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In this supplementary document, we provide the proofs for the theoretical results presented in

Section 2.3 of the main article. First, the notations are reproduced below.

Z0 — the set of all relevant composite features;

Z∗0 — any subset of Z0;

s0 — the set of all relevant simple features;

s∗0 — the set of relevant simple features contained in Z∗0 ;

ΣZjk
— the covariance matrix of Zjk = (Xj , Xk, XjXk);

Ỹ (Z∗0 ) = Y −α−Σy,z∗
0
Σ−1z∗

0 ,z
∗
0
Z∗0 — the residual of Y adjusting for the effects of Z∗0 , that

is, the difference between Y and its best linear predictor in terms of Z∗0 .

Σy,zjk(Z∗0 ) — the covariance vector between Ỹ (Z∗0 ) and Zjk;

R(Ỹ (Z∗0 ),Zjk) — the multiple correlation coefficient between the Ỹ (z∗0) and Zjk given

by Σyzjk(Z∗0 )Σ−1Zjk
Σzjky(Z∗0 );

r(ỹ(Z∗0 ), Zjk) = (1/n)ỹ>(Z∗0 )H(Zjk)ỹ(Z∗0 ) — The sample version of R(Ỹ (Z∗0 ), Zjk).

For the sake of convenience, the theoretical results in Section 2.3 are restated before their proofs.
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1 Proof of Lemma 1

Lemma 1. Assume the following conditions:

A1. |s0|3 ln p/n→ 0.

A2. The eigenvalues of {Σs,s : |s| ≤ 3|s0|} are bounded from below and above.

A3. Denote by Zj ’s all the simple features. maxj,l{E exp(t(Zj − EZj)(Zl − EZl),E exp(tε2)} ≤ C

for all |t| ≤ η for some constants η and C.

Suppose that Zj∗k∗ is the composite feature such thatR(Ỹ (Z∗0 ),Zj∗k∗) = max(j,k)∈(Z∗
0 )

c R(Ỹ (Z∗0 ),Zjk).

Then, as n→∞, uniformly for all Z∗0 ⊂ Z0 with |Z∗0 | ≤ 3|s0|, we have

P

(
r(ỹ(Z∗0 ), Zj∗k∗) = max

(j,k)∈(Z∗
0 )

c
r(ỹ(Z∗0 ), Zjk)

)
→ 1,

where r(ỹ(Z∗0 ), Zjk) = (1/n)ỹ>(Z∗0 )H(Zjk)ỹ(Z∗0 ) with ỹ(Z∗0 ) = [I −H(Z∗0 )]y is the sample version

of R(Ỹ (Z∗0 ),Zj∗k∗).

Proof of Lemma 1. It suffices to show that, uniformly for (j, k),Z∗0 ⊂ Z0, we have

r(ỹ(Z∗0 ), Zjk) = R(Ỹ (Z∗0 ),Zjk)(1 + op(1)). (1)

Denote

a = ΣZjky(Z∗0 ), b = n−1Z>jkỹ(Z∗0 ), A = ΣZjk
, B = n−1Z>jkZjk.

Then, we have

r(ỹ(Z∗0 ), Zjk)−R(Ỹ (Z∗0 ),Zjk) = b>B−1b− a>A−1a

= b>(B−1 −A−1)b+ (b− a)>A−1b+ a>A−1(b− a).
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Therefore,

|r(ỹ(Z∗0 ), Zjk)−R(Ỹ (Z∗0 ),Zjk)|

≤ |b>(B−1 −A−1)b|+ |(b− a)>A−1b|+ |a>A−1(b− a)|

≤ ‖B−1 −A−1‖‖b‖22 + ‖A−1‖‖b− a‖2(‖a‖2 + ‖b‖2)

= ‖B−1 −A−1‖‖b‖22 + λ−1min(A)‖b− a‖2(‖a‖2 + ‖b‖2)

≤ 2‖B−1 −A−1‖(‖a‖22 + ‖b− a‖22) + λ−1min(A)‖b− a‖2(2‖a‖2 + ‖b− a‖2),

where, for a matrix C, ‖C‖ denotes its matrix norm, that is ‖C‖ = λmax(C) if C is symmetric, and

‖C‖ =
√
λmax(C>C), otherwise, for a vector c, ‖c‖2 denotes its L2-norm.

