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Abstract: For functional regression models with functional responses, we propose

a nonparametric random-effects model using Gaussian process priors. The pro-

posed model captures the heterogeneity nonlinearly and the covariance structure

nonparametrically, enabling longitudinal studies of functional data. The model

also has a flexible form of mean structure. We develop a procedure to estimate

the unknown parameters and calculate the random effects nonparametrically. The

procedure uses a penalized least squares regression and a maximum a posterior

estimate, yielding a more accurate prediction. The statistical theory is discussed,

including information consistency. Simulation studies and two real-data examples

show that the proposed method performs well.

Key words and phrases: Functional linear model, function-on-function regression

model, Gaussian process priors, nonlinear random effects.

1. Introduction

In modern data analysis, measurements of the studied subject are frequently

recorded and stored as a curve or a surface with high frequency, making func-

tional data analysis increasingly important. For a functional regression model

with a functional response variable (output), a concurrent model assumes that

the response at a certain point (which could be temporal or spatial) depends on

functional covariates at the same point (e.g., see Wang and Shi (2014)). How-

ever, in practice, the response at a point often depends on part of or the whole

curve or surface of the functional covariates. In our example presented later,

data are collected from 38 assessed movements (functional covariates), and used

to evaluate upper-limb function after stroke (response, measured by CAHAI, a

clinical score indicating the impairment level of upper limbs). This is part of a

home-based rehabilitation system that uses a set of video games called Circus
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Challenge to improve upper-limb function of stroke survivors (Serradilla et al.

(2014); Shi et al. (2013)). Data for each movement (i.e., forward circle, saw-

ing, orientation) were measured at a frequency of 60. These data are essential

to measuring upper-limb function (Cheng, Shi and Eyre (2017)). Let ym(t) be

the overall recovery level of the upper-limb function (CAHAI) at time t after a

stroke for the mth patient. At time t, the patient played an assessment game,

and functional data were collected from the movements of each hand, and rep-

resented as a complete curve of movements, x(s, t), where t denotes longitudinal

time. Based on the discussion in Cheng, Shi and Eyre (2017), x(s, ·) and other

covariates provide information that can be used to evaluate upper-limb function.

However, we must also consider the longitudinal effect for each patient over time

t. This motivates us to propose the following model:

ym(t) = z>m(t)ν +

∫
St

x>m(s, t)β(s, t)ds+ τm(zm(t),xm(·, t)) + εm(t), (1.1)

for m = 1, . . . ,M, where zm(t) = (zm1(t), . . . , zmp(t))
> is a p-dimensional vec-

tor of covariates (e.g., the time after stroke and kinematic variables between

two hands at time t). The model reasonably assumes that the concurrent re-

lationship between the response and zm(t) has a constant coefficient ν. How-

ever, the response depends on the whole curve of each covariate in xm(s, t) =

(xm1(s, t), . . . , xmq(s, t))
>, a q-dimensional vector of functional covariates. The

q-dimensional functional coefficient β(s, t) measures how to attract information

from the whole curve x(s, ·) via direction of s in β(s, ·), and that the model

changes longitudinally along t. St is a prespecified region around point t, and

εm(t) is an error function. For the movement data, St is a fixed interval, inde-

pendent of the visiting time t.

To model the heterogeneity among patients (a severe problem in many cases,

including movement data), we introduce nonlinear random effects τm, that de-

pend on both the scalar covariates zm(t) and the functional covariates xm(·, t).
This differs from most existed methods, which depend on the scalar variables

only. Gaussian process (GP) priors are used to model the random effects non-

parametrically. The conventional GP regression model uses a GP prior based on

a measure defined in a Euclidean space (Shi and Choi (2011); Shi et al. (2007)).

Here, we first extend the definition to a functional space, and then use it to model

nonlinear random effects that depend on mixed functional and scalar covariates.

Model (1.1) has a flexible form. When τm = 0 and xm(s, t) = x̃m(s), inde-

pendent of t, model (1.1) becomes the conventional function-on-function linear
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model discussed in Ramsay and Silverman (2005). Owing to its complexity, the

function-on-function model has received relatively little attention in the liter-

ature. The linear relationships between a functional response and predictors

were first studied by Ramsay and Dalzell (1991). They considered the following

model:

ym(t) =

∫ b

a
x̃>m(s)β(s, t)ds+ εm(t), (1.2)

where a and b are prespecified constants. When b depends on time t, model (1.2)

can be rewritten as

ym(t) =

∫ t

a
x̃>m(s)β(s, t)ds+ εm(t), (1.3)

which is often called the historical functional regression model or retrospective

functional regression model; see Malfait and Ramsay (2003) and Gervini (2015).

It is also possible to restrict the functional historical effect to a certain lag in the

past; for example Kim, Sentürk and Li (2011) consider the integral interval for s

as [t− δ1, t− δ2], where 0 < δ2 < δ1 < T , and t ∈ [δ1, T ]. A special case is a zero

lag (δ1 = δ2 = 0), resulting in a concurrent functional linear model (Ramsay and

Silverman (2005)) or a varying-coefficient model (Hastie and Tibshirani (1993)).

Model (1.2) is well studied; see, for example, Yao, Müller and Wang (2005a,b),

Müller and Yao (2008), Yuan and Cai (2010), Crambes and Mas (2013), Scheipl,

Staicu and Greven (2015), Meyeret al. (2015), Sun et al. (2018), Kim et al. (2018),

Luo and Qi (2017), and the references therein. Yao, Müller and Wang (2005b)

used a functional principal component analysis (FPCA) to study the asymptotic

properties of the parameters. Sun et al. (2018) applied a penalized least squares

method based on a reproducing kernel Hilbert space to estimate β(s, t). Meyeret

al. (2015) proposed a Bayesian approach.

In addition to the common mean structure, researchers has begun focus-

ing on models’ covariance structure, which can use personal characteristics to

improve an inference, especially prediction. The importance of using random

effects to improve prediction is discussed in Rao (2003) and Robinson (1991).

