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6. Proofs

6.1 Proof of Theorem 1

We analyze each step of Algorithm 1 to prove Theorem 1. Throughout the

proof, some useful lemmas on tail probabilities will be stated without proof.

Analysis of V(0). We first study the property of the right singular vector

matrix V (0) obtained in the column-thresholding step of Stage I. For 0 <

a− < 1 < a+, define

J±(0) =
{
j : ‖XA∗j‖2 ≥ σ̃2a∓α

√
n log(p ∨m))

}
.
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More specifically, let a− = 0.1 and a+ = 2 in the proof. Recall that α =
√

12

and σ̃ = 2σ.

Lemma 1. [Stage I column selection] With probabbility at least 1 − 4(p ∨

m)−2,

J−(0) ⊂ J(0) ⊂ J+
(0)

Proof of Lemma 1. Due to Gaussianity, ‖Y (0)
∗j ‖2/σ̃2 follows a non-central

χ2 distribution with n degrees of freedom and noncentrality parameter

‖XA∗j‖2/σ̃2. By Lemma 2,

P (J−(0) 6⊂ J(0)) ≤
∑
j∈J−

(0)

P
{
‖Y (0)
∗j ‖2 < σ̃2(n+ α

√
n log(p ∨m))

}
≤ mP

{
‖Y (0)
∗j ‖2 < σ̃2n+ ‖XA∗j‖2 − σ̃2α(a+ − 1)

√
n log(p ∨m)

∣∣∣ j ∈ J−(0)

}
≤ 2m exp

(
− α2(a+ − 1)2n log(p ∨m)

4(
√
n+ (a+α)1/2(n log(p ∨m))1/4)2

)
≤ 2(p ∨m)−2.

Similarly, it is proved that J(0) ⊂ J+
(0) holds with probability at least 1 −

2(p ∨m)−2.

Lemma 2. Let X follow a non-central chi-square distribution χ2
n(λ) with
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n degrees of freedom and non-centrality parameter λ. Then

P
{
X ≥ (n+ λ) + 2(

√
n+
√
λ)s
}
≤
(

1 +
1√
2s

)
exp(−s2), if 0 ≤ s ≤ 1

2
n9/16,

P
{
X ≤ (n+ λ)− 2(

√
n+
√
λ)s
}
≤ 2 exp(−s2), if 0 ≤ s ≤ 1

2
n1/2.

Lemma 3. Let X be an n×m matrix with iid standard Gaussian entries.

Then for any t > 0,

P
{
‖X‖ >

√
n+
√
m+ t

}
≤ exp(−t2/2).

Lemma 4. [Stage I subspace estimation] With probability at least 1−3(p∨

m)−2,

‖V V ′ − V(0)V(0)
′‖ ≤ C1σ̃

d

{√
n+
√
k + 2

√
log(p ∨m) +

√
k
√
n log(p ∨m)

}
,

‖V V ′ − V(0)V(0)
′‖F ≤ C2σ̃

d

{√
r(
√
n+
√
k + 2

√
log(p ∨m)) +

√
k
√
n log(p ∨m)

}
.

Proof of Lemma 4. We study the upper bounds in the event where J−(0) ⊂

J(0) ⊂ J+
(0) holds. We may reorder the columns of matrices such that XA−

Ỹ (0) is of the following form

XA− Ỹ (0) =

(
−Z∗J(0) UDV ′∗Jc

(0)

)
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Lemma 3 provides an upper bound for ‖Z∗J(0)‖ as follows

‖Z∗J(0)‖ ≤ σ̃(
√
n+

√
J(0) + 2

√
log(p ∨m)) ≤ σ̃(

√
n+
√
k + 2

√
log(p ∨m))

with probability at least 1− (p∨m)2, since |J(0)| ≤ |J+
(0)| = k. Moreover, it

holds that, in the event of J−(0) ⊂ J(0),

‖U∆V ′∗Jc
(0)
‖2 ≤ ‖∆V ′∗(J−

(0)
)c
‖2
F ≤ σ̃2a−αk

√
n log(p ∨m).

