d \operatorname{vec}\left(I_{r}\right) \operatorname{vec}^{T}\left(I_{r}\right)
$$

67
Therefore $c\left(K_{r r}-I_{r^{2}}\right)=a\left(K_{r r}-I_{r^{2}}\right)$, which implies that $a=c$ and

$$
\begin{equation*}
E=c\left(I_{r^{2}}+K_{r r}\right)+2 d \operatorname{vec}\left(I_{r}\right) \operatorname{vec}^{T}\left(I_{r}\right) \tag{11}
\end{equation*}
$$

68

69

Now we compute c and d. Taking trace of (11) on both sides and using the fact that $\operatorname{tr}\left(A^{T} B\right)=$ $\operatorname{vec}^{T}(A) \operatorname{vec}(B)$ for any matrices $A \in \mathbb{R}^{a \times b}$ and $B \in \mathbb{R}^{a \times b}$, we have

$$
E\left[\left.\left(\frac{g^{\prime}\left(U^{T} U\right)}{g\left(U^{T} U\right)}\right)^{2}\left(U^{T} U\right)^{2} \right\rvert\, X\right]=c r(r+1)+2 d r
$$

Now pre-multiply (11) by $\operatorname{vec}^{T}(I)$ and post-multiply (11) by vec (I), and take the trace. We have

$$
E\left[\left.\left(\frac{g^{\prime}\left(U^{T} U\right)}{g\left(U^{T} U\right)}\right)^{2}\left(U^{T} U\right)^{2} \right\rvert\, X\right]=2 c r+2 d r^{2}
$$

As a consequence, $2 d=c$. Then

$$
r(r+2) c=E\left[\left.\left(\frac{g^{\prime}\left(U^{T} U\right)}{g\left(U^{T} U\right)}\right)^{2}\left(U^{T} U\right)^{2} \right\rvert\, X\right]
$$

Let M_{x} denote c, and we have (6).

Since the reduced-rank regression, the envelope and the reduced-rank envelope models are overparameterized, we will apply Proposition 4.1 from [14] to prove the asymptotic distribution for $\widehat{\beta}_{\mathrm{RR}}, \widehat{\beta}_{E}$ and $\widehat{\beta}_{\text {RE }}$ as in [5] and [6]. To apply Proposition 4.1 of [14], we will check the assumptions first. Along
the discussion, we will match Shapiro's notations in our context. Let us call $F\left(\left(\beta_{s t d}, \Sigma_{s t d}\right),(\beta, \Sigma)\right)=$ $L\left(\widehat{\beta}_{s t d}, \widehat{\Sigma}_{s t d}\right)-L(\beta, \Sigma)$ where L is the likelihood function. Then F satisfies the four conditions for F in Section 3 in [14]. The function g defined by Shapiro in (2.1) are the functions g_{1}, g_{2} and g_{3} defined in (12) under our context. Let $h=\left(\operatorname{vec}^{T}(\beta), \operatorname{vech}^{T}(\Sigma)\right)^{T}, \psi=\left(\left(\operatorname{vec}^{T}(A), \operatorname{vec}^{T}(B), \operatorname{vech}^{T}(\Sigma)\right)^{T}\right.$, $\delta=\left(\operatorname{vec}^{T}(\xi), \operatorname{vec}^{T}(\Gamma), \operatorname{vech}^{T}(\Omega), \operatorname{vech}^{T}\left(\Omega_{0}\right)\right)^{T}$ and $\phi=\left(\operatorname{vec}^{T}(B), \operatorname{vec}^{T}(\eta), \operatorname{vec}^{T}(\Gamma), \operatorname{vech}^{T}(\Omega)\right.$, $\left.\operatorname{vech}^{T}\left(\Omega_{0}\right)\right)^{T}$ denote the parameters in the standard model, the reduced-rank regression, the envelope model and the reduced-rank envelope model respectively. We have

$$
\begin{align*}
& h=g_{1}(\psi)=\binom{\operatorname{vec}(A B)}{\operatorname{vech}(\Sigma)}, \quad h=g_{2}(\delta)=\binom{\operatorname{vec}(\Gamma \xi)}{\operatorname{vech}\left(\Gamma \Omega \Gamma^{T}+\Gamma_{0} \Omega_{0} \Gamma_{0}^{T}\right)}, \\
& h=g_{3}(\phi)=\binom{\operatorname{vec}(\Gamma \eta B)}{\operatorname{vech}\left(\Gamma \Omega \Gamma^{T}+\Gamma_{0} \Omega_{0} \Gamma_{0}^{T}\right)} . \tag{12}
\end{align*}
$$