Owing to the complexity of the model, few studies have examined the nonlin-

ear random effects or covariance structure in the function-on-function regression

model in (1.1). We propose a nonparametric random-effects model based on GP

priors , and allow it to depend on both functional and scalar covariates. We

develop a flexible and accurate procedure to estimate the unknown parameters

and calculate the random effects using a penalized least squares regression and
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a maximum a posteriori estimate (MAP). The proposed method offers several

advantages. First, it provides estimates of the functional regression coefficients,

and thus, a common mean structure for all subjects with a longitudinal tuning

setting. Second, it allows for nonlinear random effects, modeled by GP priors

nonparametrically, thus, it allows both scalar and functional covariates. This

addresses the problem of heterogeneity among subjects, and provides a more ac-

curate prediction by using subject-specific data or characteristics other than the

common mean structure. Third, we propose a novel method for constructing a

kernel function for a GP to deal with the complex covariance structure. The

model in (1.1) is therefore called a nonparametric random-effects functional re-

gression model using GP priors. We also prove statistical properties including

information consistency. Further discussion about process regression analysis can

be found in, for example, Rasmussen and Williams (2006), Shi and Choi (2011),

Wang and Shi (2014), Wang, Shi and Lee (2017).

The remainder of the paper is organized as follows. Section 2 describes

how to define the random-effects model using GP priors, and how to derive its

prediction distribution. The details of the estimation procedure are also provided

in this section. The asymptotic properties are discussed in Section 3. Numerical

studies and two real examples of Canadian weather data and movement data for

stoke patients are given in Section 4. All proofs are presented in the Appendix.

2. Functional Regression Model Using GP Priors

2.1. Nonparametric random-effects functional regression

Let um(t) = (z>m(t),x>m(·, t))> be covariates at time t, and let the observation

data {(ymi = ym(ti),um(ti)) : i = 1, . . . , n,m = 1, . . . ,M} satisfy model (1.1), or

specifically, the following model (the true model):

ymi = z>m(ti)ν0 +

∫
St

x>m(s, ti)β0(s, ti)ds+ τ0m(zm(ti),xm(·, ti)) + εmi, (2.1)

where ti is an observed time. In addition, ν0,β0, and τ0m are the true values of

ν,β, and τm, respectively, and εmi = εm(ti) is an error term. To fit model (2.1),

we apply model (1.1) to estimate ν0 and β0, and to predict τ0m. In (1.1), if we

focus on certain points over time t, then ym(t) can be treated as a longitudinal

response. In general, for t ∈ [a, b], ym(t) is a functional response variable. Note

that although we treat ym(t) as a functional variable, our results are all readily

extendable to longitudinal data.
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Suppose that functional responses {y1(·), . . . , yM (·)} are independent, and

that β(s, t) is a smooth and square integrable function. Let GP (µ, k) denote

a GP with a mean function µ and a covariance kernel function k. The residual

function satisfies εm ∼ GP (0, σ2δε), where σ2 > 0, δε(ti, tj) = I(ti = tj), and I(·)
is an indicator function. The random effect τm has a GP prior with mean zero

and covariance kernel function k(·, ·). Shi and Choi (2011) choose the covariance

kernel from a function family such as the squared exponential kernel or Matérn

class kernel. However, these covariance functions are defined by measures in a

Euclidean space. Here, they depend on both the scalar variables zm(t) and the

functional variables xm(·, t). To address the problem, we propose a method based

on the following new covariance kernel, which allows measures in both Euclidean

and functional spaces:

Cov(τm(um(t1)), τm(um(t2))) = k(um(t1),um(t2)) = kθ(um(t1),um(t2))

= θ10 exp

{
−

p∑
i=1

θ1i(zmi(t1)− zmi(t2))2

2
−

q∑
i=1

θ1,p+i||xmi(·, t1)− xmi(·, t2)||Λ
2

}

+

p∑
i=1

θ2izmi(t1)zmi(t2) +

q∑
i=1

θ2,p+i

∫
xmi(s, t1)xmi(s, t2)ds, (2.2)

where θ = (θ10, θ11, . . . , θ1Q, θ21, . . . , θ2Q)> denotes a set of hyper-parameters,

with Q = p + q, and ||g(·)||Λ is a Λ norm of function g. A convenient choice of

|| · ||Λ is the L2 norm of a function, such as ||g(·)||Λ =
∫
g(s)2ds. When g belongs

to a Hilbert reproducing kernel space with kernel Λ, ||g(·)||Λ can be constructed

directly; see Appendix A. In (2.2), the first part is a stationary covariance func-

tion, which is an extension of the conventional squared exponential function that

depends on the generalized distance (Shi and Choi (2011, p. 54)) between two

points t1 and t2 for a set of mixed scalar and functional variables. We simply

use an additive distance here. Other forms of distance may also be used. The

remaining part of (2.2) is an extension of a linear covariance function (Shi and

Choi (2011, p. 52)), which is nonstationary.

In summary, (1.1) or (2.1) includes a common mean model cm(t) = E(ym(t)|
um(t)) = z>m(t)ν +

∫
St
x>m(s, t)β(s, t)ds and random effect τm. The latter ad-

dresses the problem of heterogeneity, where the covariance structure is defined

by our proposed GP priors that allow both scalar and functional covariates. Us-

ing similar arguments to those of Shi et al. (2012), this can model the nonlinear

relationship between the response variable and the covariates nonparametrically,
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unlike the mean model cm(t). At the same time, τm are also random effects cop-

ing with subject-specific data and characteristics, which can improve predictions

for the subject (see Section 4).

2.2. Prediction

From model (1.1), we have the following conditional processes:

ym|cm, τm,θ, σ2 ∼ GP (cm + τm, σ
2δε),

τm|θ ∼ GP (0, kθ),

ym|cm,θ, σ2 ∼ GP (cm, kθ + σ2δε).