Thus, we have

‖XA− Ỹ (0)‖ ≤ σ̃(
√
n+
√
k + 2

√
log(p ∨m)) + σ̃

√
a−αk

√
n log(p ∨m)

and the desired results then follows from the sin θ theorem.

Analysis of U(1).

Lemma 5. [Stage I Regression] Under the condition of Theorem 1, there

exists a constant C depending only on κ±(s∗), c∗ and c0, such that with

probability at least 1− (p ∨m)−1,

‖U(1)U
′
(1) − UU ′‖F ≤ C

√
sλ/d.
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Proof of Lemma 5. Let U∗ ∈ Rn×r be the left singular vector matrix of

XAV(0) = UDV ′V(0). Under condition (12), V ′V(0) is an r× r matrix of full

rank, and so the column space of U∗ is the same as the column space of U ;

i.e., U∗U
′
∗ = UU ′. By Wedin’s sin θ Theorem (Wedin, 1972),

‖U(1)U
′
(1) − UU ′‖F = ‖U(1)U

′
(1) − U∗U ′∗‖F ≤

‖XB(1) −XAV(0)‖F
σr(XAV(0))

,

where σr(XAV(0)) is the rth singular value of XAV(0).

Since for any unit vector x,

‖V ′V(0)x‖2 = x′V ′(0)V V
′V(0)x

= 1− x′V ′(0)(V V
′ − V(0)V

′
(0))V(0)x

≥ 1− ‖V V ′ − V(0)V
′

(0)‖.

Thus, we have σ2
r(V

′V(0)) = min‖x‖=1 ‖V ′V(0)x‖2 ≥ 1 − ‖V V ′ − V(0)V
′

(0)‖.

When c0 is small enough, ‖V V ′−V(0)V
′

(0)‖ is sufficiently small by Lemma 4.

So there exists a constant c′ such that σr(V
′V(0)) > c′. Note that XAV(0) =

XAV V ′V(0), and so

σr(XAV(0)) ≥ σr(XAV )σr(V
′V(0)) ≥ δrc

′,

where the last inequality holds under condition (12) since σr(XAV ) =
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σr(XA) = δr. Further note that

‖XB(1) −XAV(0)‖F ≤ κ+(2s)‖B(1) − AV(0)‖F ≤ κ+(s∗)‖B(1) − AV(0)‖F

and that δr ≥ κ−(s)σr(A) ≥ κ−(s∗)d, the desired result then follows from

Part (ii) of Theorem 3 with η = 1/(p ∨m).

Analysis of V(1). Recall

J(1) = J(0) ∪
{
j : ‖U(1)

′Y
(2)
∗j ‖2 ≥ βσ̃2(r + 2

√
3r log(p ∨m) + 6 log(p ∨m))

}
.

For b− < b+, define

J±(1) =
{
j : ‖XA∗j‖2 ≥ σ̃2b∓(r + 2

√
3r log(p ∨m) + 6 log(p ∨m))

}
.

More specifically, let b+ = 4.5 and b− = 0.002 in the proof. Recall that

β = 1.1.

Lemma 6. Let X follow a chi-square distribution χ2
n with n degrees of

freedom. Then for any t > 0

P (X > n+ 2
√
nt+ 2t2) < exp(−t2)
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Lemma 7. [Stage II column selection] Assume ‖U(1)U
′
(1) − UU ′‖ < c for

some small positive constant c < 0.05. With probabbility at least 1− 2(p ∨

m)−2,

J−(1) ⊂ J(1) ⊂ J+
(1)

Proof of Lemma 7. For j ∈ J−(1) \ J(0),

‖U ′(1)Y
(2)
∗j ‖ = ‖U ′(1)(UDV

′
∗j + Z

(2)
∗j )‖

≥ ‖U ′(1)UDV
′
∗j‖ − ‖U ′(1)Z

(2)
∗j ‖

The first term is

‖U ′(1)UDV
′
∗j‖2 ≥ ‖XA∗j‖2(1− ‖U(1)U

′
(1) − UU ′‖) ≥ ‖XA∗j‖2(1− c)