It is obvious that g_{1}, g_{2} and g_{3} are all twice continuous differentiable. Therefore all the assumptions of Shapiro's Proposition 4.1 are satisfied, and we can get the asymptotic distribution of each of the estimators using Proposition 4.1 from [14]. Furthermore, the asymptotic variance of the estimator of reducedrank regression, the envelope model or the reduced-rank envelope model is given by $H\left(H^{T} J_{h} H\right)^{\dagger} H^{T}$, where J_{h} is the Fisher information under the standard model, and H is the gradient matrix, which equals to $\partial h / \partial^{T} \psi, \partial h / \partial^{T} \delta$ and $\partial h / \partial^{T} \phi$ under the reduced-rank regression, the envelope model and the reduced-rank envelope model respectively.

Next we calculate the asymptotic variance of the reduced-rank regression estimator, the envelope estimator and the reduced-rank envelope estimator in details as follows.

92

93
$94 \quad \psi=\left(\operatorname{vec}^{T}(A), \operatorname{vec}^{T}(B), \operatorname{vech}^{T}(\Sigma)\right)^{T}$. Since $\beta=A B$, the gradient matrix $H=\partial h / \partial^{T} \psi$ is

$$
H=\left(\begin{array}{ccc}
B^{T} \otimes I_{r} & I_{p} \otimes A & 0 \tag{13}\\
0 & 0 & I_{r(r+1) / 2}
\end{array}\right)=\left(\begin{array}{cc}
h_{1} & 0 \\
0 & I_{r(r+1) / 2}
\end{array}\right)
$$

${ }_{95}$ with $h_{1}=\left(B^{T} \otimes I_{r}, \quad I_{p} \otimes A\right)$. Using Proposition 4.1 in [14], avar $[\sqrt{n} h(\widehat{\psi})]$ is given by

$$
H\left(H^{T} J_{h} H\right)^{\dagger} H^{T}=\left(\begin{array}{cc}
\frac{1}{4} h_{1}\left[h_{1}^{T}\left(\widetilde{\Sigma}_{X} \otimes \Sigma^{-1}\right) h_{1}\right]^{\dagger} h_{1}^{T} & 0 \\
0 & J_{\Sigma}^{-1}
\end{array}\right)
$$

96
where \dagger denotes the Moore-Penrose generalized inverse. We can write $h_{1}=H_{1} H_{2}$, where

$$
H_{1}=\left(B^{T} \otimes I \quad\left(I-B^{T}\left(B \widetilde{\Sigma}_{X} B^{T}\right)^{-1} B \widetilde{\Sigma}_{X}\right) \otimes A\right), \quad H_{2}=\left(\begin{array}{cc}
I_{r d} & \left(B \widetilde{\Sigma}_{X} B^{T}\right)^{-1} B \widetilde{\Sigma}_{X} \otimes A \\
0 & I_{p d}
\end{array}\right)
$$

${ }_{97} \quad$ Since H_{2} is of full rank, $h_{1}\left[h_{1}^{T}\left(\widetilde{\Sigma}_{X} \otimes \Sigma^{-1}\right) h_{1}\right]^{\dagger} h_{1}^{T}=H_{1}\left[H_{1}^{T}\left(\widetilde{\Sigma}_{X} \otimes \Sigma^{-1}\right) H_{1}\right]^{\dagger} H_{1}^{T}$. Now

$$
H_{1}^{T}\left(\widetilde{\Sigma}_{X} \otimes \Sigma^{-1}\right) H_{1}=\left(\begin{array}{cc}
B \widetilde{\Sigma}_{X} B^{T} \otimes \Sigma^{-1} & 0 \tag{14}\\
0 & \left(\widetilde{\Sigma}_{X}-\widetilde{\Sigma}_{X} M_{B} \widetilde{\Sigma}_{X}\right) \otimes A^{T} \Sigma^{-1} A
\end{array}\right)
$$