It follows that

ym|cm, τm,θ, σ2 ∼MVN(cm + τm, σ
2I),

τm|θ ∼MVN(0,Km),

ym|cm,θ, σ2 ∼MVN(cm,Km + σ2I), (2.3)

where MVN(b, B) stands for multivariate normal distribution with a mean

vector b and a covariance matrix B, ym = (ym(t1), . . . , ym(tn))> are observations

for the mth subject at points {t1, . . . , tn}, cm = (cm(t1), . . . , cm(tn))>, τm =

(τm(um(t1)), . . . , τm(um(tn)))>, Km = (kθ(um(ti),um(tj)))n×n, and I is the

identity matrix with dimension n.

Denote the data set by D = {(ym(tj),um(tj)), m = 1, . . . ,M ; j = 1, . . . , n}.
We now consider a prediction problem in which we assume all parameters are

given. The estimation procedure is discussed in the next subsection. Following

the derivatives in Appendix A, we have the following posterior distribution of

τm:

τm|D ∼MVN(µm,Σm),

where µm = Km(Km+σ2I)−1(ym−cm), and Σm = Km−Km(Km+σ2I)−1Km.

Now, consider predicting τm at a new data point t∗. As shown in Appendix

A, we have

τm(um(t∗))|D ∼MVN(µ∗m, σ
∗
m),

with µ∗m = k>mt∗(Km+σ2I)−1(ym−cm), and σ∗m = k(um(t∗),um(t∗))−k>mt∗(Km+

σ2I)−1kmt∗ , where kmt = (k(um(t),um(t1)), . . . , k(um(t),um(tn)))> at time t.

Thus, the predictive mean and covariance are E(ym(t∗)|D) = µ∗m + cm(t∗) and

V ar(ym(t∗)|D) = σ∗m + σ2, respectively. We may use E(ym(t∗)|D) to estimate
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ym(t∗), denoted by ŷm(t∗), and use V ar(ym(t∗)|D) to construct the predictive

intervals.

Furthermore, we have conditional process τm|D ∼ GP (µ̃m, σ̃m), where for

data points u and v,

µ̃m(u) = k>mu(Km + σ2I)−1(ym − cm),

σ̃m(u, v) = k(um(u),um(v))− k>mu(Km + σ2I)−1kmv,

kmu and kmv are kmt at times t = u and v, respectively. Similarly,

E(ym(u)|D) = µ̃m(u) + cm(u),

Cov(ym(u), ym(v)|D) = σ̃m(u, v) + σ2I(u = v).

We can take Cov(ym(·), ym(·)|D) as the estimation of the covariance function for

ŷm(·).

2.3. Parameter estimation

Because β(s, t) is a smooth function, it can be approximated by a double

expansion in terms of Ks basis functions {φk(s), k = 1, . . . ,Ks} and Kt basis

functions {ψl(t), l = 1, . . . ,Kt}; that is,

β(s, t) =

Ks∑
k=1

Kt∑
l=1

 b1kl
...

bqkl

φk(s)ψl(t) =

φ(s)>B1ψ(t)
...

φ(s)>Bqψ(t)

 , (2.4)

where {bikl} are coefficients, Bi = (bikl)Ks×Kt
, φ(s) = (φ1(s), . . . , φKs

(s))>, and

ψ(t) = (ψ1(t), . . . , ψKt
(t))>.

Let φxmi(t) =
∫
St
φ(s)xmi(s, t)ds, which is a vector of length Ks, and

γm(t) = (z>m(t), (ψ(t)⊗ φxm1(t))>, . . . , (ψ(t)⊗ φxmq(t))>)>,

b = (ν>,Vec(B1)>, . . . ,Vec(Bq)
>)>,

where “⊗” represents the Kronecker product. Hence, cm(t) = γm(t)>b and

cm = Γ>mnb, where Γmn = (γm(t1), . . . ,γm(tn))>. Replacing cm(t) and cm with

γm(t)>b and Γ>mnb, respectively, in ŷm and V ar(ŷm), we find that they depend

on unknown parameters θ, b, and σ2. We estimate these unknown parameters

using a likelihood method.
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From (2.3), we have the following marginal density function of ym:

P (D|θ, b, σ2) =

M∏
m=1

P (ym|θ, b, σ2)

=

M∏
m=1

|2π(Km + σ2I)|−1/2 exp

{
−H(θ, b, σ2)

2

}
, (2.5)

where

H(θ, b, σ2) = (ym − Γ>mnb)
>(Km + σ2I)−1(ym − Γ>mnb).

For the smoothness of β(·, ·), it is necessary to add a penalty to the smooth-

ness of the regression function parameter in the log-likelihood function, yielding

the objective function,

G(θ, b, σ2) = l(θ, b, σ2) + λs Pens(β(s, t)) + λt Pent(β(s, t)), (2.6)

where l(θ, b, σ2) =
∑M

m=1[log |Km + σ2I|+H(θ, b, σ2)], and λs and λt are tuning

parameters. For penalty functions (Ramsay and Silverman (2005)), we take

Pens(β(s, t)) =

∫ b

a

∫ b

a
‖Ls(β(s, t))‖2dsdt =

q∑
i=1

trace[B>i LφφBiJψψ],

where Lφφ =
∫ b
a [Lsφ(s)][Lsφ(s)>]ds and Jψψ =

∫ b
a ψ(t)ψ(t)>dt. Similarly,

Pent(β(s, t)) =

∫ b

a

∫ b

a
‖Lt(β(s, t))‖2dsdt =

q∑
i=1

trace[B>i JφφBiLψψ],

where Lψψ =
∫ b
a [Ltψ(t)][Ltψ(t)>]dt and Jφφ =

∫ b
a φ(s)φ(s)>ds.