≥ σ̃2(1− c)b+(r + 2
√

3r log(p ∨m) + 6 log(p ∨m))

Since U ′(1)Z
(2)
∗j ∼ N(0, σ̃2Ir), it follows from Lemma 6 that

‖U ′(1)Z
(2)
∗j ‖2 ≤ σ̃2(r + 2

√
3r log(p ∨m) + 6 log(p ∨m)),
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with probability at least 1− (p ∨m)−3. Thus, in the same event, we have

‖U ′(1)Y
(2)
∗j ‖ ≥ (

√
(1− c)b+ − 1)σ̃

{
r + 2

√
3r log(p ∨m) + 6 log(p ∨m)

}1/2

≥ β1/2σ̃(r + 2
√

3r log(p ∨m) + 6 log(p ∨m))1/2,

due to (
√

(1− c)b+ − 1)2 > (
√

0.95× 4.5− 1)2 > 1.1 = β. Hence, we have

j ∈ J(1). So it holds that J−(1) ⊂ J(1) with probability at least 1− (p∨m)−2.

Similarly, we have J(1) ⊂ J+
(1) with probability at least 1 − (p ∨m)−2, due

to (
√

(1 + c)b− + 1)2 < 1.1 = β.

Lemma 8. [Stage II subspace estimation] Suppose ‖U(1)U
′
(1) − UU ′‖F < c′1

for a sufficiently small positive constant c′1. Then there exists a constant

C depending only on κ±(s∗), γ and c′1 such that with probability at least

1− (p ∨m)−1,

‖V(1)V
′

(1) − V V ′‖F ≤ Cσ
√

(k + s)(r + log(p ∨m))/d

Proof of Lemma 8.

‖V(1)V
′

(1) − V V ′‖F ≤
‖U(1)U

′
(1)Ỹ

(1) − U(1)U
′
(1)XA‖F

σr(U(1)U
′
(1)XA)

. (14)
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We first upper bound the numerator

‖U(1)U
′
(1)Ỹ

(1) − U(1)U
′
(1)XA‖F

≤ ‖U ′(1)(Ỹ
(1)
∗J(1) −XA∗J(1))‖F + ‖U(1)U

′
(1)XA∗Jc

(1)
‖F

≤ ‖U ′(1)(Ỹ
(1)

∗J(1) −XA∗J(1))‖F + ‖(U(1)U
′
(1) − UU ′)XA∗Jc

(1)
‖F + ‖UU ′XA∗(J−

(1)
)c‖F

≤ σ̃(
√
rk +

√
log(p ∨m)) + d‖(U(1)U

′
(1) − UU ′‖+ σ̃

√
k

√
b+(r + 2

√
3r log(p ∨m) + 6 log(p ∨m))

≤ Cσ
√

(k + s)(r + log(p ∨m)) (15)

To lower bound the denominator, we apply Weyl’s theorem to obtain

σr(U(1)U
′
(1)XA) ≥ σr(UU

′XA)− ‖U(1)U
′
(1)XA− UU ′XA‖op

≥ δr − ‖U(1)U
′
(1) − UU ′‖op‖XA‖op.

Note that δr ≥ κ−(s∗)d, ‖XA‖op ≤ κ+(s∗)γd and that ‖U(1)U
′
(1)−UU ′‖op ≤

‖U(1)U
′
(1) − UU ′‖F ≤ c′1. Thus, for sufficiently small value of c′1, we obtain

σr(U(1)U
′
(1)XA) ≥ C−1d, (16)

where C > 0 is a constant depending only on κ±(s∗), γ and c′1. Combining

(14) – (16), we complete the proof.

Proof of Theorem 1.
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Proof. By the definition of Â, we have

‖Â− A‖F = ‖B(2)V
′

(1) − AV V ′‖F

≤ ‖B(2)V
′

(1) − AV(1)V
′

(1)‖F + ‖AV(1)V
′

(1) − AV V ′‖F

≤ ‖V(1)‖op‖B(2) − AV(1)‖F + ‖A‖op‖V(1)V
′

(1) − V V ′‖F .

