Supplementary Material for Efficient Experimental Plans for Second-

Order Event-Related Functional Magnetic Resonance Imaging

Yuan-Lung Lin and Frederick Kin Hing Phoa

Institute of Statistical Science, Academia Sinica, Taiwan, R.O.C.

Proofs of Theorems and Lemmas

0.1 Proof of Theorem 1

Let G be a directed graph whose vertex set is a collection of all s-ary (t-1)-tuples $(d_1, d_2, \ldots, d_{t-1})$, so there are totally s^{t-1} vertices. In addition, there are $\lambda^{d_1 d_2 \ldots d_{t-1} d'_{t-1}}$ directed edges from $(d_1, d_2, \ldots, d_{t-1})$ to $(d'_1, d'_2, \ldots, d'_{t-1})$ if $d'_i = d_{i+1}$ for all $i = 1, 2, \ldots, t-2$. By definition, G is a t-dimensional De Bruijn frequency graph based on Λ .

It is well-known in graph theory that a directed graph has an Eulerian circuit if it is connected and each vertex whose in-degree is equal to its out-degree. Now, we claim that each vertex in G has equal in-degree and out-degree, and G is connected. For each $x \in Z_s$, $\lambda^{a_1 \dots a_{t-1} x}$ represents the number of directed edges from the vertex $(a_1, a_2, \dots, a_{t-1})$ to vertex (a_2, \dots, a_{t-1}, x) in G. Therefore, the total number of edges incident to $(a_1, a_2, \dots, a_{t-1})$ is its indegree $\sum_{x=0}^{s-1} \lambda^{a_1 \dots a_{t-1} x}$. Similarly, the out-degree of $(a_1, a_2, \dots, a_{t-1})$ is $\sum_{x=0}^{s-1} \lambda^{xa_1 \dots a_{t-1}}$. Obviously, each vertex in G has equal in-degree and out-degree because of $\sum_{x=0}^{s-1} \lambda^{a_1 \dots a_{t-1} x} = \sum_{x=0}^{s-1} \lambda^{xa_1 \dots a_{t-1}}$ for all $a_i \in Z_s$.

By definition, a directed graph is connected if any two vertices are connected by at least

one directed path. Let $\boldsymbol{x} = (x_1 x_2 \dots x_{t-1})$ and $\boldsymbol{y} = (y_1 y_2 \dots y_{t-1})$ be any two vertices in G. According to the assumption that $\lambda^{a_1 \dots a_t} \geq 1$ for all $a_i \in Z_s$, it guarantees that the existence of any t-tuple subsequence of the sequence $x_1 x_2 \dots x_{t-1} y_1 y_2 \dots y_{t-1}$. It implies that there exists at least one directed path from \boldsymbol{x} to \boldsymbol{y} , whose edges are $x_1 x_2 \dots x_{t-1} y_1, x_2 \dots x_{t-1} y_1 y_2, \dots$, and $x_{t-1} y_1 y_2 \dots y_{t-1}$. Thus, G is connected, and it has an Eulerian circuit.

Let $e = e_1 e_2 \cdots e_n$ be an Eulerian circuit in G, where $n = \sum_{a_i \in Z_s} \lambda^{a_1 \dots a_t}$ is the total number of edges in G. Let $A_{t \times n}$ be the first t rows of the circulant matrix with the first row $e_1 e_2 \dots e_n$. Then each column is a t-tuple subsequence of e. Since there is a one-to-one correspondence between n columns and edges, by definition, $A_{t \times n}$ is a CAOA(n, t, s, t, b).

