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FOR HIGH-DIMENSIONAL INTERACTION MODELS
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Abstract: High-dimensional interaction models have important applications in many

scientific fields, especially in genetic research and medical studies. As in high-

dimensional main-effect models, feature selection is unavoidable in high-dimensional

interaction models. However, feature-selection methods for high-dimensional main-

effect models cannot be applied directly to high-dimensional interaction models

because of imbalanced spurious correlations between main-effect features and in-

teraction features. Most studies on high-dimensional interaction models impose a

so-called hierarchy principle, using various mechanisms. However, this approach is

questionable, as we argue here. We propose a sequential-interaction group-selection

(SIGS) method based on the principle of correlation search. The SIGS method

avoids the drawbacks of imposing the hierarchy principle and has desirable prop-

erties. The selection consistency of the SIGS method is established. Simulation

studies demonstrate that the SIGS method outperforms methods that impose the

hierarchy principle.

Key words and phrases: Feature selection, group search, hierarchy principle, high-

dimensional interaction models, principle of correlation search, sequential proce-

dure.

1. Introduction

High-dimensional models are common in many conventional scientific fields,

including genetic research, medical studies, financial analysis, web information

analysis, and so on. Here, feature selection is an indispensable part of the anal-

ysis of such models and, thus, is well researched; see, for example, Tibshirani

(1996), Fan and Li (2001), Zou (2006), Zhang (2010), and Yuan and Lin (2006),

among others. However, the literature has focused mainly on so-called main-effect

models. High-dimensional models with interactions have garnered relatively less

attention. Interaction effects are common in medical and genetic studies. For
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example, it has been found that many diseases are affected by the interaction

effects of genes, see, Storey, Akey and Kruglyak (2005) and Zou and Zeng (2009).

In genetics, the effects of many genes are realized only through their interactions

with other genes; see Evans et al. (2006), Manolio and Collins (2007), Kooperberg

and LeBlanc (2008), and Cordell (2009). Therefore, researchers are obliged to

consider interaction models. As we discuss later, several studies have examined

high-dimensional interaction models; nevertheless, many issues remain.

An interaction model with pairwise interaction effects can be formulated as

Y = β0 +

p∑
j=1

βjXj +
∑

1≤j<k≤p
θjkXjXk + ε, (1.1)

where Y is the response variable and X1, . . . , Xp are p covariates. We refer to

each Xj as a main-effect feature, and to each product XjXk as an interaction

feature. Note that we cannot treat the interaction model as an augmentation of

a main-effect model by considering the interaction features simply as additional

covariates. The spurious correlations between the interaction features are much

higher than those between the main-effect features, because the number of the

interaction features, p(p−1)/2, is much larger than the number of the main-effect

features, p. These higher spurious correlations result in more false interaction

features being selected by a feature-selection procedure designed for main-effect

models. The effect of relevant main-effect features might be masked by the false

selection of irrelevant interaction features. In an analysis of CGEMS prostate

cancer data, available at http://cgems.cancer.gov, Zhao and Chen (2011) ap-

ply a SCAD penalized likelihood approach, which treats the main-effect features

and the interaction features in the same way. However, they find only certain in-

teraction features. Other studies have identified significant main-effect features;

see, for example, Yeager et al. (2007). Thus, high-dimensional interaction models

require special considerations.

The so-called hierarchy principle has dominated the methods developed in

the literature for analyses of high-dimensional interaction models. The hierarchy

principle requires that if an interaction feature, XkXj , is included in a model,

then one or both of its parent main-effect features, Xj and Xk, must also be

included in the model. If only one parent main-effect feature is required, it

is referred to as the weak hierarchy principle; otherwise, it is referred to as

the strong hierarchy principle. The methods developed thus far are essentially

different ways of enforcing either the strong or weak hierarchy in the feature

http://cgems.cancer.gov
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selection. A popular methodology is to incorporate group-Lasso penalties in

penalized likelihood approaches; see, for example, Zhao, Rocha and Yu (2009),

Yuan, Joseph and Zou (2009), Choi, Li and Zhu (2010), Radchenko and James

(2010), Bien, Taylor and Tibshirani (2013), and She, Wang and Jiang (2016).

Two such penalties are given as follows. The first is considered in Zhao, Rocha

and Yu (2009):

p1(Θ,β) = λ1
∑
j 6=k
|θjk|+ λ2

∑
j 6=k
‖(βj , βk, θjk)‖γjk ,

where γjk is some positive constant. These constants can be the same and can be

equal to two. The second penalty is considered in She, Wang and Jiang (2016):

p2(Θ,β) = λ1
∑
j 6=k
|θjk|+ λ2

p∑
j=1

‖(βj , θj1, . . . , θjp)‖2.

A slightly different approach, called the hierarchical Lasso, was considered in

Bien, Taylor and Tibshirani (2013), and is a relaxed convex version of the fol-

lowing nonconvex problem:

Minimize

n∑
i=1

yi−β0− p∑
j=1

βjxij−
1

2

∑
j 6=k

θjkxijxik

2

+λ

 p∑
j=1

|βj |+
1

2

∑
j 6=k
|θjk|

 ,
subject to‖θj‖1 ≤ |βj |,

where θj = (θj1, . . . , θjp)
>.

A different methodology for enforcing the hierarchy principle is through

multi-step selections. Two forward-regression schemes employing this approach

are considered in Hao and Zhang (2014). In the first scheme, the main-effect

features are selected first; then, only those interaction features whose parent

main-effect features are selected are subjected to further selection. In the sec-

ond scheme, the candidate set is first confined to the collection of all main-effect

features. In the subsequent steps, an interaction feature is added to the candi-

date set when its parents are both selected. A method called the regularization

algorithm under marginality principle (RAMP) is considered in Hao, Feng and

Zhang (2018). The RAMP consists of steps determined by a sequence of val-

ues of the penalty parameter, in decreasing order. At each step, the main-effect

features already selected are not penalized. All remaining main-effect features,

and those interaction features whose parents are among the selected main-effect

features, are included in the model and penalized using the penalty parameter
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value for that step. Then, the set of selected main-effect features is augmented

by newly selected main-effect features and the parents of newly selected inter-

action features. We refer to the above methods as the search-main-effect-first

approaches.

By enforcing the hierarchy principle, the above approaches address the issue

of imbalanced spurious correlations mentioned earlier; that is, the much higher

spurious correlations between the interaction features make it easier for these

features to be selected. In fact, these methods either impose heavier penalties on

interaction features, or they make the selection of the parent main-effect features

a premise for the selection of an interaction feature. In effect, this makes the

selection of interaction features more difficult than that of main-effect features.

However, there are some unwanted characteristics of these approaches, which we

discuss in the next section.

A method that does not impose the hierarchy principle is considered in He

and Chen (2014). The method is a sequential search procedure. At each step

of the procedure, the main-effect feature most correlated with the current resid-

ual among all unselected main-effect features and the interaction feature most

correlated with the current residual among all unselected interaction features

are identified first. Then, a version of the extended Bayes information criterion

(EBIC) (Chen and Chen (2008)) for interaction models is used to select between

the two identified features. The EBIC version for interaction models imposes a

heavier penalty on interaction features than that on main-effect features, which

is an alternative way to address the issue discussed above. However this method

separates the main-effect features and the interaction features, and ignores the

intrinsic connections between an interaction feature and its parent main-effect

features. As shown in our simulation studies, this may reduce the accuracy of

feature selection.