Solving the derivative of (2.6) with respect to b, we obtain the estimation

equation,
M∑
m=1

Γmn(Km + σ2I)−1
(
ym − Γ>mnb

)
= Λb,

where Λ is a qKsKt × qKsKt matrix in which the block principal diagonal

element is λsJψψ ⊗Lφφ + λtLψψ ⊗Jφφ. This yields the following estimator of b:

b̂ =

[
M∑
m=1

Γmn(Km + σ2I)−1Γ>mn + Λ

]−1 M∑
m=1

Γmn(Km + σ2I)−1ym. (2.7)
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If τm = 0 (i.e., the function-on-function linear model without random effects),

the estimate of b is also given by (2.7), but with Km = 0.

We can estimate θ and σ similarly. The estimation procedure is as follows.

Algorithm 1

For initial values θ = θ∗,
(I) Given θ, we update estimates of b, σ2 by

b̂, σ̂2 = argmin
b,σ

G(θ, b, σ2). (2.8)

(II) Given b = b̂, σ2 = σ̂2, we estimate θ by

θ̂ = argmin
θ

M∑
m=1

[log |Km + σ2I|+H(θ, b, σ2)]. (2.9)

(III) Repeat (I) and (II) until some convergence criteria is met.

We employ the log-likelihood, −l(θ, b, σ2)/2, to construct the convergence

criterion. When the absolute relative difference l(θ, b, σ2) between two successive

iterations is less than a prespecified value, the iteration procedure stops, and the

parameter estimates and random-effect prediction are calculated.

3. Asymptotic Properties

The common mean structure is estimated using data collected from all M

subjects, and has been proved consistent in many functional linear models under

suitable regularity conditions; see Yao, Müller and Wang (2005b), Yuan and Cai

(2010), Sun et al. (2018), and others. Information consistency reflects whether

a prediction ŷm(t) converges to its true curve ym(t) when we have enough data

collected from the mth subject. For the GPR model and extended T-process

model, the properties are obtained in Seeger, Kakade and Foster (2008), Wang

and Shi (2014), and Wang, Shi and Lee (2017). Here, we show this property

holds for model (1.1) as well.

Let X = X1 × X2, where X1 and X2 are the spaces to which covariates

zm(t) and xm(·, t). From the true model (2.1) and the assumed model (1.1), let

pσ0
(ym|τ0m,um) be the true density function of a ym, and

pσ,θ(ym|um) =

∫
F
pσ(ym|τ,um)dpθ(τ),

where τ0m is the true underlying function of τm, σ0 is the true value of σ, and
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pθ(τ) is a measure of random process τ on space F = {τ(·, ·) : X → R}. In

Appendix B, we show that

pσ,θ(ym|um) =

n∏
l=1

pσ,θ(yml|uml,ym(l−1)), (3.1)

where

pσ,θ(yml|uml,ym(l−1)) =

∫
F
pσ(yml|τ,uml,ym(l−1))dpθ(τ |uml,ym(l−1)),

pθ(τ |uml,ym(l−1)) =
pσ(ym(l−1)|τ,um(l−1))pθ(τ)∫
F pσ(ym(l−1)|τ ′,um(l−1))dpθ(τ ′)

,

yml = (ym1, . . . , yml)
>, and uml = {zm1, . . . ,zml,xm1, . . . ,xml}, for l = 1, . . . , n.

Under the true model (2.1), we also have

pσ(ym|τ0m,um) =

n∏
l=1

pσ(yml|τ0m,uml,ym(l−1)). (3.2)

Here, pσ(yml|τ0m,uml,ym(l−1)) and pσ,θ(yml|uml,ym(l−1)) can be treated as Bay-

esian predictive models (Seeger, Kakade and Foster (2008)).

Let pσ0,θ̂
(ym|xm) be the estimated density function under the assumed model

(1.1), where θ̂ is the estimator of parameter θ. Denote D[p1, p2] =
∫

(log p1 −
log p2)dp1 as the Kullback−Leibler divergence between two densities p1 and p2.

It follows from (3.1) and (3.2) that

D[pσ0
(ym|τ0m,um), pσ0,θ̂

(ym|um)]

=

∫ n∑
l=1

Q(yml|uml,ym(l−1))pσ0
(ym|τ0m,um)dym,

whereQ(yml|uml,ym(l−1))=log{pσ0
(yml|τ0m,uml,ym(l−1))/pσ0,θ̂

(yml|uml,ym(l−1)

)} is a loss function, and
∑n

l=1Q(yml|uml,ym(l−1)) is called a cumulative loss.

Assuming that the mean in (1.1) and θ are consistent, we prove in Appendix

C that the average cumulative loss tends to zero asymptotically. The result is

presented in the following theorem.

Theorem 1. Under the appropriate conditions specified in Appendix C, we have

1

n
Eum

(D[pσ0
(ym|τ0m,um), pσ0,θ̂

(ym|um)]) −→ 0, as n→∞,

where the expectation is taken over the distribution of um.
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Theorem 1 shows that the Kullback−Leibler divergence between two density

functions for (ym|um) from the true and the assumed models, respectively, tends

to zero, asymptotically.

4. Numerical Studies

4.1. Simulation studies

Simulation studies were conducted to evaluate the performance of the pro-

posed model (M2) by comparing it with that of the common functional linear

model, ignoring random effects (M1). Data are generated from the following

model:

ym(t) = zm(t)ν+

∫ 1

0
xm(s, t)β(s, t)ds+τm(zm(t), xm(·, t))+εm(t), m = 1, . . . ,M,

(4.1)

where zm(·) is a GP with mean function h1(t) = t, for t ∈ (0, 1), and kernel

function

k1(zm(t1)), zm(t2))) = g(t1, t2) = 0.1 exp{−5(t1 − t2)2}+ 0.1t1t2,

where xm(·, ·) is generated from a GP with mean function h2(s, t) = t + cos(s),

for s, t ∈ (0, 1), and kernel function k2(xm(s1, t)), xm(s2, t))) = g(s1, s2). We

consider six different combinations of τm and β(s, t):

S1: τm is a GP with mean zero and the kernel function (2.2), and β(s, t) =

(t2 + cos(s))/10, for s, t ∈ (0, 1);