98 99

$$
\left[H_{1}^{T}\left(\widetilde{\Sigma}_{X} \otimes \Sigma^{-1}\right) H_{1}\right]^{\dagger}=\left(\begin{array}{cc}
\left(B \widetilde{\Sigma}_{X} B^{T}\right)^{-1} \otimes \Sigma & 0 \tag{15}\\
0 & \left(\widetilde{\Sigma}_{X}^{-1}-M_{B}\right) \otimes\left(A^{T} \Sigma^{-1} A\right)^{-1}
\end{array}\right)
$$

$$
\begin{align*}
\operatorname{avar}\left[\sqrt{n} \operatorname{vec}\left(\widehat{\beta}_{\mathrm{RR}}\right)\right] & =\frac{1}{4} M_{B} \otimes \Sigma+\frac{1}{4}\left(I_{p}-M_{B} \widetilde{\Sigma}_{X}\right)\left(\widetilde{\Sigma}_{X}^{-1}-M_{B}\right)\left(I_{p}-M_{B} \widetilde{\Sigma}_{X}\right) \otimes M_{A} \\
& =\frac{1}{4} M_{B} \otimes \Sigma+\frac{1}{4}\left(\widetilde{\Sigma}_{X}^{-1}-M_{B}\right) \otimes M_{A} \\
& =\frac{1}{4}\left[\widetilde{\Sigma}_{X}^{-1}-\left(\widetilde{\Sigma}_{X}^{-1}-M_{B}\right)\right] \otimes \Sigma+\frac{1}{4}\left(\widetilde{\Sigma}_{X}^{-1}-M_{B}\right) \otimes M_{A} \\
& =\frac{1}{4} \widetilde{\Sigma}_{X}^{-1} \otimes \Sigma-\frac{1}{4}\left(\widetilde{\Sigma}_{X}^{-1}-M_{B}\right) \otimes\left(\Sigma-M_{A}\right) . \tag{16}
\end{align*}
$$

The envelope estimator: $\operatorname{avar}\left[\sqrt{n} \operatorname{vec}\left(\widehat{\beta}_{E}\right)\right]$

Under the envelope model, the constituent parameters are $\delta=\left(\operatorname{vec}^{T}(\xi), \operatorname{vec}^{T}(\Gamma), \operatorname{vech}^{T}(\Omega), \operatorname{vech}^{T}\left(\Omega_{0}\right)\right)^{T}$. Since $\beta=\Gamma \xi, \Sigma=\Gamma \Omega \Gamma^{T}+\Gamma_{0} \Omega_{0} \Gamma_{0}^{T}$, the gradient matrix $H=\partial h / \partial^{T} \delta$ is

$$
\left(\begin{array}{cccc}
I_{p} \otimes \Gamma & \xi^{T} \otimes I_{r} & 0 & 0 \\
0 & 2 C_{r}\left(\Gamma \Omega \otimes I_{r}-\Gamma \otimes \Gamma_{0} \Omega_{0} \Gamma_{0}^{T}\right) & C_{r}(\Gamma \otimes \Gamma) E_{u} & C_{r}\left(\Gamma_{0} \otimes \Gamma_{0}\right) E_{r-u}
\end{array}\right) .
$$

105 By Proposition 4.1 in [14], avar[$\sqrt{n} h(\widehat{\delta})]=H\left(H^{T} J_{h} H\right)^{\dagger} H^{T}$. Again we write $H=H_{1} H_{2}$, where

$$
H_{1}=\left(\begin{array}{cccc}
I_{p} \otimes \Gamma & \xi^{T} \otimes \Gamma_{0} & 0 & 0 \\
0 & 2 C_{r}\left(\Gamma \Omega \otimes \Gamma_{0}-\Gamma \otimes \Gamma_{0} \Omega_{0}\right) & C_{r}(\Gamma \otimes \Gamma) E_{u} & C_{r}\left(\Gamma_{0} \otimes \Gamma_{0}\right) E_{r-u}
\end{array}\right)
$$

and

$$
H_{2}=\left(\begin{array}{cccc}
I_{p u} & \xi^{T} \otimes \Gamma^{T} & 0 & 0 \\
0 & I_{u} \otimes \Gamma_{0}^{T} & 0 & 0 \\
0 & 2 C_{u}\left(\Omega \otimes \Gamma^{T}\right) & I_{(u(u+1) / 2} & 0 \\
0 & 0 & 0 & I_{(r-u)(r-u+1) / 2}
\end{array}\right) .
$$