In this study, we develop a sequential-interaction group-selection (SIGS)

method. In what follows, a single main-effect or interaction feature is referred

to as a simple feature. A group of simple features is referred to as a com-

posite feature. In our SIGS method, we consider composite features of the

form {Xk, Xj , XjXk} . Our method consists of two sequential procedures. The

first procedure selects composite features sequentially using a correlation search,

which is discussed later. The second procedure sequentially selects simple fea-

tures from the selected composite features. In both procedures, the EBIC is used

as the stopping rule. The SIGS method overcomes the unwanted characteristics

of the methods reviewed above, which we elaborate on later. Furthermore, under
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certain mild conditions, the method is selection consistent. Simulation studies

demonstrate that the SIGS method ourperforms existing methods in terms of

the accuracy of feature selection. Another advantage of our method is that its

applicability is not limited by the dimension of the data.

The remainder of the article is arranged as follows. In section 2, we present

the SIGS method and provide its computation algorithms and theoretical prop-

erties. In section 3, we report our simulation studies, in which we compare our

method with other available methods. In section 4, we consider a real example.

Technical proofs of the theoretical results are provided in the online Supplemen-

tary Material.

2. SIGS, Using A Correlation Search

In this section, we discuss several issues related to the hierarchy principle

and, hence, the motivation for this study. Then, the SIGS method is developed

and its theoretical properties are provided.

2.1. Issues related to the hierarchy principle

First, we clarify the concepts of main and marginal effects of a covariate in

a linear model. In general, these two concepts are not the same. The marginal

effect is the average effect of the covariate, averaging over the other covariates. If

a model contains only main-effect terms, the main effect and the marginal effect

are identical. However, in an interaction model like (1.1), the so-called main effect

is not the marginal effect. In fact, the meaning of the main effect is ambiguous,

and dependent on the centers of the covariates. A similar clarification is made

in Hao and Zhang (2017). Here, we illustrate this by a simple interaction model.

The model consists of two binary covariates representing two factors A and B,

each with two levels. Let x1 = 1 if A is at level 2, and zero otherwise. Similarly,

let x2 = 1 if B is at level 2, and zero otherwise. Consider the model

y = β0 + β1x1 + β2x2 + θ12x1x2 + ε. (2.1)

At different values of (x1, x2), the model can be expressed as follows.

y =


β0 + ε, if both A and B are at level 1;

β0 + β1 + ε, if A is at level 2 and B is at level 1;

β0 + β2 + ε, if A is at level 1 and B is at level 2;

β0 + β1 + β2 + θ12 + ε, if both A and B are at level 2.
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Assume that the number of observations at each of the four level combinations

is the same. Then, we have the following. The effect of A within level 1 of B

is (β0 + β1) − β0 = β1, the effect of A within level 2 of B is (β0 + β1 + β2 +

θ12) − (β0 + β2) = β1 + θ12, the marginal effect (the average effect) of A is

[β1 + (β1 + θ12)]/2 = β1 + θ12/2, and the interaction effect between A and B is

[(β1 + θ12) − β1] = θ12. In fact, the so-called main effect of x1, that is, β1, is

the effect of A within level 1 of B, which is not the same as the marginal effect

of A. Furthermore, if we perform the linear transformations z1 = x1 + c and

z2 = x2 + d, for c, d 6= 0, and consider the model

y = β0 + β1z1 + β2z2 + θ12z1z2 + ε, (2.2)

then it is easy to see that β1 is no longer the effect of A within level 1 of B.

Instead, this effect is given by β1 + θ12d. After all, the so-called main effect in an

interaction model does not reflect the importance of the corresponding covariate.

This problem caused by the arbitrary centering resulted in the hierarchy

principle being imposed in interaction modeling by early authors; see, Nelder

(1977) and McCullagh and Nelder (1983). However, the indefiniteness of the so-

called main-effect in an interaction model is not a major issue, and can be solved

by standardizing the covariates. Furthermore, this issue is irrelevant in feature

selection, because, in a particular problem, the features (the covariates with fixed

scales or the centers) are given; here, we care only whether the main-effect terms

and interaction terms of the given features should be selected.

The drawback of the hierarchy principle is that by forcing main-effect features

into a model when they are indeed irrelevant causes unnecessarily high variation

in the fitted model, which has a detrimental impact on feature selection. The

hierarchy principle in the search-main-effect-first approaches is even more prob-

lematic. At the first step of a search-main-effect-first approach, it actually selects

the features based on the marginal effects of the covariates, because the main ef-

fect and marginal effect are the same when no interaction features are involved.

As illustrated by model (2.1), the marginal effect of A, β1 + θ12/2, is the average

of the effects of A at the two levels of B. If the effects of A at the two levels are in

different directions, then β1 and θ12 have different signs, and the marginal effect

could be weaker than the interaction effect. In the extreme case, the marginal

effect could be zero, while the interaction effect is, in fact, substantial. Because

of a weaker or zero marginal effect, the covariate might not be selected regardless

of the strength of its interaction with another covariate. Thus, the interaction
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feature involving such covariates will have no chance of being selected at the sec-

ond step. This is a more serious problem than that caused by forcing irrelevant

features into the model. The search-main-effect-first approaches implicitly take

the marginal (or main) effect as an indication of the importance of a covariate.

However, as argued above, a covariate with a negligible marginal effect could have

substantial interaction effects with other covariates. To address this issue, Hao,

Feng and Zhang (2018) proposed the notion of an important predictor, which is

a covariate with either a nonzero main-effect or any nonzero interaction effect

with other covariates. A reasonable feature-selection approach should be able to

select at least the important predictors.

The major issue with high-dimensional interaction models is that it can

be easier to select interaction features than main-effect features, owing to their

imbalanced spurious correlations. The SIGS procedure addresses these issues,

while avoiding the aforementioned problems.

2.2. The correlation search

The SIGS method proposed here is based on what we refer to as a correlation

search. The principle of a correlation search is statistically desirable and appeal-

ing. The intrinsic mechanism for feature selection is the correlation between

the features and the response variable. In penalized least squares approaches, at

each fixed value of the penalty parameter, the active set of features contains those

whose correlations with the response exceed a certain threshold. In sequential

procedures, such as the least angle regression (LAR; Efron et al. (2004)), orthogo-

nal matching pursuit (OMP; Cai and Wang (2011)), forward stepwise regression

(FSR; Wang (2009)), and sequential LASSO (Luo and Chen (2014)), at each

step, the next feature is selected using Pearson correlation coefficients of the un-

selected features with the residual of the current model. The differences between

the various sequential procedures lie only in how the current model is fitted.

The problem of feature selection is essentially to select those features to which

the unexplained variation of the response can be attributed. The capacity of a

feature to explain the variation of a variable can be measured by its correlation

with that variable. The principle of a correlation search is that, whenever there

is unexplained variation of the response, features should be selected according

to their correlation with the unexplained part of the response. There are two

requirements to applying the principle. First, the candidate features must have

the same status, except for their unknown relations to the response. Second,

there must be an appropriate measure of correlation.
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In high-dimensional interaction models, the principle of a correlation search

cannot be applied directly to simple main-effect and interaction features because

of their imbalanced spurious correlations. In other words, the main-effect features

and the interaction features do not have the same status. However, if we con-

sider the composite features {Xj , Xk, XjXk} instead of simple main-effect and

interaction features, the imbalance in spurious correlations no longer matters,

because the composite features all have the same status. In the current context,

a ready choice of correlation measure is the multiple correlation coefficient, which

measures the correlation between a scalar random variable and a random vector.