S2: τm is a GP with mean zero and the kernel function (2.2), and β(s, t) =

exp{−(t2 + s2)}/10, for s, t ∈ (0, 1);

S3: τm is a GP with mean zero and the kernel function (2.2), and β(s, t) =

(−t2 + cos(s))/10, for s, t ∈ (0, 1);

S4: τm = 0 and β(s, t) = (t2 + cos(s))/10, for s, t ∈ (0, 1);

S5: τm = 0 and β(s, t) = exp{−(t2 + s2)}/10, for s, t ∈ (0, 1);

S6: τm = 0 and β(s, t) = (−t2 + cos(s))/10, for s, t ∈ (0, 1);

where ν = 1.0, θ10 = θ12 = θ21 = θ22 = 0.1, θ11 = 10, and σ2 = 0.5. Under

S1, S2, and S3, model M2 (model (1.1)) is the true model, whereas M1 holds for

S4, S5, and S6. Sample size M = 10, 20, and 30. Both t and s take 20 points,
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equally spaced in (0, 1), where the data at 10 points of t are chosen as training

data, and the remainder are used as test data. All simulations are repeated 500

times.

The prediction errors are given by f0(t) − f̂(t), where f0(t) = zm(t)ν0 +∫ 1
0 xm(s, t)β0(s, t)ds+τ0m(zm(t), xm(·, t)) and f̂(t) = zm(t)ν̂+

∫ 1
0 xm(s, t)β̂(s, t)ds+

τ̂m(zm(t), xm(·, t)). From model (4.1), f0(t) is the true regression function and

f̂(t) is an estimator of f0(t). Figure 1 plots the prediction errors using M1 and

M2 under Cases S3 and S6. We see that M1 and M2 for τm = 0 (S6) have com-

parable results. However, when τm 6= 0 (S3), M2 has much smaller prediction

errors than those of M1.

The actual performance can be measured by the following summary statis-

tics: prediction error (PE), PE =
∑M

i=1

∑n
k=1(y(ti)− f̂(ti))

2/(nM) and average

bias (AB), AB =
∑M

i=1

∑n
k=1(f̂(ti)− f0(ti))

2/(nM). Tables 1 and 2 present the

values of PE and AB for predictions based on the training data and the test data,

respectively. It shows that when τm = 0 (S4, S5, and S6), where M1 is the true

model, PE and AB from M1 and M2 are comparable. However, under S1, S2,

and S3, the predictions based on M2 have much smaller PE and AB than those

from M1. As the sample size increases, PE and AB from M2, and their standard

errors (SD), become smaller. In conclusion, the proposed M2 exhibits compa-

rable performance with M1 when there is no heterogeneity among subjects, but

M2 performs much better than M1 when heterogeneity does exist.

4.2. Real-data examples

4.2.1. Canadian weather data

Canadian weather data consist of temperature and precipitation at 35 Cana-

dian weather observation stations, and are available in the R-package fda (Ram-

say, Hooker and Graves (2010)). These stations are divided into four regions:

Arctic, Atlantic, Continental, and Pacific. For each region, we assume that there

is a common cumulative, lagged temperature effect to precipitation, and inves-

tigate the functional relationship between the two. Owing to the spatial nature

of the weather data, we consider heterogeneity among the stations. Hence, we

investigate the data using our flexible functional regression model, thus allow-

ing for both cumulative, lagged temperature effects and the spatial correlation

structure among weather stations; that is,

yij(t) = a+

∫ t

0
xij(s)βi(s, t)ds+ τij(xij(·, t)) + εij(t), (4.2)
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Figure 1. Prediction errors for two methods without random effects (M1) and with
random effects (M2) under Cases 3 and 6.

Table 1. PE and AB using M1 (without random effects) and M2 (with random effects)
for the training data, where SDs are presented in parentheses.

M = 10 M = 20 M = 30

Model method PE AB PE AB PE AB

S1 M1 0.565(0.141) 0.344(0.121) 0.603(0.102) 0.367(0.091) 0.616(0.086) 0.375(0.076)

M2 0.273(0.058) 0.115(0.028) 0.274(0.043) 0.107(0.019) 0.274(0.041) 0.104(0.016)

S2 M1 0.529(0.137) 0.308(0.119) 0.567(0.1) 0.33 (0.09) 0.579(0.085) 0.337(0.075)

M2 0.244(0.051) 0.085(0.025) 0.243(0.037) 0.075(0.015) 0.244(0.033) 0.073(0.012)

S3 M1 0.567(0.139) 0.344(0.12) 0.605(0.101) 0.367(0.091) 0.604(0.082) 0.363(0.074)

M2 0.272(0.06) 0.114(0.029) 0.273(0.043) 0.105(0.019) 0.276(0.041) 0.104(0.016)

S4 M1 0.281(0.04) 0.054(0.008) 0.286(0.028) 0.048(0.005) 0.287(0.024) 0.046(0.003)

M2 0.28 (0.04) 0.053(0.008) 0.285(0.027) 0.047(0.005) 0.285(0.024) 0.044(0.003)

S4 M1 0.243(0.036) 0.016(0.008) 0.249(0.024) 0.011(0.004) 0.249(0.021) 0.008(0.002)

M2 0.243(0.036) 0.016(0.008) 0.249(0.024) 0.01 (0.004) 0.249(0.021) 0.008(0.002)

S6 M1 0.279(0.042) 0.053(0.008) 0.286(0.028) 0.048(0.005) 0.286(0.023) 0.045(0.003)

M2 0.278(0.042) 0.052(0.008) 0.285(0.028) 0.046(0.005) 0.284(0.023) 0.043(0.003)
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Table 2. PE and AB using M1 (without random effects) and M2 (with random effects)
for the test data, where SDs are presented in parentheses.