Since H_{2} is full rank, then the asymptotic variance is $\operatorname{avar}[\sqrt{n} h(\widehat{\delta})]=H_{1}\left(H_{1}^{T} J_{h} H_{1}\right)^{\dagger} H_{1}^{T}$. Now

$$
H_{1}^{T} J_{h}=\left(\begin{array}{cc}
4\left(\widetilde{\Sigma}_{X} \otimes \Omega^{-1} \Gamma^{T}\right) & 0 \\
4\left(\xi \widetilde{\Sigma}_{X} \otimes \Omega_{0}^{-1} \Gamma_{0}^{T}\right) & 2 M\left(\Gamma^{T} \otimes \Omega_{0}^{-1} \Gamma_{0}^{T}-\Omega^{-1} \Gamma^{T} \otimes \Gamma_{0}^{T}\right) E_{r} \\
0 & 2 M E_{u}^{T}\left(\Omega^{-1} \Gamma^{T} \otimes \Omega^{-1} \Gamma^{T}\right) E_{r}+\left(M-\frac{1}{4}\right) E_{u}^{T} \operatorname{vec}\left(\Omega^{-1}\right) \operatorname{vec}^{T}\left(\Sigma^{-1}\right) E_{r} \\
0 & 2 M E_{r-u}^{T}\left(\Omega_{0}^{-1} \Gamma_{0}^{T} \otimes \Omega_{0}^{-1} \Gamma_{0}^{T}\right) E_{r}+\left(M-\frac{1}{4}\right) E_{r-u}^{T} \operatorname{vec}\left(\Omega_{0}^{-1}\right) \operatorname{vec}^{T}\left(\Sigma^{-1}\right) E_{r}
\end{array}\right),
$$

108
and

$$
H_{1}^{T} J_{h} H_{1}=\left(\begin{array}{cccc}
4\left(\widetilde{\Sigma}_{X} \otimes \Omega^{-1}\right) & 0 & 0 & 0 \\
0 & S_{22} & 0 & 0 \\
0 & 0 & S_{33} & S_{34} \\
0 & 0 & S_{43} & S_{44}
\end{array}\right)
$$

109
where

$$
\begin{aligned}
S_{22} & =4\left(\xi \widetilde{\Sigma}_{X} \xi^{T} \otimes \Omega_{0}^{-1}\right)+4 M\left(\Gamma^{T} \otimes \Omega_{0}^{-1} \Gamma_{0}^{T}-\Omega^{-1} \Gamma^{T} \otimes \Gamma_{0}^{T}\right) E_{r} C_{r}\left(\Gamma \Omega \otimes \Gamma_{0}-\Gamma \otimes \Gamma_{0} \Omega_{0}\right) \\
& =4\left(\xi \widetilde{\Sigma}_{X} \xi^{T} \otimes \Omega_{0}^{-1}\right)+4 M\left(\Omega \otimes \Omega_{0}^{-1}+\Omega^{-1} \otimes \Omega_{0}-2 I_{u} \otimes I_{r-u}\right)
\end{aligned}
$$