Let Y be the scalar random variable and z be the random vector. The multiple

correlation coefficient between Y and z is given by

ρ2 = max
a

[corr(Y,a>z)]2 =
ΣyzΣ

−1
zz Σzy

σ2y
,

where Σyz is the covariance vector between Y and z, Σzy = Σ>yz, Σzz is the

covariance matrix of z, and σ2y is the variance of Y . When the selection of z

is of concern, we can ignore the factor σ2y . Therefore, we can take R(y,z) =

ΣyzΣ
−1
zz Σzy as the correlation measure.

For the interaction model, given in (1.1), with n observations, it is expressed

as

y = β01 +

p∑
j=1

βjxj +
∑

1≤j<k≤p
θjkxj ◦ xk + ε,

where xj ◦ xk denotes the component-wise product, and ε = (ε1, . . . , εn)> is a

random vector of independent and identically distributed (i.i.d.) components

with mean zero. Denote by Zjk the composite feature {Xj , Xk, XjXk}. We

also consider Zjk as the set consisting of Xj , Xk, and XjXk. Let Zjk denote the

matrix (xj ,xk,xj ◦xk). Let Z be any set of simple features. The cardinality of Z
is denoted by |Z|. Let H(Z) denote the projection matrix of the space spanned

by the observed vectors of the simple features in Z. For example, H(Zjk) =

Zjk(Z
>
jkZjk)

−1Z>jk. Let ỹ be a generic notation for the residual vector of y fitted

to a linear model. Suppose that all the simple main-effect and interaction-feature

vectors are centered. The correlation measure between the residual and Zjk is

given by

r(ỹ, Zjk) =
1

n
ỹ>Zjk

(
Z>jkZjk

)−1
Z>jkỹ =

1

n
ỹ>H(Zjk)ỹ.
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The correlation measure has another geometric interpretation: it is the squared

norm of the residual vector projected onto the space spanned by the columns of

Zjk, scaled by 1/n.

As mentioned in the introduction, the SIGS method consists of two sequential

procedures. The first selects composite features, and the second selects simple

features contained in the composite features selected in the first procedure. In

the following, we describe the detailed algorithm for the SIGS method.

SIGS Algorithm:

Selection of Composite Features:

Let ỹ = y, Z∗ = ∅. Repeat

(i) For un-selected Zjk, find j∗ and k∗ such that r(ỹ, Zj∗k∗) = maxjk r(ỹ, Zjk).

(ii) If EBIC(Z∗ ∪ Zj∗k∗) < EBIC(Z∗), update Z∗ to Z∗ = Z∗ ∪ Zj∗k∗ and

ỹ = [I −H(Z∗)]y; otherwise, stop.

Selection of Simple Features:

Denote the simple-feature vectors in Z∗ by {zi, i = 1, . . . , |Z∗|}. Let ỹ = y,

Z∗∗ = ∅. Repeat

(i) For unselected zi in Z∗, find i∗ such that |corr(ỹ, zi∗)| = maxi |corr(ỹ, zi∗)|.

(ii) If EBIC(Z∗∗ ∪ zi∗) < EBIC(Z∗∗), update Z∗∗ to Z∗∗ = Z∗∗ ∪ zi∗ and

ỹ = [I −H(Z∗∗)]y; otherwise, stop.

The EBIC in the above algorithm has slightly different forms when selecting

composite and simple features. For the composite-feature selection, suppose Z∗

is the union of m selected composite features. Then, the EBIC is given by

EBIC(Z∗) = n ln
1

n
‖[I −H(Z∗)]y‖22 + |Z∗| lnn+ 2γ ln

(
N

m

)
,

where N = p(p−1)/2 and γ = 1− lnn/(2 lnN). For the simple-feature selection,

the EBIC is given by

EBIC(Z∗∗) = n ln
1

n
‖[I −H(Z∗∗)]y‖22 + |Z∗∗| lnn+ 2γ ln

(
|Z∗|
|Z∗∗|

)
,

where γ = 1− lnn/(2 ln |Z∗|).
In the composite-feature selection procedure, a composite feature is selected

according to the joint effect of its constituent simple features; that is, the selection

is not based on the marginal effects or the interaction alone. A composite feature
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can be selected in one of three ways: 1) either or both of the two marginal effects

are substantial, but there is no interaction; 2) the marginal effects are negligible,

but the interaction is substantial; or 3) the marginal effects and the interaction

are both substantial. When selecting simple features, irrelevant simple features,

whether main-effect or interaction features, are eliminated, which is not restricted

by the hierarchy principle. Therefore, the SIGS method avoids the drawbacks of

those methods that impose the hierarchy principle. Intuitively, the SIGS method

should outperform such methods. This is indeed vindicated in our simulation

studies, reported in Section 3.

Because of its sequential nature, the implementation of the SIGS method

is not limited by the dimension of the data, that is, the number of covariates

p. The only concern is that the computation might take a long time when p is

very large. However, this issue can be solved by a pre-screening procedure with

the sure screening property. In the following, we propose two such screening

methods. In both methods, the main-effect features and interaction features

are screened separately. The final screened-out set of covariates consists of the

screened-out main-effect features and the parents of the screened-out interaction

features. The sure independence screening (SIS) method of Fan and Lv (2008)

is used for main-effect feature screening in both methods. In one method, the

interaction features are screened by their direct correlations with the response;

we refer to this as direct interaction screening (DIS). In the other method, the

interaction features are screened by their partial correlations with the response,

adjusting for the effects of their parents; we refer to this as interaction screening

by partial correlation (ISPC). The ISPC approach is proposed in Niu, Hao and

Zhang (2018). Henceforth, the two screening methods are referred to as SIS+DIS

and SIS+ISPC, respectively.

SIS+DIS Method:

(i) Compute rj = |Corr(y,xj)|, for j = 1, . . . , p. Denote the [cmn/ lnn]’s

largest rj by r([cmn/ lnn]). Keep the set Sm = {Xj : rj ≥ r([cmn/ lnn])}.

(ii) Compute ρij = |Corr(y,xi ◦xj)|, for 1 ≤ i < j ≤ p. Denote the [cin/ lnn]’s

largest ρij by r([cmn lnn]). Keep the set Si = {{Xi, Xj} : ρij ≥ r([cin/ lnn])}.

(iii) Take the set of retained covariates as S = Sm ∪ Si.

SIS+ISPC Method:

This method is the same as the SIS+DIS method, except (ii) is replaced by the

following:
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(ii)
′

Compute ρij = |Corr((I−Hij)y, (I−Hij)xi ◦xj)|, for 1 ≤ i < j ≤ p, where

Hij is the projection matrix of (xi,xj). Denote the [cin/ lnn]’s largest ρij
by r([cmn lnn]). Keep the set Si = {{Xi, Xj} : ρij ≥ r([cin/ lnn])}.