0.2 Proof of Proposition 1

Let $\mathscr{S} = (\mathscr{S}^{\alpha,\beta})_{2\times 2}$ be the difference matrix of V. By definition, $\lambda_{r_1,r_2}^{\alpha,\beta} = \#\{g \in V_{\alpha} | \{r_1, r_2\} \subseteq S_g^{\alpha,\beta}\}.$

- (i) Consider the block sub-matrix (𝒢^{α,β}|𝒢^{β,β}). For each x ∈ V_β, there exists exactly one element g such that g − x ≡ r₁ (mod n), because 𝒢 is a Latin square. Assume that λ^{β,β}_{r₂-r₁} ≠ 0, there exists a pair x, y ∈ V_β such that x − y ≡ r₂ − r₁ (mod n). Then r₂ − r₁ ≡ x − y ≡ (g − r₁) − y (mod n), so g − y ≡ r₂ (mod n). Thus, for each (x, y)-pair, there is a unique g ∈ V_α (or V_β) such that {r₁, r₂} ⊆ S^{α,β}_g (or S^{β,β}_{r₁, r₂ + λ^{β,β}_{r₁, r₂ = λ^{β,β}_{r₁, r₂} = 0 via contradiction. Thus λ^{α,β}_{r₁, r₂ = λ^{β,β}_{(r₂-r₁).}}}}
- (ii) Consider the block sub-matrix (𝒢^{α,α}|𝒢^{α,β}). For each pair (r₁, r₂), there are λ^{α,β}_{r₁,r₂} rows having neither r₁ nor r₂ in 𝒢^{α,α}. It is equal to the total number of rows minus the number of rows contains r₁ or r₂. By inclusion-and-exclusion principle, it follows that λ^{α,β}_{r₁,r₂} = |V_α| (λ^{α,α}_{r₁} + λ^{α,α}_{r₂} λ^{α,α}_{r₁,r₂}).

Now, if $|V_{\alpha}| = |V_{\beta}| = n/2$ and $\lambda_{r_1}^{\alpha,\alpha} = n/4$ for $1 \le r_1 \le k$, it can be verified that $\lambda_{r_1,r_2}^{\alpha,\beta} = \lambda_{r_1,r_2}^{\alpha,\alpha}$ and $\lambda_{r_1,r_2}^{\alpha,\alpha} + \lambda_{r_1,r_2}^{\beta,\beta} = n/4$ for $1 \le r_1 < r_2 \le k$ by the previous two propositions.

0.3 Proof of Lemma 1

Let $\mathbf{A} = (a_{i,j})_{n \times k}$. Assume that $\delta_{r_1, r_2, \cdots, r_m}^{c_0, c_1, \cdots, c_m} = \gamma \neq 0$, then there are γ column vectors of $\mathbf{A}_{g_0, g_1, \cdots, g_m}$ equal $(c_0, c_1, \cdots, c_m)^T$. For each column vector corresponding to $(c_0, c_1, \cdots, c_m)^T$, says the ω th column, we have $a_{g_i, \omega} = c_i$ for $i = 0, 1, \cdots, m$. By Definition 3, it follows that $\omega \in V_{c_i} + (g_i - 1)$. So we have $\omega - (g_i - 1) \in V_{c_i}$ for each i. Let $r_i = g_i - g_0$ for $i = 1, 2, \cdots, m$. For each $i \neq 0$, the difference of $\omega - (g_0 - 1) \in V_{c_0}$ and $\omega - (g_i - 1) \in V_{c_i}$ equals $[\omega - (g_0 - 1)] - [\omega - (g_i - 1)] = g_i - g_0 = r_i$. This implies that $\omega - (g_0 - 1) \in \{g \in V_{c_0} | r_i \in \mathbf{S}_{g_0}^{c_0, c_i}$ for $i = 1, 2, \cdots, m\}$. By the definition of $\delta_{r_1, r_2, \cdots, r_m}^{c_0, c_1, \cdots, c_m}$, the total number of distinct ω is equal to γ . In a similar manner, it can be shown that the result also holds for $\delta_{r_1, r_2, \cdots, r_m}^{c_0, c_1, \cdots, c_m} = 0$ by contradiction. This complies the proof.