M = 10 M = 20 M = 30

Model method PE AB PE AB PE AB

S1 M1 0.677(0.161) 0.424(0.137) 0.688(0.116) 0.44 (0.101) 0.693(0.095) 0.446(0.083)

M2 0.43 (0.065) 0.178(0.043) 0.415(0.046) 0.164(0.028) 0.411(0.038) 0.161(0.023)

S2 M1 0.597(0.156) 0.345(0.133) 0.611(0.111) 0.362(0.098) 0.614(0.094) 0.367(0.081)

M2 0.353(0.054) 0.103(0.032) 0.341(0.037) 0.091(0.018) 0.337(0.029) 0.087(0.014)

S3 M1 0.677(0.162) 0.426(0.138) 0.691(0.115) 0.442(0.101) 0.683(0.092) 0.433(0.082)

M2 0.428(0.066) 0.177(0.043) 0.417(0.046) 0.165(0.028) 0.41 (0.039) 0.16 (0.023)

S4 M1 0.355(0.055) 0.104(0.028) 0.346(0.037) 0.095(0.017) 0.344(0.03) 0.092(0.013)

M2 0.354(0.054) 0.103(0.028) 0.345(0.037) 0.094(0.017) 0.342(0.03) 0.09 (0.013)

S5 M1 0.275(0.042) 0.024(0.013) 0.267(0.028) 0.017(0.008) 0.265(0.023) 0.015(0.006)

M2 0.275(0.042) 0.024(0.013) 0.267(0.028) 0.017(0.008) 0.264(0.023) 0.015(0.006)

S6 M1 0.355(0.057) 0.104(0.027) 0.346(0.038) 0.097(0.017) 0.342(0.03) 0.094(0.014)

M2 0.354(0.057) 0.103(0.027) 0.344(0.038) 0.095(0.017) 0.34 (0.03) 0.091(0.014)

where yij(t) and xij(t) denote the precipitation and the temperature, respectively,

for the jth station at region i and time t. This model is a special case of model

(1.1) with covariates zij(t) = 1 and xij(s, t) = xij(s). Before applying our method

to this data, the precipitation values need to be standardized.

Figure 2 presents the predictions using M1 and M2 in the region Arctic, that

is, assuming fixed and random effects, respectively (M2 is the proposed model

with random effects, whereas M1 has only fixed effects). Figure 3 shows the

estimations of the fixed and random effects for the other three regions: Atlantic,

Continental and Pacific. Figure 2 shows that M2 provides quite different results

to those from M1. M2 has an average squared residual (ASR) of 0.215, whereas

M1 has an ASR of 0.499, suggesting that M2 fits the data much better than M1

does. We see that precipitation for each station in the four regions has different

random effects. For example, in the Arctic, three weather stations have very

different effects, which is reasonable, because those stations are far apart. Cross-

validation is also used to show the performance of the prediction. The mean

squares of the prediction errors for 10-fold cross validation are 0.722 and 0.314

for the methods M1 and M2, respectively. Thus, the proposed method M2 is

more accurate than M1.
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Figure 2. Predictions for two models without random effects (M1) and with random
effects (M2), and fixed and random effects for Arctic.

4.2.2. Movement data

The data were collected from 70 stroke survivors, consisting of 34 acute pa-

tients with a stroke less than one month previously, and 36 chronic patients with a

stroke more than six months previously. The response variable, the dependency

level of the patients in their daily life or the impairment level of their upper-

limb function, is measured using Chedoke Arm and Hand Activity Inventory, or

CAHAI (http://www.cahai.ca/). Each patient has up to eight scheduled as-

sessments over three months, where the first assessment provides a baseline level.

Details can be found in Shi et al. (2013) and Serradilla et al. (2014).

We focus on acute patients, where there are 173 observations from 34 pa-

tients, with 72 functional variables from 10 movements, and 68 kinematic scalar

variables from 17 movements. Based on the discussion in Cheng, Shi and Eyre

(2017), we employ three bivariate functional variables: forward circle movement

of paretic limb from x-axis (xm1 = LA05.lx), sawing movement of paretic limb

from y-axis (xm2 = LA09.ly), and orientation movement of nonparetic limb from

x-axis (xm3 = LA28.rqx). In addition, we consider three kinematic scalar vari-

ables: the speeds of the paretic limb for the forward circle at movements LA05,

http://www.cahai.ca/
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Figure 3. Fixed and random effects for three regions: Atlantic, Continental and Pacific.

LA10, and LA34 (zm1 = sp P LA05, zm2 = sp P LA10, and zm3 = sp P LA34).

The impairment level is standardized before analysis.

We consider the functional relationship between the impairment level and the

functional movement variables. At each assessment time, the movement variables

(i.e., forward circle, sawing, and orientation), are curves; thus, investigating the

cumulative effects on movements of an impairment level is essential. Owing to

personal healthy status, we also study the heterogeneity effect for each patient.

Hence, we rewrite model (1.1) as

ym(t)=z>m(t)ν+

∫ T0

0
x>m(s, t)β(s, t)ds+τm(zm(t),xm(·, t))+εm(t), m=1, . . . , 34,

where zm(t) = (zm1(t), zm2(t), zm3(t))> and xm(·, t) = (xm1(·, t), xm2(·, t), xm3(·,
t))>, and T0 is a prespecified end time for the measurement of each movement.

Figure 4 presents the predictions from two estimated models M1 and M2,

that is, with fixed and random effects, respectively. The findings are similar to

those for the Canadian weather data. The residuals from M2 (ASR of 0.076)

are much smaller than those from M1 (ASR of 0.479), showing that M2 is more
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Figure 4. Predictions for two models without random effects (M1) and with random
effects (M2).

suitable for fitting the movement data than M1. Again, the random effects for

each stroke survivor are different. Figure 5 presents the profile plots of β̂i(s, t),

for visiting time t = 1, 3, 5 and 7. 3D plots of β̂i(s, t) are presented in Appendix

D. The shapes of β̂i(s, t) against visiting time t for the forward circle and saw-

ing movements of the paretic limb are quite different to those of the orientation

movement of the nonparetic limb. This makes sense because the first two move-

ments are conducted by the paretic limb, whereas the third by the health limb,

showing the longitudinal effects of the paretic side and the fixed effects of the

nonparetic side. This may also indicate the improvement in the function of the

upper limbs after using the home-based rehabilitation system for a few months.