Under certain mild conditions, both the SIS+DIS and SIS+ISPC methods

possess the sure screening property; that is, with probability tending to one, the

retained set S contains all important covariates, in the sense of Hao, Feng and

Zhang (2018). The SIS+ISPC method requires a longer computation time than

that of the SIS+DIS method. In our simulation studies, the two methods are

comparable in terms of the results of the feature-selection procedures. In some

simulation settings, SIS+ISPC is slightly better than SIS+DIS.

2.3. The asymptotic properties of the SIGS method

Denote by Z0 the set of all relevant composite features, and by Z∗0 , any

subset of Z0. Let ΣZjk
be the covariance matrix of Zjk . Define the residual of

Y , adjusting for the effects of Z∗0 , as Ỹ (Z∗0 ) = Y − α − η>0 Z∗0 , where α and η0
minimize E(Y −α−η>0 Z∗0 )2; that is, the residual is the difference between Y and

its best linear predictor in terms of Z∗0 . It turns out that η0 = Σ−1Z∗0Z∗0 ΣZ∗0 y, where

ΣZ∗0Z
∗
0

is the variance matrix of Z∗0 , and ΣZ∗0 y is the covariance vector between

Z∗0 and Y . Let Σỹzjk(Z∗0 ) be the covariance vector between Zjk and the residual

Ỹ (Z∗0 ). The multiple correlation coefficient between Zjk and Ỹ (Z∗0 ) is given by

R(Ỹ (Z∗0 ), Zjk) = ΣỹZjk
(Z∗0 )Σ−1Zjk

ΣZjkỹ(Z∗0 ),

where ΣZjkỹ(Z∗0 ) = Σ>ỹZjk
(Z∗0 ). By an abuse of notation, we also denote the

index sets of the composite features in Z0 and Z∗0 by Z0 and Z∗0 , respectively.

Furthermore, denote by s any set of simple features, s0 the set of all relevant

simple features, and s∗0 the set of relevant simple features contained in Z∗0 .

The following lemma establishes the property of the correlation measure.

Lemma 1. Assume the following conditions:

A1. |s0|3 ln p/n→ 0.

A2. The eigenvalues of {Σs,s : |s| ≤ 3|s0|} are bounded from below and above.

A3. Denote by Zj all the simple features. Then, maxj,l{E exp(t(Zj − EZj)(Zl
− EZl),E exp(tε2)} ≤ C, for all |t| ≤ η and for some constants η and C.

Suppose that Zj∗k∗ is a composite feature, such that R(Ỹ (Z∗0 ),Zj∗k∗) = max

(j,k)∈(Z∗0 )cR(Ỹ (Z∗0 ),Zjk). Then, as n → ∞, uniformly for all Z∗0 ⊂ Z0, with
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|Z∗0 | ≤ 3|s0|, we have

P

(
r(ỹ(Z∗0 ), Zj∗k∗) = max

(j,k)∈(Z∗0 )c
r(ỹ(Z∗0 ), Zjk)

)
→ 1,

where r(ỹ(Z∗0 ), Zjk) = (1/n)ỹ>(Z∗0 )H(Zjk)ỹ(Z∗0 ), with ỹ(Z∗0 ) = [I − H(Z∗0 )]y,

is the sample version of R(Ỹ (Z∗0 ),Zj∗k∗).

In our SIGS method, the feature selection mechanism is the intrinsic corre-

lations between the response and the features. The above lemma implies that

this mechanism can be effected through the sample version of the correlation

measure. In what follows, we establish the selection consistency property for the

SIGS method. We assume the following conditions:

B1. As n→ +∞, √
nmin
j∈s0
|ξj |/

√
|s0| ln p→ +∞,

where ξj denotes the coefficients of the simple features in s0.

B2. For all Z∗0 ⊂ Z0, with |Z∗0 | ≤ 3|s0|, denote s?z as the set of relevant simple

features contained in Z∗0 and s?−z = s0\s?z. Define Z̃?0 = {Zjk : Zjk /∈
Z∗0 , Zjk ∩ s?−z 6= ∅}. There exists a 0 < q1 < 1, such that

max
(j,k):Zjk /∈Z̃?

0

R(Ỹ (Z∗0 ), Zjk) < q1 max
(j,k):Zjk∈Z̃?

0

R(Ỹ (Z∗0 ), Zjk).

B3. There exists 0 < q2 < 1, such that for any s ⊂ s0,

max
j∈sc0
|(Σjs0 − ΣjsΣ

−1
ss Σss0)ξ| < q2 max

j∈s−
|(Σjs0 − ΣjsΣ

−1
ss Σss0)ξ|,

where ξ is the coefficient vector of all simple features in s0.

Theorem 1. Assume conditions A1–A3 and B1–B3. Let s∗ be the set of simple

features selected by the SIGS procedures. Then, we have, as n→∞, P (s∗ = s0)

→ 1.

We end this sub-section with some remarks on the major conditions of the

theorem. If s0 and p are fixed, B1 is automatically true; otherwise, for the

relevant features to be detectable, it requires that their effects must not taper

off too quickly. To explain B2, express R(Ỹ (Z∗0 ), Zjk) (with dependence on Z∗0
suppressed) as

R(Ỹ , Zjk) = ΣỹZjk
Σ−1Zjk

Σzjkỹ = Cov(Ỹ , Z>jk)Σ
−1/2
Zjk

Σ
−1/2
Zjk

Cov(Zjk, Ỹ )
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= Cov(Ỹ , Z>jkΣ
−1/2
Zjk

) Cov(Σ
−1/2
Zjk

Zjk, Ỹ ) = ‖Cov(Σ
−1/2
Zjk

Zjk, Ỹ )‖22,

where Σ
−1/2
Zjk

Zjk is the standardized Zjk; that is, R(Ỹ (Z∗0 ), Zjk) is the sum of

the squared Pearson correlation coefficients of the components of the standard-

ized Zjk with Ỹ . Therefore, B2 actually requires that, among the unselected

composite features, the maximum correlation of the relevant features with the

current residual should be larger than that of the irrelevant features. B3 is a sim-

ilar condition required for simple relevant features. As argued in Luo and Chen

(2014), in the selection of simple features, condition B3 is indeed weaker than

the irrepresentability condition required of the LASSO method. Luo and Chen

(2014) provide examples in which condition B3 holds, but the irrepresentability

condition does not. Because B2 is a straightforward extension of B3 to the case

of composite features, we could reasonably believe that it is also weaker than the

irrepresentability condition. Thus, conditions B1–B3 are all reasonable minimal

requirements.

The proofs of the results in this sub-section are provided in the online Sup-

plementary Material.

3. Simulation Studies

We compare the performance of the SIGS method with that of several repre-

sentative existing methods by means of simulation studies. The following meth-

ods are considered in the comparison: (i) the sequential interactive EBIC proce-

dure (SIEP) proposed in He and Chen (2014); (ii) the RAMP methods proposed

in Hao, Feng and Zhang (2018). The reason we chose these methods for the

comparison is that the RAMP method is the most recent to impose the hierar-

chy principle, and the SIEP method is the only existing method that does not

impose the hierarchy principle. There are four versions of RAMP: a strong and a

weak hierarchy structure with a LASSO penalty, which we refer to as RAMP-sL

and RAMP-wL respectively; and a strong and a weak hierarchy structure with

an MCP penalty, which we refer to as RAMP-sM and RAMP-wM respectively.

The RAMP methods are implemented using the R package RAMP.