The asymptotic variance of $\widehat{\beta}_{E}$ does not depend on S_{33}, S_{34}, S_{43} and S_{44}, since it is equal to the upper left block of $H_{1}\left(H_{1}^{T} J_{h} H_{1}\right)^{\dagger} H_{1}^{T}$:

$$
\begin{aligned}
\operatorname{avar}\left[\sqrt{n} \operatorname{vec}\left(\widehat{\beta}_{E}\right)\right]= & \frac{1}{4}\left(I_{p} \otimes \Gamma\right)\left(\widetilde{\Sigma}_{X}^{-1} \otimes \Omega\right)\left(I_{p} \otimes \Gamma^{T}\right)+\left(\xi^{T} \otimes \Gamma_{0}\right) S_{22}^{-1}\left(\xi \otimes \Gamma_{0}^{T}\right) \\
= & \frac{1}{4}\left(\widetilde{\Sigma}_{X}^{-1} \otimes \Gamma \Omega \Gamma^{T}\right) \\
& +\frac{1}{4}\left(\xi^{T} \otimes \Gamma_{0}\right)\left[\xi \widetilde{\Sigma}_{X} \xi^{T} \otimes \Omega_{0}^{-1}+M\left(\Omega \otimes \Omega_{0}^{-1}+\Omega^{-1} \otimes \Omega_{0}-2 I_{u} \otimes I_{r-u}\right)\right]^{-1}\left(\xi \otimes \Gamma_{0}^{T}\right) .
\end{aligned}
$$

112

113 $\left.114 \operatorname{vech}^{T}\left(\Omega_{0}\right)\right)^{T}$. Since $\beta=\Gamma \eta B, \Sigma=\Gamma \Omega \Gamma^{T}+\Gamma_{0} \Omega_{0} \Gamma_{0}^{T}$, the gradient matrix $H=\partial h / \partial^{T} \phi$ is

$$
H=\left(\begin{array}{ccccc}
B^{T} \eta^{T} \otimes I_{r} & B^{T} \otimes \Gamma & I_{p} \otimes \Gamma \eta & 0 & 0 \tag{17}\\
2 C_{r}\left(\Gamma \Omega \otimes I_{r}-\Gamma \otimes \Gamma_{0} \Omega_{0} \Gamma_{0}^{T}\right) & 0 & 0 & C_{r}(\Gamma \otimes \Gamma) E_{u} & C_{r}\left(\Gamma_{0} \otimes \Gamma_{0}\right) E_{r-u}
\end{array}\right) .
$$

115

116 where
$H_{1}=\left(\begin{array}{ccccc}B^{T} \eta^{T} \otimes \Gamma_{0} & B^{T} \otimes \Gamma & \left(I_{p}-M_{B} \Sigma_{X}\right) \otimes \Gamma \eta & 0 & 0 \\ 2 C_{r}\left(\Gamma \Omega \otimes \Gamma_{0}-\Gamma \otimes \Gamma_{0} \Omega_{0}\right) & 0 & 0 & C_{r}(\Gamma \otimes \Gamma) E_{u} & C_{r}\left(\Gamma_{0} \otimes \Gamma_{0}\right) E_{r-u}\end{array}\right)$,

117 and

$$
H_{2}=\left(\begin{array}{ccccc}
I_{u} \otimes \Gamma_{0}^{T} & 0 & 0 & 0 & 0 \tag{19}\\
\eta^{T} \otimes \Gamma^{T} & I_{u d} & \left(B \Sigma_{X} B^{T}\right)^{-1} B \Sigma_{X} \otimes \eta & 0 & 0 \\
0 & 0 & I_{p d} & 0 & 0 \\
2 C_{u}\left(\Omega \otimes \Gamma^{T}\right) & 0 & 0 & I_{r(r+1) / 2} & 0 \\
0 & 0 & 0 & 0 & I_{(r-u)(r-u+1) / 2}
\end{array}\right) .
$$

${ }_{118}$ Since H_{2} is of full rank, $\operatorname{avar}\left[\sqrt{n} \operatorname{vec}\left(\widehat{\beta}_{\mathrm{RE}}\right)\right]=H_{1}\left(H_{1}^{T} J_{h} H_{1}\right)^{\dagger} H_{1}^{T}$. First we calculate $H_{1}^{T} J_{h} H_{1}$. We 119 write H_{1} as $H_{1}=\left(H_{11}, H_{12}, H_{13}, H_{14}, H_{15}\right)$. Since