Under condition A2, ‖a‖2 and λ−1min(A) are both bounded, it remains to show that

‖B−1 −A−1‖ = op(1), uniformly for all (j, k). (2)

and that

‖b− a‖2 = op(1), uniformly for all (j, k) and Z∗0 with |Z∗0 | ≤ 3|s0|. (3)

Write A−1 −B−1 = A−1(B −A)B−1, we have

‖A−1 −B−1‖ ≤ ‖A−1‖‖B −A‖‖B−1‖ = λmax(A−1)λmax(B−1)‖B −A‖

≤ 3λ−1min(A)λ−1min(B)‖B −A‖∞,

where ‖ ·‖∞ denotes the maximum of the absolute values of the entries of a matrix. Under condition

A1 and A3, the entries of B converges uniformly to the corresponding entries of A, c.f., Lemma 3.1

of Luo and Chen (2014). Hence λ−1min(B) is bounded since λ−1min(A) is bounded, and ‖B −A‖∞ → 0

uniformly for all (j, k). This establishes (2).

Note that Ỹ (Z∗0 ) = Y − α− Σy,z∗
0
Σ−1z∗

0 ,z
∗
0
Z∗0 and

a = Cov(Zjk, Ỹ (Z∗0 )) = Σzjk,y − Σzjk,z∗
0
Σ−1z∗

0 ,z
∗
0
Σz∗

0 ,y
,

b =
Z>jky

n
−
Z>jkZ

∗
0

n

(
Z∗>0 Z∗0
n

)−1
Z∗>0 y

n
.
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Again, under condition A1 and A3, b converges to a uniformly, which establishes (3). The lemma

then follows.

2 Proof of Theorem 1

The additional conditions for Theorem 1 are as follows.

B1. As n→ +∞,

√
nmin

j∈s0
|ξj |/

√
|s0| ln p→ +∞,

where ξj ’s are the coefficients of the simple features in s0.

B2. For all Z∗0 ⊂ Z0 with |Z∗0 | ≤ 3|s0|, denote s?z as the set of relevant simple features contained in

Z∗0 and s?−z = s0\s?z. Define Z̃?
0 = {Zjk : Zjk /∈ Z∗0 , Zjk ∩ s?−z 6= ∅}. There exists a 0 < q1 < 1

such that

max
(j,k):Zjk /∈Z̃?

0

R(Ỹ (Z∗0 ), Zjk) < q1 max
(j,k):Zjk∈Z̃?

0

R(Ỹ (Z∗0 ), Zjk).

B3. There exists a 0 < q2 < 1, such that for any s ⊂ s0,

max
j∈sc0
|(Σjs0 − ΣjsΣ

−1
ss Σss0)ξ| < q2 max

j∈s−
|(Σjs0 − ΣjsΣ

−1
ss Σss0)ξ|.

Theorem 1. Assume conditions A1 – A3 and B1 – B3. Let s∗ be the selected set of simple features

by the procedures of SIGS. Then, we have, as n→∞, P (s∗ = s0)→ 1.

Proof of Theorem 1.

(I) We first show that all relevant simple features are retained in the set Z∗0 selected at the first

stage of our SIGS procedure, that is, P (s0 ⊂ Z∗0 )→ 1.

Let Z∗1 , · · · ,Z∗l , · · · be the sequence of the sets of composite featurers selected by the SIGS

procedure. By the nature of the sequential procedure, Z∗1 ⊂ · · · ⊂ Z∗l ⊂ · · · . For the ease of
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notation, let s∗l denote s∗zl , the set of simple features contained in Z∗l . Recall that by definition

Z̃?
l = {Zjk : Zjk /∈ Z∗l , Zjk ∩ s?−l 6= ∅}.

Under condition B2, Lemma 1 implies that, before all the relevant simple features are selected,

at each step of the first stage of SIGS, at least one new relevant simple feature will be contained in

the composite feature selected at that step. If the EBIC stopping rule is not activated, then there

is an l∗ ≤ |s0| such that s0 ⊂ s∗l∗ . In what follows, we show that the sequence will stop exactly at l∗

by invoking the EBIC stopping rule with probability converging to 1. Let

D = EBIC(Z∗l+1)− EBIC(Z∗l )

= n ln
‖I −H(Z∗l+1)y‖22
‖[I −H(Z∗l )]y‖22

+ (|Z∗l+1| − |Z∗l |) lnn+ 2γ

[(
N

l + 1

)
− ln

(
N

l

)]
= n ln

(
1−
‖[I −H(Z∗l )]y‖22 − ‖I −H(Z∗l+1)y‖22

‖[I −H(Z∗l )]y‖22

)
+(|Z∗l+1| − |Z∗l |) lnn+ 2γ

[(
N

l + 1

)
− ln

(
N

l

)]
.