0.4 Proof of Lemma 2

Since V is a $(n, k, 2; \Phi_1, \Phi_2)$ -HCDS, V can be represented as $\{V_0, V_1\}$ which is a partition of Z_n . In addition, its difference matrix \mathscr{S} is a block matrix consists of $\mathscr{S}^{\alpha,\beta}$ for $\alpha,\beta \in$ $\{0,1\}$. Now we claim that each element in δ_{r_1,r_2} can be obtained by $\lambda_{r_1,r_2}^{\alpha,\beta}$. By definition, $\delta_{r_1,r_2}^{\alpha,\beta,\beta} = \#\{g \in V_\alpha | r_1, r_2 \in \mathbf{S}_g^{\alpha,\beta}\}$, which is equal to the second-order difference $\lambda_{r_1,r_2}^{\alpha,\beta}$, for all $\alpha,\beta \in \{0,1\}$. On the other hand, $\delta_{r_1,r_2}^{0,0,1} = \#\{g \in V_\alpha | r_1 \in \mathbf{S}_g^{0,0}$ and $r_2 \in \mathbf{S}_g^{0,1}\}$ which is equal to the number of rows in $\mathscr{S}^{0,0}$ that contains r_1 but not r_2 . Clearly, there are totally $\lambda_{r_1}^{0,0} - \lambda_{r_1,r_2}^{0,0}$ rows in $\mathscr{S}^{0,0}$ that contains r_1 without r_2 . Thus we obtain $\delta_{r_1,r_2}^{0,0,1} = \lambda_{r_1}^{0,0} - \lambda_{r_1,r_2}^{0,0}$. Similarly, we have $\delta_{r_1,r_2}^{0,1,0} = \lambda_{r_2}^{0,0} - \lambda_{r_1,r_2}^{0,0,1}, \delta_{r_1,r_2}^{1,0,1} = \lambda_{r_1}^{1,1} - \lambda_{r_1,r_2}^{1,1} - \lambda_{r_1,r_2}^{1,1}$.

0.5 Proof of Theorem 2

Let A be the incidence matrix of V, which is also an $(n, k, 2, \Phi_1)$ -CDS. According to the Proposition 3.5 and the discussion of Section 4 in (Lin, Phoa, and Kao (2017b)), A is a CAOA(n, k, 2, 2, 1) if and only if

$$(\lambda_r^{0,0}, \lambda_r^{0,1}, \lambda_r^{1,0}, \lambda_r^{1,1}) = \begin{cases} (\mu_0, \mu_0, \mu_0, \mu_0) & \text{if } n \equiv 0 \pmod{4}, \\ (\mu_1, \mu_1, \mu_1, \mu_2) & \text{if } n \equiv 1 \pmod{4}, \\ (\mu_1, \mu_2, \mu_2, \mu_2) & \text{if } n \equiv 3 \pmod{4}, \\ (\mu_1, \mu_2, \mu_2, \mu_1) \text{ or } (\mu_2, \mu_1, \mu_1, \mu_2) & \text{if } n \equiv 2 \pmod{4}, \end{cases}$$

where $\mu_0 = n/4$, $\mu_1 = \lfloor n/4 \rfloor$, and $\mu_2 = \lceil n/4 \rceil$. The above conditions describe the pattern of Φ_1 .

Now we discuss the pattern of Φ_2 . By Lemmas 1 and 2, A is a uniform CAOA(n, k, 2, 3, 1)if and only if there exists a matrix δ such that $B(\delta) = 1$ and $\delta_{r_1, r_2} = \delta$ for all $1 \leq r_1 < r_2 \leq k - 1$. Therefore, $max(\delta) - min(\delta) \leq 1$, where $max(\delta)$ and $min(\delta)$ are the maximal and minimal entries in δ . Another natural condition is that the sum of the frequency of all level-combination should be equal to the run size n. Thus, the conditions $\delta_{r_1, r_2}^{0,0,0} + \cdots + \delta_{r_1, r_2}^{1,1,1} = n$ and $max(\delta) - min(\delta) \leq 1$ hold if and only if $min(\delta) = m$ and $m \leq max(\delta) \leq m + 1$.