$$
\begin{equation*}
J_{h} H_{11}=\binom{4 \widetilde{\Sigma}_{X} B^{T} \eta^{T} \otimes \Gamma_{0} \Omega_{0}^{-1}}{4 M E_{r}^{T}\left(\Gamma \otimes \Gamma_{0} \Omega_{0}^{-1}-\Gamma \Omega^{-1} \otimes \Gamma_{0}\right)} \tag{20}
\end{equation*}
$$

we have $H_{1 i}^{T} J_{h} H_{11}=0$ for $i=2,3,4,5$. Because

$$
J_{h}\left(H_{12}, H_{13}\right)=4\left(\begin{array}{cc}
\widetilde{\Sigma}_{X} B^{T} \otimes \Gamma \Omega^{-1} & \left(\widetilde{\Sigma}_{X}-\widetilde{\Sigma}_{X} M_{B} \widetilde{\Sigma}_{X}\right) \otimes \Gamma \Omega^{-1} \eta \tag{21}\\
0 & 0
\end{array}\right)
$$

$$
H_{1}^{T} J_{h} H_{1}=\left(\begin{array}{cccc}
H_{11}^{T} J_{h} H_{11}^{T} & 0 & 0 & 0 \\
0 & H_{12}^{T} J_{h} H_{12}^{T} & 0 & 0 \\
0 & 0 & H_{13}^{T} J_{h} H_{13}^{T} & 0 \\
0 & 0 & 0 & \left(H_{14}, H_{15}\right)^{T} J_{h}\left(H_{14}^{T}, H_{15}^{T}\right)^{T}
\end{array}\right)
$$

122

$$
\left(H_{1}^{T} J_{h} H_{1}\right)^{\dagger}=\left(\begin{array}{cccc}
\left(H_{11}^{T} J_{h} H_{11}^{T}\right)^{\dagger} & 0 & 0 & 0 \\
0 & \left(H_{12}^{T} J_{h} H_{12}^{T}\right)^{\dagger} & 0 & 0 \\
0 & 0 & \left(H_{13}^{T} J_{h} H_{13}^{T}\right)^{\dagger} & 0 \\
0 & 0 & 0 & {\left[\left(H_{14}, H_{15}\right)^{T} J_{h}\left(H_{14}^{T}, H_{15}^{T}\right)^{T}\right]^{\dagger}}
\end{array}\right)
$$

As a consequence,

$$
\begin{aligned}
\operatorname{avar}\{\sqrt{n} h(\widehat{\phi})\}= & H_{11}\left(H_{11}^{T} J_{h} H_{11}\right)^{\dagger} H_{11}^{T}+H_{12}\left(H_{12}^{T} J_{h} H_{12}\right)^{\dagger} H_{12}^{T}+H_{13}\left(H_{13}^{T} J_{h} H_{13}\right)^{\dagger} H_{13}^{T} \\
& +\left(H_{14}, H_{15}\right)\left(\left(H_{14}, H_{15}\right)^{T} J_{h}\left(H_{14}^{T}, H_{15}^{T}\right)^{T}\right)^{\dagger}\left(H_{14}^{T}, H_{15}^{T}\right) .
\end{aligned}
$$

124 The asymptotic covariance of $\operatorname{avar}\left[\sqrt{n} \operatorname{vec}\left(\widehat{\beta}_{\text {RE }}\right)\right]$ corresponds to the upper left block of avar $[\sqrt{n} h(\widehat{\phi})]$, ${ }^{125}$ and $\left(H_{14}, H_{15}\right)\left[\left(H_{14}, H_{15}\right)^{T} J_{h}\left(H_{14}^{T}, H_{15}^{T}\right)^{T}\right]^{\dagger}\left(H_{14}^{T}, H_{15}^{T}\right)$ does not contribute to it. So we only consider

Hence avar $\left\{\sqrt{n} \operatorname{vec}\left(\widehat{\beta}_{\mathrm{RE}}\right)\right\}$ is given by

$$
\begin{align*}
& \frac{1}{4}\left(B^{T} \eta^{T} \otimes \Gamma_{0}\right)\left[\eta B \widetilde{\Sigma}_{X} B^{T} \eta^{T} \otimes \Omega_{0}^{-1}+M\left(\Omega \otimes \Omega_{0}^{-1}-2 I_{u(r-u)}+\Omega^{-1} \otimes \Omega_{0}\right)\right]^{-1}\left(\eta B \otimes \Gamma_{0}^{T}\right) \\
+ & \frac{1}{4} M_{B} \otimes \Gamma \Omega \Gamma^{T}+\frac{1}{4}\left(\widetilde{\Sigma}_{X}^{-1}-M_{B}\right) \otimes \Gamma \eta\left(\eta^{T} \Omega^{-1} \eta\right)^{-1} \eta^{T} \Gamma^{T} \tag{22}
\end{align*}
$$