The performance of the methods is evaluated using the positive discovery

rate (PDR) and the false discovery rate (FDR) separately for main-effect features,

denoted by MPDR and MFDR, respectively, and for interaction features, denoted

by IPDR and IFDR, respectively. The PDR and FDR are defined as follows. Let

s0 and s∗ be the set of true features and the set of selected features, respectively,
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PDR =
|s∗ ∩ s0|
|s0|

, FDR =
|s∗ ∩ sc0|
|s∗|

.

The simulation settings are described in the following.

(i) Correlation structure of the covariates. The covariates are generated as ran-

dom variables with mean zero, variance one and correlation structures as follows:

XS1: For p = 80, the covariates are components of two independent random

vectors with 50-variate and 30-variate, respectively, normal distributions

that have an equal pairwise correlation of 0.5. For p = 200, the covariates

are components of four independent random vectors with 50-variate normal

distributions that have equal pairwise correlations of 0.5.

XS2: The covariates are components of a p-variate normal distribution with

exponentially decaying correlations ρij = 0.5|i−j|.

XS3: The covariates are generated as follows:

Xj =
1√
5
Z0 +

2√
5
Zj , 1 ≤ j ≤ p0

Xj = 0.5Xj−1 +
√

0.75Zj , p0 + 1 ≤ j ≤ p,

where Zj , for j = 0, 1, . . . , p, are i.i.d. standard normal random variables.

(ii) Hierarchy structures. Let s01 and s02 be the index sets of the main-effect

and interaction features, respectively. These sets are determined under various

hierarchy structures, as follows:

NH (no hierarchy structure): s01 = {1, . . . , 5}, s02 = {(1, 2), (1, 3), (1, 6), (5, 6), (j−
1, j), j = 10, . . . , 15}.

SH (strong hierarchy structure): s01 is selected randomly from {1, . . . , p} with

size 7, s02 is selected randomly from {(i, j) : i < j, i ∈ s01, j ∈ s01} with size

8.

WH (weak hierarchy structure): s01 is selected randomly from {1, . . . , p} with

size 7, s02 is selected randomly from {(i, j) : i < j, i ∈ s01, j ∈ sc01 or j ∈
s01, i ∈ sc01} with size 8.

AH (anti hierarchy structure): s01 is selected randomly from {1, . . . , p} with size

7, s02 is selected randomly from {(i, j) : i < j, i ∈ sc01, j ∈ sc01} with size 8.

(iii) Generation of the response variable. The coefficients βj and θjk are gener-

ated in two ways:
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Type I : the nonzero coefficients of both the main and the interaction terms

are i.i.d. as 2n−0.175 + |z|/10, where z ∼ N(0, 1).

Type II : the nonzero coefficients of both the main and the interaction terms are

i.i.d. from a uniform distribution over the intervals (−2
√

ln p/n,−
√

ln p/n)∪
(
√

ln p/n, 2
√

ln p/n).

The response variable is then generated as

y =
∑
j∈s01

βjXj +
∑

(j,k)∈s02

θjkXjXk + ε,

where ε is generated from N(0, σ2), with σ2 = 4−1Var(
∑

j∈s01 βjXj +
∑

(j,k)∈s02
θjkXjXk).

Each of the 24 combinations of the correlation structures of the covariates,

hierarchy structures, and types of coefficients are considered. Under each setting,

200 replicates of simulations are carried out, and the PDR and FDR are averaged

over the 200 replicates. Throughout the simulation studies, we fix the sample

size at n = 200, and the number of true features at p0 = 15, including both

the main-effect and the interaction features. We consider three numbers of total

covariates: p = 80 (< n), p = 200 (= n) and p = 1,000 (> n). For p = 80, the

methods are applied directly to the original simulated data. For p = 200, the

data are screened for the sequential methods using a marginal composite-feature

screening procedure; that is, the data are screened according to the marginal joint

effects of the triplets (Xj , Xk, XjXk). For p = 1,000, the data are screened for

the sequential methods using the SIS+DIS and the SIS+ISPC methods described

in Section 2.2.

Among the versions of the RAMP method, those with the MCP penalty

perform better overall than the versions with the LASSO penalty do. Hence, we

report only the results of the RAMP method with the MCP penalty. The two

screening methods, SIS+DIS and the SIS+ISPC, produce comparable results. In

general, the performance of SIS+ISPC is slightly better than that of SIS+DIS.

Hence, we report only the results when SIS+ISPC is used for p = 1,000. In

general, the comparison results are consistent in all the simulation settings. To

save space, we report only the results for p = 80 and 200 with Type-I coefficients,

and the results for p = 1,000 with Type-II coefficients. The results for p = 80, 200,

and 1,000 are reported in Tables 1–3, Tables 4–6 and Tables 7–9, respectively.

The findings in the case of p = 80 are discussed in detail below. (i) Com-

parison between SIGS and SIEP: SIGS has, on average, a slightly lower PDR,
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Table 1. The average PDR and FDR for main-effect and interaction features under
covariate correlation structure XS1, with Type-I coefficients and p = 80 (the numbers
in parentheses are standard errors).

Hierarchy
Structure Method MPDR MFDR IPDR IFDR

NH SIEP 0.822(0.270) 0.760(0.182) 0.732(0.323) 0.458(0.208)
SIGS 0.639(0.341) 0.645(0.184) 0.632(0.324) 0.377(0.274)

RAMP-wM 0.271(0.106) 0.404(0.247) 0.211(0.133) 0.748(0.160)
RAMP-sM 0.435(0.166) 0.633(0.135) 0.055(0.066) 0.848(0.203)

SH SIEP 0.997(0.040) 0.868(0.021) 0.996(0.053) 0.264(0.139)
SIGS 0.989(0.066) 0.779(0.124) 0.978(0.104) 0.113(0.142)

RAMP-wM 0.640(0.129) 0.212(0.081) 0.832(0.203) 0.155(0.206)
RAMP-sM 0.575(0.170) 0.388(0.141) 0.252(0.200) 0.638(0.269)

WH SIEP 1.000(0.000) 0.869(0.002) 1.000(0.000) 0.246(0.140)
SIGS 0.997(0.040) 0.803(0.078) 0.992(0.079) 0.092(0.122)

RAMP-wM 0.584(0.133) 0.221(0.067) 0.591(0.214) 0.412(0.218)
RAMP-sM 0.571(0.152) 0.376(0.122) 0.017(0.048) 0.973(0.083)

AH SIEP 1.000(0.000) 0.869(0.002) 1.000(0.000) 0.251(0.149)
SIGS 0.987(0.069) 0.791(0.112) 0.974(0.130) 0.130(0.164)

RAMP-wM 0.391(0.123) 0.321(0.104) 0.019(0.052) 0.979(0.057)
RAMP-sM 0.453(0.160) 0.448(0.142) 0.001(0.012) 0.942(0.231)

Table 2. The average PDR and FDR for main-effect and interaction features under
covariate correlation structure XS2, with Type-I coefficients and p = 80 (the numbers
in parentheses are standard errors).