Let n = 8m + l where $l \in \{0, 1, ..., 7\}$. When l = 1, we have $n \equiv 1 \pmod{4}$, this implies that $\lambda_r^{0,0} = \mu_1 = \lfloor n/4 \rfloor$. According to above discussion and Lemma 2, $\delta_{r_1,r_2}^{0,0,0} = \lambda_{r_1,r_2}^{0,0}$ which is equal to either m + 1 or m. By Proposition 1, if $\lambda_{r_1,r_2}^{0,0} = m + 1 = \lceil n/8 \rceil$, then $\delta_{r_1,r_2}^{1,0,0} = \lambda_{r_1,r_2}^{1,0} = \lambda_{r_2-r_1}^{0,0} - \lambda_{r_1,r_2}^{0,0} = m - 1$ for $1 \leq r_1 < r_2 \leq k - 1$. It contradicts to the assumption that $min(\delta) = m$. On the other hand, if $\lambda_{r_1,r_2}^{0,0} = m = \lfloor n/8 \rfloor$, then $\delta_{r_1,r_2}^{0,0,1} = \cdots = \delta_{r_1,r_2}^{1,1,0} = m$ and $\delta_{r_1,r_2}^{1,1,1} = m + 1$. It means that $B(\delta_{r_1,r_2}) = 1$, so the entries in δ are all m except the last entry equals m + 1. Following the above discussion, we summarize all cases that satisfy the conditions as shown below.

,	\$0,0,0	\$0,0,1	\$0,1,0	\$0,1,1	\$1,0,0	£1,0,1	£1,1,0	1,1,1 _x
l	0 ' '	0 / /	0 / /	0 / /	0 / /	0 / /	0 / /	0 / /
0	m	m	m	m	m	m	m	m
1	m	m	m	m	m	m	m	m + 1
2	m + 1	m	m	m	m	m	m	m + 1
3	m	m	m + 1	m	m	m + 1	m + 1	m
4	m	m + 1	m + 1	m	m + 1	m	m	m + 1
4	m + 1	m	m	m + 1	m	m + 1	m + 1	m
5	m + 1	m	m	m + 1	m	m + 1	m + 1	m + 1
6	m	m + 1	m + 1	m + 1	m + 1	m + 1	m + 1	m
7	m	m + 1	m + 1	m + 1	m + 1	m + 1	m + 1	m + 1

Efficient Designs for 2nd Order ER-fMRI

There are two patterns of the case l = 4, but they are equivalent by exchanging the sets V_0 and V_1 . It is obvious that the bandwidth is zero when l = 0, which implies that A is a uniform CAOA(n, k, 2, 3, 0). This completes the proof.

0.6 Proof of Theorem 3

Following the discussion preceding Theorem 3, we firstly show the existence of a $(n/2, n/4 - 1; \lambda_1, \dots, \lambda_{n/2-1})$ GDS, say D, where all λ s are equal to n/8 - 1 except $\lambda_{n/4} = 0$. The required GDS has a special pattern that all differences appear equally often except one, which is related to a tough issue in combinatorial design, called *cyclic relative difference sets* (Elliott and Butson (1966)). According to the Result 1 in the literature, Pott, Reuschling, and Schmidt (1997) proved the existence of the specific cyclic relative difference sets when its order n is a prime power. Replacing the parameters n and u in the literate by n/4 - 1 and 2 respectively, the resulted cyclic relative difference set is a GDS that all λ s are equal to n/8 - 1 except $\lambda_{n/4} = 0$. Therefore, if n/4 - 1 is a prime power, then there exists a $(n/2, n/4 - 1; \lambda_1, \dots, \lambda_{n/2-1})$ GDS.

Let $V_0 = D \cup (D + n/2) \cup \{g, g + n/4\}$ where $g, g + n/4 \in D^c$. Now we claim that V_0 is a $(n, n/2; \lambda_1, \dots, \lambda_{n-1})$ GDS where all λ s are equal to n/4 except $\lambda_{n/4} = \lambda_{3n/4} = 1$ and $\lambda_{n/2} = n/2 - 2$. Let $D' = D \cup (D + n/2)$. By the Lemma 4.5 in (Lin, Phoa, and Kao (2017b)), D' is a $(n, n/2 - 2; \lambda_1, \dots, \lambda_{n-1})$ GDS where all λ s are equal to n/4 - 2 except $\lambda_{n/4} = \lambda_{3n/4} = 0$ and $\lambda_{n/2} = n/2 - 2$.