It suffices to show that if Z̃?
l 6= ∅ then D < 0 and otherwise D > 0.

Case (i): Z̃?
l 6= ∅

Note that under A2–A3, for any positive number ε,

P ( max
|s|≤3|s0|

sup
‖u‖22=1

|u>(Σ̂ss − Σss)u| > ε) ≤ p6|s0|P (max
i,j
|σ̂ij − σij | ≥

ε

3|s0|
)

= C0 exp{(4 + 6|s0| ln p)− C1n
ε2

9|s0|2
}, (4)

where σij is the covariance between two simple features and i, j range over all simple features. The

right hand side of (4) converges to 0 under A1. Therefore, there exists positive constants c and d

such that, with probability tending to 1,

c ≤ min
(jk)

λmin(n−1Z>jkZjk) ≤ max
(jk)

λmax(n−1Z>jkZjk) ≤ d (5)

c ≤ min
Z∗

0⊂Z0,|Z∗
0 |≤3|s0|

λmin(n−1Z∗>0 Z∗0 ) ≤ max
Z∗

0⊂Z0,|Z∗
0 |≤3|s0|

λmax(n−1Z∗>0 Z∗0 ) ≤ d. (6)

Here and after, all claims are made in the asymptotic sense that the probability of the claims

converges to 1 as n goes to infinity. Now we focus on analysing the first term in D. Let Z∗ be the
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composite feature selected at step l + 1, that is, Z∗l+1 =
(
Z∗l Z∗

)
. By using the formula for the

inverse of partioned four-block matrix, we have the the following identity,

‖[I −H(Z∗l )]y‖22 − ‖[I −H(Z∗l+1)]y‖22

= ‖[I −H(Z∗l )]y‖22 − ‖[I −H(
(
Z∗l Z∗

)
)]y‖22

= y>[I −H(Z∗l )]Z∗
[
Z∗>[I −H(Z∗l )]Z∗

]−1
Z∗>[I −H(Z∗l )]y.

Write

[I −H(Z∗l )]Z∗u = Z∗u+ Z∗l v =
(
Z∗l Z∗

)( v
u

)
= Z∗l+1η,

where v = −(Z∗>l Z∗l )−1Z∗>l Z∗u and ‖η‖2 ≥ ‖u‖2. For any u with ‖u‖2 = 1, we have

‖[I −H(Z∗l )]Z∗u‖22 ≥ inf
η

‖Z∗l+1η‖22
‖η‖22

≥ λmin(Z∗>l+1Z
∗
l+1) ≥ nc,

‖[I −H(Z∗l )]Z∗u‖22 ≤ ‖Z∗u‖22 ≤ λmax(Z∗>Z∗) ≤ nd.

Therefore, the eigenvalues of
[
Z∗>[I −H(Z∗l )]Z∗

]−1
is within [1/(nd), 1/(nc)]. Consequently,

‖[I −H(Z∗l )]y‖22 − ‖[I −H(Z∗l+1)]y‖22 ≥ n−1d−1‖y>[I −H(Z∗l )]Z∗‖22.

Let Z∗∗ ∈ Z∗cl be the composite feature which contains the simple feature z ∈ s0 ∩ Z∗cl such that

[y>(I −H(Z∗l ))z]2 = maxj∈s0∩Z∗c
l

[y>(I −H(Z∗l ))zj ]
2. Then, we have

n−2c−1‖y>[I −H(Z∗l )]Z∗‖22] ≥ r(ỹ(Z∗l ), Z∗) ≥ r(ỹ(Z∗l ), Z∗∗) ≥ n−2d−1‖y>[I −H(Z∗l )]Z∗∗‖22

≥ n−2d−1 max
j∈s0∩Z∗c

l

[y>(I −H(Z∗l ))zj ]
2.

Hence,

‖[I −H(Z∗l )]y‖22 − ‖[I −H(Z∗l+1)]y‖22

≥ n−1cd−2 max
j∈s0∩Z∗c

l

[y>(I −H(Z∗l ))zj ]
2

= n−1cd−2 max
j∈s0∩Z∗c

l

[µ>(I −H(Z∗l ))zj ]
2[1 + op(1)], (7)
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where µ = Ey = Zξ. We now derive a lower bound for the rightmost side of (7). We can write

µ>[I −H(Z∗l )]µ =
∑

j∈s0∩(Z∗
l )

c

ξjz
>
j [I −H(Z∗l )]µ

≤
∑

j∈s0∩Z∗c
l

|ξj ||z>j [I −H(Z∗l )]µ|

≤ max
j∈s0∩Z∗c

l

|µ>[I −H(Z∗l )]zj |
∑

j∈s0∩(Z∗
l )

c

|ξj |

= max
j∈s0∩Z∗c

l

|µ>[I −H(Z∗l )]zj | ‖ξs0∩Z∗c
l
‖1.