Hierarchy
Structure Method MPDR MFDR IPDR IFDR

NH SIEP 0.999(0.014) 0.132(0.138) 0.986(0.055) 0.182(0.135)
SIGS 0.982(0.070) 0.015(0.049) 0.964(0.098) 0.134(0.117)

RAMP-wM 0.578(0.137) 0.048(0.121) 0.246(0.168) 0.273(0.288)
RAMP-sM 0.614(0.131) 0.214(0.201) 0.086(0.052) 0.404(0.367)

SH SIEP 1.000(0.000) 0.221(0.096) 1.000(0.000) 0.168(0.131)
SIGS 0.999(0.010) 0.144(0.042) 0.998(0.020) 0.170(0.126)

RAMP-wM 0.839(0.114) 0.156(0.041) 0.767(0.128) 0.036(0.083)
RAMP-sM 0.941(0.112) 0.156(0.073) 0.600(0.171) 0.048(0.149)

WH SIEP 1.000(0.000) 0.216(0.085) 1.000(0.000) 0.164(0.131)
SIGS 1.000(0.000) 0.139(0.037) 1.000(0.000) 0.150(0.114)

RAMP-wM 0.905(0.131) 0.152(0.066) 0.701(0.127) 0.060(0.101)
RAMP-sM 0.834(0.167) 0.203(0.091) 0.017(0.045) 0.578(0.473)

AH SIEP 1.000(0.000) 0.219(0.093) 1.000(0.000) 0.176(0.154)
SIGS 1.000(0.000) 0.140(0.037) 0.999(0.009) 0.118(0.109)

RAMP-wM 0.511(0.263) 0.290(0.168) 0.009(0.041) 0.219(0.404)
RAMP-sM 0.717(0.230) 0.227(0.109) 0.002(0.015) 0.084(0.272)
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Table 3. The average PDR and FDR for main-effect and interaction features under
covariate correlation structure XS3, with Type-I coefficients and p = 80 (the numbers
in parentheses are standard errors).

Hierarchy
Structure Method MPDR MFDR IPDR IFDR

NH SIEP 1.000(0.000) 0.637(0.054) 1.000(0.000) 0.245(0.157)
SIGS 1.000(0.000) 0.502(0.063) 1.000(0.000) 0.105(0.098)

RAMP-wM 0.477(0.212) 0.028(0.097) 0.283(0.129) 0.447(0.230)
RAMP-sM 0.565(0.213) 0.212(0.210) 0.104(0.087) 0.333(0.384)

SH SIEP 1.000(0.000) 0.658(0.037) 1.000(0.000) 0.302(0.183)
SIGS 1.000(0.000) 0.553(0.038) 1.000(0.000) 0.146(0.122)

RAMP-wM 0.819(0.112) 0.167(0.061) 0.774(0.135) 0.037(0.089)
RAMP-sM 0.911(0.117) 0.199(0.095) 0.597(0.177) 0.050(0.152)

WH SIEP 1.000(0.000) 0.660(0.049) 1.000(0.000) 0.322(0.219)
SIGS 1.000(0.000) 0.552(0.037) 1.000(0.000) 0.130(0.120)

RAMP-wM 0.881(0.107) 0.168(0.064) 0.709(0.131) 0.055(0.108)
RAMP-sM 0.804(0.172) 0.246(0.102) 0.018(0.048) 0.577(0.469)

AH SIEP 1.000(0.000) 0.663(0.043) 1.000(0.000) 0.322(0.210)
SIGS 1.000(0.000) 0.552(0.037) 1.000(0.000) 0.110(0.115)

RAMP-wM 0.526(0.255) 0.288(0.159) 0.023(0.064) 0.332(0.444)
RAMP-sM 0.711(0.230) 0.258(0.120) 0.002(0.015) 0.093(0.290)

Table 4. The average PDR and FDR for main-effect and interaction features under
covariate correlation structure XS1, with Type-I coefficients and p = 200 (the numbers
in parentheses are standard errors).

Hierarchy
Structure Method MPDR MFDR IPDR IFDR

NH SIEP 0.434(0.252) 0.504(0.230) 0.398(0.230) 0.569(0.187)
SIGS 0.549(0.316) 0.564(0.199) 0.522(0.317) 0.451(0.282)

RAMP-wM 0.231(0.080) 0.313(0.286) 0.205(0.117) 0.727(0.165)
RAMP-sM 0.327(0.149) 0.640(0.139) 0.036(0.054) 0.710(0.382)

SH SIEP 0.987(0.064) 0.863(0.078) 0.949(0.190) 0.421(0.292)
SIGS 0.983(0.053) 0.557(0.148) 0.868(0.179) 0.227(0.195)

RAMP-wM 0.667(0.140) 0.297(0.107) 0.607(0.205) 0.275(0.229)
RAMP-sM 0.681(0.184) 0.384(0.131) 0.365(0.219) 0.384(0.292)

WH SIEP 0.968(0.110) 0.846(0.106) 0.914(0.241) 0.480(0.273)
SIGS 0.899(0.152) 0.476(0.148) 0.678(0.282) 0.398(0.238)

RAMP-wM 0.614(0.177) 0.333(0.128) 0.437(0.244) 0.455(0.296)
RAMP-sM 0.585(0.188) 0.448(0.145) 0.011(0.038) 0.954(0.170)

AH SIEP 0.989(0.065) 0.865(0.078) 0.962(0.164) 0.396(0.277)
SIGS 0.735(0.176) 0.365(0.115) 0.324(0.201) 0.622(0.216)

RAMP-wM 0.486(0.153) 0.344(0.131) 0.019(0.045) 0.944(0.171)
RAMP-sM 0.539(0.171) 0.425(0.141) 0.000(0.000) 0.765(0.425)
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Table 5. The average PDR and FDR for main-effect and interaction features under
covariate correlation structure XS2, with Type-I coefficients and p = 200 (the numbers
in parentheses are standard errors).

Hierarchy
Structure Method MPDR MFDR IPDR IFDR

NH SIEP 0.981(0.071) 0.236(0.227) 0.950(0.128) 0.310(0.258)
SIGS 0.964(0.094) 0.063(0.099) 0.896(0.144) 0.180(0.137)

RAMP-wM 0.537(0.137) 0.024(0.087) 0.212(0.139) 0.194(0.273)
RAMP-sM 0.586(0.128) 0.194(0.205) 0.082(0.047) 0.333(0.365)

SH SIEP 0.999(0.020) 0.307(0.164) 0.995(0.071) 0.300(0.274)
SIGS 0.988(0.042) 0.165(0.062) 0.972(0.079) 0.141(0.136)

RAMP-wM 0.867(0.125) 0.151(0.044) 0.695(0.164) 0.105(0.152)
RAMP-sM 0.974(0.075) 0.141(0.047) 0.604(0.155) 0.029(0.104)

WH SIEP 1.000(0.000) 0.312(0.173) 1.000(0.000) 0.313(0.279)
SIGS 1.000(0.000) 0.160(0.054) 0.992(0.031) 0.147(0.121)

RAMP-wM 0.878(0.170) 0.157(0.071) 0.636(0.180) 0.099(0.150)
RAMP-sM 0.786(0.210) 0.222(0.104) 0.016(0.043) 0.414(0.473)

AH SIEP 0.999(0.010) 0.299(0.157) 0.995(0.071) 0.304(0.263)
SIGS 0.994(0.032) 0.154(0.056) 0.704(0.165) 0.275(0.167)

RAMP-wM 0.519(0.262) 0.275(0.173) 0.003(0.020) 0.123(0.324)
RAMP-sM 0.804(0.204) 0.203(0.099) 0.001(0.009) 0.040(0.196)

Table 6. The average PDR and FDR for main-effect and interaction features under
covariate correlation structure XS3, with Type-I coefficients and p = 200 (the numbers
in parentheses are standard errors).