Recall that there exists $g, g' \in D^c$ such that g' - g = n/4. It can be confirmed by algebra that (i) the elements in g - D' and (g + n/4) - D' are all distinct respectively, (ii) $(g - D') \cap ((g + n/4) - D') = \emptyset$, and (iii) $n/4, n/2, 3n/4 \notin (g - D') \cup ((g + n/4) - D')$.

By (i) and (ii), we have total exactly n-4 distinct differences from $(g-D')\cup((g+n/4)-D')$. By (iii), all differences appear once except n/4, n/2, and 3n/4 when we calculate the differences from $(g - D') \cup ((g + n/4) - D')$. Similarly, all differences appear once except n/4, n/2, and 3n/4 if the differences are from $(D' - g) \cup (D' - (g + n/4))$. In addition, the differences from $\{g, g + n/4\}$ are n/4 and 3n/4. Hence, $D' \cup \{g, g + n/4\} = V_0$ is a $(n, n/2; \lambda_1, \dots, \lambda_{n-1})$ GDS where all λ 's equal (n/4 - 2) + 2 = n/4 except $\lambda_{n/4} = \lambda_{3n/4} = 1$ and $\lambda_{n/2} = n/2 - 2$. This guarantees that the condition $\lambda_r^{0,0} = n/4$ holds for $r = 1, 2, \dots, n/4 - 1$.

Next we claim that $\lambda_{r_1,r_2}^{0,0} = n/8$ for $1 \le r_1 < r_2 \le n/4 - 1$. Here, we firstly prove that $\lambda_{r_1,r_2}^{0,0} = \lambda_{r_1,r_2}^{1,1}$ for $1 \le r_1 < r_2 \le n/4 - 1$. Define $T_{r_1,r_2}^i = \{(x,y,z)|$ for all $x, y, z \in V_i$ such that $x - y \equiv r_1 \pmod{n}$ and $x - z \equiv r_2 \pmod{n}$ for i = 0, 1, where $V_0 = D \cup (D + n/2) \cup \{g, g + n/4\}$ and $V_1 = (D + n/4) \cup (D + 3n/4) \cup \{g + n/2, g + 3n/4\}$. Trivially, $|T_{r_1,r_2}^i| = \lambda_{r_1,r_2}^{i,i}$. Let u' be the element $u + n/4 \in (S + n/4)$ where $u \in S$. We show that there is a one-to-one correspondence between the triplets in T_{r_1,r_2}^0 and T_{r_1,r_2}^1 , which implies that $\lambda_{r_1,r_2}^{0,0} = |T_{r_1,r_2}^0| = |T_{r_1,r_2}^1| = \lambda_{r_1,r_2}^{1,1}$. Without loss of generality, we assume that $\lambda_{r_1,r_2}^{0,0} \neq 0$. It implies that there exists $x, y, z \in V_0$ such that $x - y \equiv r_1 \pmod{n}$ and $x - z \equiv r_2 \pmod{n}$.

- (i) If x, y, z ∈ D' ⊂ V₀, then there exists x', y', z' ∈ (D' + n/4) ⊂ V₁ such that x' y' = (x+n/4) (y+n/4) = x y ≡ r₁ (mod n) and x' z' ≡ r₂ (mod n). Therefore, there is a one-to-one correspondence between the triplets (x, y, z) ∈ T⁰_{r1,r2} and (x', y', z') ∈ T¹_{r1,r2}.
- (ii) If one component in $(x, y, z) \in T^0_{r_1, r_2}$ is not in D', then it must be in $\{g, g+n/4\}$. Without