C Additional simulation results for Section 7.2

We repeated the simulation with the same setting as in Figure 6 of the paper, but the errors were generated from the multivariate normal distribution $N(0,2 \Sigma)$. The comparison of the estimation standard deviation and MSE are displayed in Figure 1. Under this setting, the basic reduced-rank envelope estimator is the MLE. The reduced-rank envelope estimator with approximate weights has about the same

Figure 1: Estimation standard deviation and MSE for a randomly selected element in $\boldsymbol{\beta}$. Left panel: Estimation standard deviation versus sample size. Right panel: MSE versus sample size. The line types are the same as in Figure 6. The horizontal solid line at the bottom of the left panel marks the asymptotic standard deviation of the basic envelope estimator.

References

[1] Bai, Z., and Wu, Y. (1993). Recursive algorithm for M-estimates of regression coefficients and scatter parameters in linear models. Sankhyā: The Indian Journal of Statistics, Series B, 55, 199-
218.
[2] Bilodeau, M. and Brenner, M. (1999). Theory of multivariate statistics, Springer.
[3] Cook, R. D., Li, B. and Chiaromonte, F. (2010). Envelope models for parsimonious and efficient multivariate linear regression (with discussion). Statist. Sinica, 20, 927-1010.
[4] Cook, R. D. and Forzani, L. (2011). On the mean and variance of the generalized inverse of a singular Wishart matrix. Electron. J. Stat., 5, 146-158.
[5] Cook, R. D., Forzani, L., and Zhang, X. (2015). Envelopes and reduced-rank regression. Biometrika, 102(2), 439-456.
[6] Cook, R. D., Li, B. and Chiaromonte, F. (2010). Envelope models for parsimonious and efficient multivariate linear regression (with discussion). Statist. Sinica, 20, 927-1010.
[7] Eaton, M. L. (2007). Multivariate Statistics: A Vector Space Approach. Beachwood, Ohio: Institute of Mathematical Statistics.
[8] Kent, J.T., and D.E. Tyler (1991). Redescending M-estimates of multivariate location and scatter. Ann. Statist., 19, 2102-2019.
[9] Kudraszow, N. L. and Maronna, R. A. (2011). Estimates of MM type for the multivariate linear model. J. Multivariate Anal., 102, 1280-1292.
[10] Maronna, R. A. (1976). Robust estimators of Multivariate location and scatter. Ann. Statist., 4, 51-67.
[11] Miao, B. Q, and Wu, Y. (1996). Limiting behavior of recursive M-estimators in multivariate linear regression models. J. Multivariate Anal., 59, 60-80
[12] Mitchell, A. F. S. (1989). The information matrix, skewness tensor and α-connections for the general multivariate elliptic distribution. Ann. Inst. Statist. Math., 41, 289-304.
[13] Petersen K.B. and Pedersen M.S. (2008). The matrix cookbook. Desktop reference. http: / / www.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274.pdf
[14] Shapiro, A. (1986). Asymptotic theory of over-parameterized structural models. J. Amer. Statist. Assoc., 81, 142-149.
[15] van der Vaart, A.W. (2000). Asymptotic Statistics, Cambridge University Press.

[^0]: *Liliana Forzani is Professor, Facultad de Ingeniería Química, Universidad Nacional del Litoral, CONICETUNL, Santa Fe, Argentina. Email: liliana.forzani@gmail.com.
 ${ }^{\dagger}$ Zhihua Su is Associate Professor, Department of Statistics, University of Florida, Gainsville, FL 32611-8545. E-mail: zhihuasu@stat.ufl.edu.
 ${ }^{\ddagger}$ Author names are listed alphabetically.