Hierarchy
Structure Method MPDR MFDR IPDR IFDR

NH SIEP 1.000(0.000) 0.686(0.111) 1.000(0.000) 0.495(0.328)
SIGS 1.000(0.000) 0.515(0.081) 0.992(0.029) 0.113(0.103)

RAMP-wM 0.468(0.208) 0.013(0.062) 0.296(0.100) 0.382(0.226)
RAMP-sM 0.534(0.212) 0.231(0.213) 0.095(0.084) 0.257(0.355)

SH SIEP 1.000(0.000) 0.722(0.085) 1.000(0.000) 0.632(0.335)
SIGS 1.000(0.000) 0.549(0.040) 0.999(0.012) 0.140(0.117)

RAMP-wM 0.856(0.131) 0.165(0.059) 0.685(0.158) 0.096(0.156)
RAMP-sM 0.951(0.086) 0.176(0.077) 0.588(0.159) 0.027(0.089)

WH SIEP 1.000(0.000) 0.715(0.084) 1.000(0.000) 0.610(0.329)
SIGS 1.000(0.000) 0.530(0.066) 0.987(0.040) 0.120(0.119)

RAMP-wM 0.862(0.181) 0.178(0.084) 0.629(0.191) 0.087(0.134)
RAMP-sM 0.801(0.203) 0.251(0.110) 0.013(0.040) 0.374(0.474)

AH SIEP 1.000(0.000) 0.726(0.083) 1.000(0.000) 0.633(0.343)
SIGS 0.997(0.020) 0.309(0.104) 0.718(0.157) 0.249(0.165)

RAMP-wM 0.546(0.272) 0.272(0.175) 0.006(0.027) 0.142(0.343)
RAMP-sM 0.816(0.202) 0.235(0.095) 0.000(0.000) 0.060(0.238)
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Table 7. The average PDR and FDR for main-effect and interaction features under co-
variate correlation structure XS1, with Type-II coefficients and p = 1,000 (the numbers
in parentheses are standard errors).

Structure Method MPDR MFDR IPDR IFDR
NH SIEP 0.702(0.296) 0.386(0.346) 0.180(0.162) 0.457(0.351)

SIGS 0.640(0.300) 0.278(0.302) 0.420(0.316) 0.456(0.273)
RAMP-wM 0.056(0.096) 0.008(0.079) 0.018(0.043) 0.426(0.470)
RAMP-sM 0.179(0.211) 0.164(0.290) 0.007(0.028) 0.417(0.483)

SH SIEP 0.860(0.205) 0.385(0.193) 0.694(0.342) 0.426(0.264)
SIGS 0.936(0.102) 0.270(0.177) 0.861(0.220) 0.307(0.195)

RAMP-wM 0.303(0.199) 0.151(0.261) 0.122(0.152) 0.237(0.343)
RAMP-sM 0.756(0.230) 0.277(0.177) 0.440(0.257) 0.163(0.236)

WH SIEP 0.702(0.234) 0.422(0.175) 0.408(0.249) 0.571(0.246)
SIGS 0.714(0.224) 0.308(0.161) 0.451(0.240) 0.567(0.207)

RAMP-wM 0.225(0.184) 0.183(0.308) 0.081(0.130) 0.184(0.323)
RAMP-sM 0.281(0.209) 0.248(0.323) 0.004(0.023) 0.087(0.279)

AH SIEP 0.589(0.216) 0.459(0.192) 0.295(0.186) 0.626(0.225)
SIGS 0.502(0.219) 0.410(0.204) 0.244(0.169) 0.701(0.210)

RAMP-wM 0.191(0.142) 0.206(0.314) 0.001(0.009) 0.035(0.184)
RAMP-sM 0.251(0.181) 0.259(0.309) 0.000(0.000) 0.000(0.000)

Table 8. The average PDR and FDR for main-effect and interaction features under co-
variate correlation structure XS2, with Type-II coefficients and p = 1,000 (the numbers
in parentheses are standard errors).

Structure Method MPDR MFDR IPDR IFDR
NH SIEP 0.657(0.239) 0.263(0.258) 0.533(0.177) 0.356(0.234)

SIGS 0.608(0.246) 0.240(0.211) 0.710(0.272) 0.269(0.184)
RAMP-wM 0.038(0.088) 0.030(0.165) 0.031(0.068) 0.083(0.222)
RAMP-sM 0.058(0.118) 0.074(0.230) 0.001(0.010) 0.098(0.295)

SH SIEP 0.976(0.105) 0.286(0.142) 0.964(0.145) 0.262(0.236)
SIGS 0.990(0.037) 0.173(0.083) 0.986(0.056) 0.295(0.152)

RAMP-wM 0.454(0.228) 0.079(0.132) 0.323(0.228) 0.191(0.201)
RAMP-sM 0.919(0.151) 0.152(0.086) 0.649(0.183) 0.020(0.075)

WH SIEP 0.926(0.162) 0.335(0.182) 0.582(0.218) 0.507(0.253)
SIGS 0.927(0.142) 0.199(0.102) 0.588(0.206) 0.441(0.190)

RAMP-wM 0.285(0.230) 0.098(0.213) 0.140(0.176) 0.085(0.171)
RAMP-sM 0.374(0.260) 0.156(0.231) 0.001(0.012) 0.012(0.106)

AH SIEP 0.899(0.143) 0.337(0.176) 0.510(0.176) 0.458(0.264)
SIGS 0.825(0.199) 0.218(0.128) 0.427(0.215) 0.457(0.262)

RAMP-wM 0.177(0.180) 0.099(0.244) 0.000(0.000) 0.010(0.100)
RAMP-sM 0.364(0.271) 0.130(0.205) 0.000(0.000) 0.000(0.000)
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Table 9. The average PDR and FDR for main-effect and interaction features under co-
variate correlation structure XS3, with Type-II coefficients and p = 1,000 (the numbers
in parentheses are standard errors).

Structure Method MPDR MFDR IPDR IFDR
NH SIEP 0.795(0.166) 0.392(0.258) 0.605(0.120) 0.406(0.250)

SIGS 0.773(0.189) 0.294(0.227) 0.824(0.241) 0.284(0.191)
RAMP-wM 0.162(0.160) 0.023(0.129) 0.045(0.074) 0.079(0.211)
RAMP-sM 0.186(0.180) 0.033(0.147) 0.000(0.000) 0.010(0.100)

SH SIEP 0.978(0.100) 0.461(0.176) 0.968(0.136) 0.347(0.297)
SIGS 0.991(0.035) 0.351(0.114) 0.985(0.060) 0.303(0.148)

RAMP-wM 0.461(0.232) 0.086(0.133) 0.321(0.230) 0.192(0.202)
RAMP-sM 0.919(0.151) 0.156(0.084) 0.643(0.185) 0.019(0.074)

WH SIEP 0.924(0.151) 0.371(0.179) 0.589(0.219) 0.542(0.247)
SIGS 0.934(0.132) 0.212(0.104) 0.601(0.214) 0.439(0.189)