loss of generality, we assume that $x \in \{g, g + n/4\}$. If x = g and $y, z \in D'$, then there exists $x' = g + 3n/4 \in V_1$ and $y', z' \in (D' + 3n/4) \subset V_1$ such that $x' - y' = (g + 3n/4) - (y + 3n/4) = g - y \equiv r_1 \pmod{n}$ and $x' - z' = (g + 3n/4) - (z + 3n/4) = g - y \equiv r_2 \pmod{n}$. If x = g + n/4 and $y, z \in D'$, then we have $x - y = (g + n/4) - y \equiv r_1 \pmod{n}$ and $x - z = (g + n/4) - z \equiv r_2 \pmod{n}$. Again, there exists $x' = g + n/2 \in V_1$ and $y', z' \in (D' + n/4)$ such that $x' - y' = (g + n/2) - (y + n/4) = (g + n/4) - y \equiv r_1 \pmod{n}$ and $x' - z' = (g + n/2) - (z + n/4) = (g + n/4) - z \equiv r_2 \pmod{n}$. So there is a one-to-one correspondence between the triplets $(x, y, z) \in T_{r_1, r_2}^0$ and $(x', y', z') \in T_{r_1, r_2}^1$.

(iii) If only one component in (x, y, z) is in D', then it can be shown that either one of {r₁, r₂} is equal to |n/4| or r₂ - r₁ = |n/4|. In this case, the equality λ^{0,0}_{r₁,r₂} = λ^{1,1}_{r₁,r₂} does not always hold.

According to the above summary, we prove that $\lambda_{r_1,r_2}^{0,0} = |T_{r_1,r_2}^0| = |T_{r_1,r_2}^1| = \lambda_{r_1,r_2}^{1,1}$ when $r_1, r_2, r_2 - r_1 \neq n/4, 3n/4$. By Proposition 1 (i), $\lambda_{r_1,r_2}^{0,0} = n/8$ because of $\lambda_{r_1,r_2}^{0,0} = \lambda_{r_1,r_2}^{1,1}$ for $1 \leq r_1 < r_2 \leq n/4 - 1$ and $1 \leq r \leq n/4 - 1$. By Proposition 1 (ii), $\lambda_{r_1,r_2}^{\alpha,\beta} = n/2 - (n/4 + n/4 - \lambda_{r_1,r_2}^{\alpha,\alpha}) = \lambda_{r_1,r_2}^{\alpha,\alpha} = n/8$ for $\alpha, \beta \in \{0,1\}$ and $1 \leq r_1 < r_2 \leq n/4 - 1$.

Let $\Phi_1 = (n/4)J_2$, $\Phi_2 = (n/8)J_2$, $V = \{V_0, V_1\}$ is an $(n, n/4, 2; \Phi_1, \Phi_2)$ -HCDS. By Theorem 2, the incidence matrix of V is a uniform CAOA(n, n/4, 2, 3, 0).

Tables for Generating Vectors

According to the Corollary 1, we list the generating vectors of $CAOA(s^k, k, s, t, 0)$ when $8 \le s^k \le 1000$ and $2 \le s \le 10$. All the designs in Table 1 are constructed via De Bruijn frequency graphs. In addition, Table 2 shows the generating vectors of CAOA(n, k, 2, 3, 0), which are constructed by Theorem 3, when n/4 - 1 is a prime power and $8 \le n \le 392$.

n	s	k	Generating Vector
8	2	3	00011101
16	2	4	0000111101011001
32	2	5	00000111110101101110010100110001
64	2	6	00000011111101010111011110010010110011000111000101
128	2	7	00000001111111010101101011110110111011
256	2	8	$\begin{array}{c} 000000001111111101010101110101101101101$

Table 1: $CAOA(s^k, k, s, t, 0)$ for $8 \le s^k \le 1000$ and $2 \le s \le 10$, where $2 \le t \le k$.

Bibliography

- Lin Y.-L., Phoa, F. K. H., and Kao, M.-H. (2017b). Optimal design of fMRI experiments using circulant (almost-)orthogonal arrays. *The Annals of Statistics*, 45(6), 2483–2510.
- Elliott, J. and Butson, A. et al. (1966). Relative difference sets. Illinois Journal of Mathematics 10(3), 517–531.

Pott, A., Reuschling, D., and Schmidt, B. (1997). A multiplier theorem for projections of affine difference sets. *Journal of statistical planning and inference* 62(1), 63–67.