The scalar variables, corresponding to the speeds of the paretic limb, have

parameter estimation ν̂> = (0.347, 0.084, 0.693)>, which suggests that the CA-

HAI score becomes higher when the patient can move the paretic limb faster.

The mean square of the prediction errors using cross-validation are 0.269 and

0.591 (24.314 and 53.323 under original scale of response) for the methods M1

and M2, respectively. Again, M2 outperforms M1.
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Figure 5. Estimations of functions βi(s, t), for i = 1, 2, 3, and visiting time t = 1, 3, 5, 7.

5. Conclusion

This paper proposes a nonparametric random effects functional regression

model using GP priors and develops a flexible and accurate procedure to calcu-

late estimation and prediction. This model builds a flexible framework, coping

with different types of mean models, for example the function-on-function linear

model, historical functional regression model, and concurrent functional linear

model. In addition, the model introduces nonparametric random effects using

GP priors, allowing the use of subject-specific data and characteristics, thus im-

proving model fitting and prediction in many cases. Information consistency

of the prediction has been proved. Numerical studies show that the proposed

model outperforms models that do not assume random effects. We focused our

discussion on the error term with Gaussian distribution in this paper, but the

estimation procedure can be extended to generalized models with functional data

(Wang and Shi (2014)). The GP priors may also be replaced by other process pri-

ors, for example, robust heavy-tailed processes (Wang, Shi and Lee (2017); Cao,

Shi and Lee (2018)). However, such an extension may be not straightforward,

because there are no closed forms for the parameter estimation and prediction
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of a random effect when a heavy-tailed process prior, (e.g., t-process), is used.

These topics are left to future research.

Appendices

A. Kernel Function and Prediction Distributions

Kernel function

If g belongs to a Hilbert reproduce kernel space with kernel Λ, then by

Mercer’s theorem, Λ can be decomposed as Λ(s, t) =
∑∞

i=1 λiφi(s)φi(t), where λi
and φi are eigenvalue and eigenfunction of Λ. From this decomposition, we have

g(t) =
∑∞

i=1 ξiφi(t) with ξi =
∫
g(s)φi(s)ds. Hence,

||g(·)||Λ =<

∞∑
i=1

ξiφi,

∞∑
i=1

ξiφi >Λ=

∞∑
i=1

ξ2
i

λi
< φi, φi >=

∞∑
i=1

ξ2
i

λi
,

where < ·, · >Λ and < ·, · > stand for inner products under Λ and L2, respectively.

If we observed g at data points vi, i = 1, . . . , I, then by Representer Theorem,

g(t) can be approximated with g(t) =
∑I

i=1 aiΛ(vi, t) which leads to

||g(·)||Λ =<

I∑
i=1

aiΛ(vi, ·),
I∑
i=1

aiΛ(vi, ·) >Λ=

I∑
i=1

I∑
j=1

aiaj < Λ(vi, ·),Λ(vj , ·) >Λ

=

I∑
i=1

I∑
j=1

aiaj <

∞∑
k=1

λkφk(vi)φk(·),
∞∑
k=1

λkφk(vj)φk(·) >Λ

=

I∑
i=1

I∑
j=1

aiaj

∞∑
k=1

λ2
kφk(vi)φk(vj) < φk(·), φk(·) >Λ

=

I∑
i=1

I∑
j=1

aiaj

∞∑
k=1

λkφk(vi)φk(vj) =

I∑
i=1

I∑
j=1

aiajΛ(vi, vj).

Prediction distributions

From model (2.3), we have(
ym
τm

)∣∣∣∣∣um ∼MVN

(
(c>m, 0)>,

(
Km + σ2I Km

Km Km

))
, (A.1)

with the same notations defined after (2.3). From derivative of conditional normal
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distribution, the join distribution (A.1) indicates that

τm|D ∼MVN(µm,Σm),

where µm = Km(Km + σ2I)−1(ym − cm),Σm = Km −Km(Km + σ2I)−1Km.

Again, from model (1.1), we obtain(
ym

τm(um(t∗))

)∣∣∣∣∣um ∼MVN

(
(c>m, 0)>,

(
Km + σ2I k>mt∗

kmt∗ k(um(t∗),um(t∗))

))
,

where kmt∗ = (k(um(t∗),um(t1)), . . . , k(um(t∗),um(tn)))>. It follows that τm(

um(t∗))|D ∼MV n(µ∗m, σ
∗
m), with

µ∗m = k>mt∗(Km + σ2I)−1(ym − cm),

σ∗m = k(um(t∗),um(t∗))− k>mt∗(Km + σ2I)−1kmt∗ .

B. Proof of (3.1)

From Bayes’ Theorem, we have

n∏
l=1

pσ,θ(yml|uml,ym(l−1))

= pσ,θ(ym1|um1)

n∏
l=2

∫
F
pσ(yml|τ,uml,ym(l−1))dpθ(τ |uml,ym(l−1))

= pσ,θ(ym1|um1)

n∏
l=2

∫
F

pσ(yml|τ,uml)dpθ(τ)∫
F pσ(ym(l−1)|τ ′,um(l−1))dpθ(τ ′)

=

∫
F
pσ(ym|τ,um)dpθ(τ) = pσ,θ(ym|um),

which shows that the equation (3.1) holds.

C. Information Consistency

Lemma 1. Suppose ym are independently sampled from (2.1) and τ0m ∈ F follow

a Gaussian process GP (0, k) with bounded function k(·, ·;θ) for any covariances

values in X . Suppose k(·, ·;θ) is continuous in θ and θ̂ is a consistent estimator

of θ, then, we have

− log{pσ0,θ̂
(ym|um)}+ log{pσ0

(ym|τ0m,um)}
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≤ c+
1

2
log |I + σ−2Km|+

1

2
‖τ0m‖2k + δ (C.1)

where ‖τ0m‖k is the reproducing kernel Hilbert space(RKHS) norm of τ0m asso-

ciated with k(·, ·;θ), Km is covariance matrix of τ0m over um, I is the n × n
identity matrix and c, δ are some positive constants.