On the other hand, denoting Z̃ = Zs0∩Z∗c
l

and ξ̃ = ξs0∩Z∗c
l

, we have

µ>[I −H(Z∗l )]µ = ‖[I −H(Z∗l )]µ‖22 = ‖[I −H(Z∗l )]Z̃ξ̃‖22

=

∥∥∥∥(Z̃ Z∗l )

(
ξ̃

−(Z∗>l Z∗l )−1Z∗>l Z̃ξ̃

)∥∥∥∥2
2

=

(
ξ̃

−(Z∗>l Z∗l )−1Z∗>l Z̃ξ̃

)>
Z̃>l Z̃l

(
ξ̃

−(Z∗>l Z∗l )−1Z∗>l Z̃ξ̃

)
≥ λmin(Z̃>l Z̃l)‖ξ̃‖22,

where Z̃l = (Z̃ Z∗l ). Thus, we have

max
j∈s0∩Z∗c

l

|µ>[I −H(Z∗l )]zj | ‖ξ̃‖1 ≥ λmin(Z̃>l Z̃l)‖ξ̃‖22 (8)

Since ‖ξ̃‖22 =
∑
j

|ξj |2 ≥
∑
j

|ξj |minj |ξj | = ‖ξ̃‖1 minj |ξj |, we have

max
j∈s0∩Z∗c

l

|µ>[I −H(Z∗l )]zj | ≥ λmin(Z̃>l Z̃l) min
j∈s0
|ξj |. (9)

Hence,

‖[I −H(Z∗l )]y‖22 − ‖[I −H(Z∗l+1)]y‖22
‖[I −H(Z∗l )]y‖22

≥ n−1cd−2

[
λmin(Z̃>l Z̃l) minj∈s0 |ξj |

]2
λmax(Z>s0Zs0)‖ξ‖22

[1 + op(1)]

≥ c3d−3(max
j∈s0
|ξj |)−2|s0|−1 min

j∈s0
|ξj |2[1 + op(1)].

Denote the rightmost side of the above inequality by Rl. Therefore, the first term in D is smaller

than −nRl. The remaing term in D is less than 3 lnn+2γ lnN where N = p(p−1)/2. Hence, under

condition B1, D < 0 as n→∞.
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Case (ii): Z̃?
l = ∅.

The proof for the selection consistency of EBIC in Case II: s0n ⊂ s of Luo and Chen (2013) can

be followed verbatim to show that D > 0 if Ẑ?
l = ∅. Hence, the details are omitted.

(II) We now show that P (s∗ = s0)→ 1. We have shown in (I) that all relevant simple features

are in the set of simple features contained in the composite features selected in the first stage with

probability tending to 1, that is P (s0 ⊂ Z∗0 ) → 1. The second stage is in fact a SLasso procedure

applied to the feature set Z∗0 . Therefore, the selection consistency of the second stage can be proved

in the same way as that of the SLasso procedure.

Alternatively, we can proceed as follows. Let s∗1 ⊂ · · · ⊂ s∗l ⊂ · · · be the sequence of the feature

sets selected in the second stage of the SIGS procedure without activating the EBIC stopping rule.

Under condition B3, the true set of relevant simple features s0 is one of those sets. That is, the

procedure selects all relevant simple features before any irrelevant simple features could be selected.

Then following the proof in (I), we can establish that, for any s?l ( s0,

max
j∈s?−l

|µ>[I −H(s?l )]zj | ≥ λmin(Z>s0Zs0) min
j∈s0
|ξj |

‖[I −H(s?l+1)]y‖22 − ‖[I −H(s?l )]y‖22
‖[I −H(s?l )]y‖22

≥ c3d−3(max
j∈s0
|ξj |)−2|s0|−1 min

j∈s0
|ξj |2.

Hence, EBIC(s∗l+1)− EBIC(s∗l ) < 0 when s?l ( s0. Therefore, the sequence EBIC(s∗l ) is decreasing

until it reaches s0. That if s?l = s0 then the above difference is greater than zero can be shown by

following the proof in Luo and Chen (2013) as in Case (ii) of (I).
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