BIBLIOGRAPHY

n	s	k	Generating Vector
512	2	9	$\begin{array}{c} 0000000001111111101010101010101111010110110110111010$
9	3	2	200102112
27	3	3	000111222022121021101201002
81	3	4	00001111222202021202221212200220122102211210021012110211101011201020
	5	4	1100120010002
243	3	5	000001111122222020220212202212022221212212
729	3	6	$\begin{array}{c} 00000011111122222002021202022021212021220220$
16	4	2	3001020311213223
64	4	3	0001112223330331332320321322022123023121021131031101201301002003
256	4	4	$\begin{array}{c} 00001111222233330303130323033313132313332323300330133023310331133123\\ 32033213322320032013202321032113212322032213222020212022212122302030\\ 21302231203121312200220122102211230023012310231121002101211021113100\\ 3101311031110101120102011301030110012001300100020003 \end{array}$
25	5	2	4001020304112131422324334
125	5	3	00011122233344404414424434304314324330331332340341342320321322420421 422022123023124024121021131031141041101201301401002003004

n	s	k	Generating Vector
625	5	4	$\begin{array}{c} 00001111222233334444040414042404340444141424143414442424342443424$
36	6	2	500102030405112131415223242533435445
216	6	3	$\begin{array}{c} 00011122233344455505515525535545405415425435440441442443450451452453\\ 43043143243353053153253303313323403413423503513523203213224204214225\\ 20521522022123023124024125025121021131031141041151051101201301401501\\ 002003004005 \end{array}$
49	7	2	6001020304050611213141516223242526334353644546556
343	7	3	$\begin{array}{c} 00011122233344455566606616626636646656506516526536546550551552553554\\ 56056156256356454054154254354464064164264364404414424434504514524534\\ 60461462463430431432433530531532533630631632633033133234034134235035\\ 13523603613623203213224204214225205215226206216220221230231240241250\\ 25126026121021131031141041151051161061101201301401501601002003004005\\ 006 \end{array}$
64	8	2	7001020304050607112131415161722324252627334353637445464755657667
512	8	3	$\begin{array}{c} 00011122233344455566677707717727737747757767607617627637647657660661 \\ 66266366466567067167267367467565065165265365465575075175275375475505 \\ 51552553554560561562563564570571572573574540541542543544640641642643 \\ 64474074174274374404414424434504514524534604614624634704714724734304 \\ 31432433530531532533630631632633730731732733033133234034134235035135 \\ 23603613623703713723203213224204214225205215226206216227207217220221 \\ 23023124024125025126026127027121021131031141041151051161061171071101 \\ 201301401501601701002003004005006007 \end{array}$
81	9	2	$80010203040506070811213141516171822324252627283343536373844546474855\\6575866768778$

n	s	k	Generating Vector
			00011122233344455566677788808818828838848858868878708718728738748758
			76877077177277377477577678078178278378478578676076176276376476576686
			08618628638648658660661662663664665670671672673674675680681682683684
			68565065165265365465575075175275375475585085185285385485505515525535
			54560561562563564570571572573574580581582583584540541542543544640641
729	9	3	64264364474074174274374484084184284384404414424434504514524534604614
			62463470471472473480481482483430431432433530531532533630631632633730
			73173273383083183283303313323403413423503513523603613623703713723803
			81382320321322420421422520521522620621622720721722820821822022123023
			12402412502512602612702712802812102113103114104115105116106117107118
			1081101201301401501601701801002003004005006007008
100	10	2	90010203040506070809112131415161718192232425262728293343536373839445
100	10		46474849556575859667686977879889
			00011122233344455566677788899909919929939949959969979989809819829839
			84985986987988088188288388488588688789089189289389489589689787087187
			28738748758768779709719729739749759769770771772773774775776780781782
			78378478578679079179279379479579676076176276376476576686086186286386
	10		48658669609619629639649659660661662663664665670671672673674675680681
			68268368468569069169269369469565065165265365465575075175275375475585
			08518528538548559509519529539549550551552553554560561562563564570571
1000		3	57257357458058158258358459059159259359454054154254354464064164264364
			47407417427437448408418428438449409419429439440441442443450451452453
			46046146246347047147247348048148248349049149249343043143243353053153
			25336306316326337307317327338308318328339309319329330331332340341342
			35035135236036136237037137238038138239039139232032132242042142252052
			15226206216227207217228208218229209219220221230231240241250251260261
			27027128028129029121021131031141041151051161061171071181081191091101
			201301401501601701801901002003004005006007008009