RAMP-wM 0.281(0.221) 0.117(0.241) 0.143(0.192) 0.100(0.199)
RAMP-sM 0.397(0.262) 0.174(0.232) 0.002(0.018) 0.018(0.127)

AH SIEP 0.899(0.146) 0.341(0.156) 0.507(0.182) 0.452(0.256)
SIGS 0.841(0.196) 0.226(0.124) 0.442(0.213) 0.458(0.251)

RAMP-wM 0.175(0.178) 0.110(0.257) 0.000(0.000) 0.005(0.071)
RAMP-sM 0.364(0.272) 0.137(0.207) 0.000(0.000) 0.000(0.000)

but a substantially lower FDR than SIEP. The average PDRs of SIGS and

SIEP are 0.964 and 0.981, respectively, and the average FDRs of SIGS and

SIEP are 0.308 and 0.412, respectively. Considering the combined measure

DR = PDR + (1 − FDR), the DR for SIGS is 1.659, which is better than the

value of 1.569 for SIEP. (ii) Comparison between SIGS and RAMP methods: for

the selection of interaction features, SIGS has a significantly higher PDR than

those of the RAMP methods; however, SIGS also has a lower or comparable FDR

than those of the RAMP methods; see Tables 1–3. For the selection of main-

effect features, under covariate correlation structure XS2, SIGS universally has

a higher PDR and a lower FDR than those of the RAMP methods. Under the

other two structures, that is, XS1 and XS3, SIGS has a higher PDR, but also a

higher FDR; in terms of the combined measure DR, they are comparable. The

following table gives the PDR, FDR, and DR of the three methods for the se-

lection of main-effect features, averaged over these two settings: (iii) Under the

anti-hierarchy structure, AH, the RAMP methods cannot select the interaction

features at all. The average PDR and FDR over the three covariate correlation

structures are 0.009 and 0.442 , respectively. This could have been expected. By

the nature of the RAMP methods, the premise for an interaction feature to be

selected is that one or both of its parent main-effect features are selected first.
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Table 10. Average PDR, FDR and DR of the RAMP and SIGS methods over settings
XS1 and XS3.

Method PDR FDR DR
RAMP-wM 0.574 0.226 1.348
RAMP-sM 0.628 0.345 1.283

SIGS 0.950 0.650 1.304

Table 11. Average computation time per simulation replicate (in second).

p SIGS RAMP-wM RAMP-sM
80 97 7 5

200 43 11 5
1,000 866 44 5

However, in the anti-hierarchy structure, none of the parent main-effect features

of the interaction features are present in the true model.

The findings in the case of p = 200 and p = 1,000 are similar in nature to the

case of p = 80. We highlight a few points in the case of p = 1,000. Compared with

SIEP, the SIGS has comparable PDR, but has almost universally lower FDR for

the detection of main-effect features. Except under the anti-hierarchy settings,

SIGS has both a higher PDR and a lower FDR for the detection of interaction

features. Compared with the RAMP methods, SIGS has a much higher PDR

and a higher FDR. In terms of DR, SIGS outperforms the RAMP methods,

almost universally. The performance of the RAMP for the detection of interaction

features is generally poor, especially, under the anti-hierarchy settings, where the

RAMP methods can hardly detect the interaction features.

However, compared with SIGS, the RAMP methods have an advantage in

terms of computation time. The average computation times in seconds per sim-

ulation replicate, with p = 80, 200, and 1,000, are given in the following table.

For SIGS, the computation time includes the screening time.

The computation time required for the RAMP methods is much less than

that required for SIGS. In practical problems, if there is a time constraint or if

the user wishes to sacrifice selection accuracy for computational efficiency, the

RAMP algorithms can still be good choices.

4. Real Examples

In this section, we applied our method to a supermarket data set (Wang

(2009)). This data set collects daily sales information for a major supermarket
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Table 12. Average number of main-effect and interaction terms selected by the four
methods and the corresponding R2 in the analysis of the real example.

Method MSize ISize R2

SIEP 26(3) 4(1) 89.95(2.69)
SIGS 17(2) 4(2) 88.55(2.84)

RAMP-wM 15(2) 2(1) 87.77(3.37)
RAMP-sM 16(2) 2(1) 88.08(2.94)

located in northern China. The data consists of observations on the number of

customers per day and the daily sales volumes of 6,398 products for 464 days.

The supermarket manager is interested in the relationship between the number

of customers and the sales volumes of certain products. This data set has been

studied in Wang (2009), Hao and Zhang (2014), and Hao, Feng and Zhang (2018).

Wang (2009) considered predictions based on main-effect models using different

methods. Hao and Zhang (2014) and Hao, Feng and Zhang (2018) analyzed

the data based on interaction models, and compared the performance of the

interaction models and the main-effect models. They found that the interaction

models improve the main-effect models substantially in terms of prediction errors.

In our analysis, we focus on the interaction models and apply the four meth-

ods in the simulation study to the data. We first screen the 6,398 products using

the SIS approach (Fan and Li (2001)), and retain 200 products. Then, following

the literature, we split the data randomly into a training set with size n1 = 400,

and a testing set with size n2 = 64. The model is selected and estimated using the

training data. The performance is evaluated on the testing data using the out-

of-sample R2, defined as 100 ∗ (1− ‖Ytest −Ztestβ̂‖22/‖Ytest − Ȳtest1‖22), where

β̂ is estimated based on the training data. The average sizes of the main-effect

and interaction-effect terms in the selected model, together with the averaged

R2, are reported below.

The results above are consistent with those of the simulation studies. In the

simulation studies, we found that SIGS outperforms the RAMP methods, and

that SIEP has a slightly higher PDR than that of SIGS, which can potentially

lead to a slightly better prediction. In the table above, the R2 of SIEP is slightly

higher than that of SIGS, and, in turn, the R2 of SIGS is higher than those of the

two RAMP methods. At the same time, because SIEP potentially has a much

higher FDR than SIGS, the model selected by SIEP should have a substantially

larger size than that selected by SIGS. It can be seen from the table above that

the model size of SIEP is about 1.5 times of that of SIGS. The larger R2 of SIEP

compared with SIGS is probably because the SIEP has selected more relevant
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products, and its selected irrelevant products do not really affect the prediction,

owing to their small estimated effects.

One might doubt the advantage of SIGS over the RAMP methods because,

while SIGS has a larger R2, it also has a larger model size. However larger

models can stem from different causes. We consider three situations: (i) the

additional features are all relevant; (ii) the additional features are all irrelevant;

and (iii) some of the additional features are relevant, and some are irrelevant. In

the first situation, we expect an increase in R2 which should be proportional to

the increase of the model size. In this situation, the larger model size implies a

higher PDR. In the second situation, the R2 will not necessarily be larger. Thus,

a larger model size will imply a higher FDR. In the third situation, we can also

expect an increase of R2, but the increase cannot be proportional to the increase

in the model size. The increase of R2 and the increase of the model size from

RAMP-wM to SIGS have a ratio 0.68/4 ≈ 0.17. Similarly, those from RAMP-sM

to SIGS have a ratio 0.47/3 ≈ 0.16. The increase of R2 is proportional to the

increase of the model size. Therefore, we assert that the SIGS has a higher R2

and a higher PDR than those of the RAMP methods.

Supplementary Material

The online Supplementary Material contains proofs for Lemma 1 and Theo-

rem 1 in Section 2.3.
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