Proof: Denoted by H the reproducing kernel Hilbert space(RKHS) associated

with k(·, ·;θ), and let Hn = {f(·) : f(x) =
∑n

i=1 αik(x,ui;θ), for any αi ∈ R}
be the span of {k(·,ui;θ}. First, we assume that τ0m ∈ Hn, then we have

τ0m(·) =

n∑
i=1

αik(·,ui;θ) , K(·)α, (C.2)

where K(·) = (k(·,u1;θ), . . . , k(·,un;θ)) and α = (α1, . . . , αn)>. With the prop-

erty of RKHS, (τ0m(u1), . . . , τ0m(un))> = Kmα and ‖τ0m‖2k = α>Kmα.

LetD[p1, p2] =
∫

(log p1−log p2)dp1 be the Kullback-Leibler distance between

two densities p1 and p2. By the Fenchel-Legendre duality relationship, we have

− log pσ0,θ(ym|um) ≤ −EQ{log p(ym|τm,um)}+D[Q,P ], (C.3)

where P is the measure induced by GP (0, k(·, ·; θ̂)), Q is the posterior distri-

bution of τm with a prior distribution GP (0, k(·, ·; θ̂)) and normal likelihood∏n
i=1N(ŷi; τm(umi), σ

2), (ŷ1, . . . , ŷn)> = (Km + σ2I)α. Then the posterior dis-

tribution Q of τm is N(Kmα,KmB
−1), where B = I +σ−2Km. Then it easily

shows that

D[Q,P ] =
1

2

{
− log |K̂−1

m Km|+ log |B|+ tr(K̂
−1
m KmB

−1)

+ ‖τ0m‖2k +α>Km(K̂
−1
m Km − I)α− n

}
,

(C.4)

where K̂m is defined in the same way as Km but with θ being replaced by its

estimator θ̂. On the other hand,

EQ{log p(ym|τm,um)} ≥ log pσ0
(ym|τ0m,um)− 1

2σ2
tr(KmB

−1). (C.5)

Hence, it follow from (C.3), (C.4) and (C.5) that

− log pσ0,θ(ym|um) + log pσ0
(ym|τ0m,um)

≤ 1

2

{
− log|K̂−1

m Km|+ log|B|+ tr

((
K̂
−1
m Km +

1

σ2
Km

)
B−1

)
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+ ‖τ0m‖2k +α>Km(K̂
−1
m Km − I)α− n

}
. (C.6)

Since the covariance function is bounded and continuous in θ, we have

K̂
−1
m Km − I → 0 as n → ∞. Hence, there exist positive constants c and ε

such that for n large enough

− log |K̂−1
m Km| < c,

α>Km(K̂
−1
m Km − I)α < c,

tr(K̂
−1
m KmB

−1) < tr((In + εKm)B−1).

(C.7)

Plugging (C.7) in (C.6), there exist positive constant δ, we have the inequality

− log pσ0,θ̂
(ym|um) + log pσ0

(ym|τ0m,um)

≤ 1

2

{
2c+ log|B|+ tr((In + (ε+ σ−2)Km)B−1) + ‖τ0m‖2k − n

}
≤ c+

1

2
log|B|+ 1

2
‖τ0m‖2k + δ.

(C.8)

From the Representer Theorem (Lemma 2 in Seeger, Kakade and Foster (2008)),

it shows

− log pσ0,θ̂
(ym|um) + log pσ0

(ym|τ0m,um) ≤ c+
1

2
log|B|+ 1

2
‖τ0m‖2k + δ

for all τ0m(·) ∈ H. The Lemma holds.

To prove Theorem 1, it needs

Condition (A): ‖τ0m‖k is bounded and expected regret term

Eum
(log|I + σ−2Km|) = o(n).

This condition, coming from Seeger, Kakade and Foster (2008), is called

expected regret term. This term depends on covariance kernel function and

covriates. For the kernel function k, we have spectrum decomposition

k(u,v) =
∑
i

λiφi(u)φi(v),

where {λi} and {φi} are eigenvalues and eigenvectors for k. If
∑

i λ
2
i <∞ which

leads to λi decay rapidly to 0, then the expected regret term is bounded with∑
i log(1 + cλsn). Hence, the condition (A) holds. More details can be found in
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Figure 6. Estimations of functions βi(s, t), for i = 1, 2, 3. (a) 3D plot of β1(s, t); (b) 3D
plot of β2(s, t); and (c) 3D plot of β4(s, t).

Section III in Seeger, Kakade and Foster (2008).

Proof of Theorem 1.

From definition of the information consistency, we can get that

D[pσ0
(ym|τ0m,um), pσ0,θ̂

(ym|um)]

=

∫
F
pσ0

(ym|τ0m,um)log
pσ0

(ym|τ0m,um)

pσ0,θ̂
(ym|um)

dym

=

∫
F
pσ0

(ym|τ0m,um){−logpσ0,θ̂
(ym|um) + logpσ0

(ym|τ0m,um)}dym.
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From Lemma 1, we obtain that

1

n
Eum

(D[pσ0
(ym|τ0m,um), pσ0,θ̂

(ym|um)])

≤ c

n
+

1

2n
Eum

(log|I + σ−2Km|) +
1

2n
‖τ0m‖2k +

δ

n
,

where c and δ are two positive constants. Since ‖τ0m‖k is bounded and expected

regret term Eum
(log|I + σ−2Km|) = o(n), Theorem 1 holds.

D. 3D Plots of Parameter Estimation for Movement Data

Estimations of functions βi(s, t), i = 1, 2, 3 are presented in Figure 6.
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