Г

Т

n	k	Generating Vector
8	3	00010111
16	4	0010110000111101
24	6	000100111010000101111011
32	8	00100010110111000010001111011101
40	10	1000010110011110100010000101110111101001
48	12	0000110010101111001101000000110010111111
56	14	0000011001010011111001101000000011001010
72	18	00010000110100010011101111001011101000010000
80	20	$\begin{array}{c} 00101\\ 00101000110010000010110101100110$
96	24	0011010100011011111001010010101010100000
104	26	$\frac{0011110010101010100000001101}{10100111001000001100000010001$
112	28	$100011111011001000101001001101000001\\1000010101101$
120	30	0001110010101110111111001001001101010101
128	32	000101101001001001000001111000100000000
152	38	0110100010011000100000000000000000000
168	42	$\begin{array}{c} 011000111110100010100111110111101011011$
176	44	$0000000110 \hline 0011110001001110110100100110101010$

Table 2: CAOA(n, k, 2, 3, 0) for $8 \le n \le 392$.

n	k	Generating Vector
		0011011001000000010111100101111010101110011100101
192	48	000110100001010100011000011011001000000
		011100111100100110111111101000011010000101
		1011110111111100100101100110000111001010
200	50	10100110011110001101010111101000010111101111
		10101000101111010000100000011011010011001111
		001111000111110111011000000101011000100101
216	54	1000100111111010100111011011011010010001111
210		0101100010001010010010110111000011100000
		011011010011
		0011100110100100000010000111011010001010
240	60	010101101111110111100010010111101010001111
210		0000001000011101101000101011100000011001001111
		1110001001011101000111111001101101
		000000101110011101111000111010011110110
248	62	01000110001000011100010110000100100101110110010000
- 10		011101111000111010011110110100010011011
		00011100010110000100100101110110010000101
		000110001101011011010000110000000101010011010
272	68	1110011100101001001011111001111111010101
		000110001101011011010000110000000101010011010
		1110011100101001001011111001111111010101
		001111111100111000111101000111011100100
		$\left \begin{array}{c} 001011000000000110001110000101110001000110111011011010$
288	72	101011000011111111001110001111010001110111001000100100100101
		0101010100111100000000011000111000010111000100011011101101111
		100110101010101
		0000100011100001101100010111001010101111
		$\left \begin{array}{c} 1101001111011100011110010011101000110101$
296	74	010010001010000010001110000110110001011100101
		100101101101101111011110001111000100111010
		10110001101001001001011
		001100000000111011101000011010000011011
0.000		1010101100101100111111110001000101111100101
320	80	011110111010101010011000011000000001110111010
		0010100001101000010010101010101110011111
		1100100110001101011110010111101110110101

n	k	Generating Vector
		1000110011110101000111111000101101101111
		00101100110110011100100001010111000000111010
328	82	1001010110111111010011001000100011001111
		101011100011110110100100000010110011011
		110100100100000101000111000010010101101
		001111011101100011000111111110011110101111
		10011101110100101100001000100111001110000
336	84	0110101001001101100010001011000011110111011000110001111
		101111010000010110010101011011001001110110001111
		100000001100001010000101111101001101010010011011000100100101
		011000111101000100011110110110101011111010
		100100010000101101100010011100001011101110000
360	90	111111010111100111000101101110111101001001100110001111
300	90	1101100101111101010110000000101000011000111010
		011100001011101110000100100100101010000101
		10111011110100100111
		0000010010010110011100101010101010101111
		001111110010011000011100010100111110110
309	08	00111011101110111010111101111000000011011001111
532	90	1001011001110010101010001011111000100010001000100010000
		00100110000111000101011111101101101001100011010
		10111011101011110111100000011011001111000111010