Assembling the bounds in all lemmas,

‖Â− A‖2
F . σ2(k + s)(r + log(p ∨m)) (17)

The desired upper bound on other Schatten norm losses is a consequence

of (17) and the inequality ‖Â−A‖2
sq ≤ (2r)2/q−1‖Â−A‖2

F for all q ∈ [1, 2].

6.2 Proof of Theorem 2

For any probability distributions P andQ, letD(P ||Q) denote the Kullback–

Leibler divergence of Q from P . For any subset K of Rm×n, the volume

of K is vol(K) =
∫
K

dµ where dµ is the usual Lebesgue measure on Rm×n

by taking the product measure of the Lebesgue measures of individual en-

tries. With these definitions, we state the following variant of Fano’s lemma

(Ibragimov and Has’minskii, 1981; Birgé, 1983; Tsybakov, 2009). This ver-

sion has been established as Proposition 1 in Ma and Wu (2015). It will be
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used repeatedly in the proof of the lower bounds. Throughout the proof,

we denote κ+(2s) by κ+.

Proposition 1. Let (Θ, ρ) be a metric space and {Pθ : θ ∈ Θ} a collection of

probability measures. For any totally bounded T ⊂ Θ, denote by M(T, ρ, ε)

the ε-packing number of T with respect to ρ, i.e., the maximal number of

points in T whose pairwise minimum distance in ρ is at least ε. Define the

Kullback-Leibler diameter of T by

dKL(T ) , sup
θ,θ′∈T

D(Pθ ||Pθ′). (18)

Then

inf
θ̂

sup
θ∈Θ

Eθ[ρ2(θ̂(X), θ)] ≥ sup
T⊂Θ

sup
ε>0

ε2

4

(
1− dKL(T ) + log 2

logM(T, ρ, ε)

)
. (19)

In particular, if Θ ⊂ Rd and ‖·‖ is some norm on Rd, then

inf
θ̂

sup
θ∈Θ

Eθ[‖θ̂(X)− θ‖2] ≥ sup
T⊂Θ

sup
ε>0

ε2

4

1− dKL(T ) + log 2

log vol(T )
vol(B‖·‖(ε))

 . (20)

We first prove an oracle version of the lower bound. One can think of

it as an lower bound for the minimax risk when we know that the nonzero

entries of the coefficient matrix A ∈ Rp×m are restricted to the top–left s×r

block (or the top left r × k block).
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Lemma 9. Let Θ0(s, r, r, d, γ) ⊂ Θ(s, k, r, d, γ) be the sub-collection of all

matrices whose nonzero entries are in the top left s × r block. Suppose

σ = 1. There exists a positive constant c that depends only on κ+ and γ,

such that for any q ∈ [1, 2], the minimax risk for estimating A over Θ0

satisfies

inf
Â

sup
Θ0

ELq(A, Â) ≥ c
[
(r2/q−1d2) ∧ (r2/qs)

]
.

Similarly, let Θ′0(r, k, r, d, γ) ⊂ Θ(s, k, r, d, γ) be the sub-collection of all

matrices whose nonzero entries are in the top left r × k block. Under the

same conditions, we have

inf
Â

sup
Θ′0

ELq(A, Â) ≥ c
[
(r2/q−1d2) ∧ (r2/qk)

]
.

Proof. In what follows, we focus on proving the first claim and the second

claim follows from essentially the same argument.

By a simple sufficiency argument, we can reduce to model (1) with

p = s and m = r, which we assume in the rest of this proof without loss of

generality.

Let A0 = diag(1, . . . , 1) ∈ Rs×r. Moreover, for any δ and any q ∈ [1, 2],

let BSq(δ) = {A ∈ Rs×r : ‖A‖sq ≤ δ} denote the Schatten-q ball with radius
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δ in Rs×r. For some constant a > 0 to be specified later, define

T (a) =
γd

2
A0 +BS2(

√
a) =

{
γd

2
A0 +M : M ∈ BS2(

√
a)

}
. (21)

For any A1, A2 ∈ T (a), we have

D(PA1||PA2) =
1

2
‖XA1 −XA2‖2

S2
≤ 1

2
‖X‖2

op ‖A1 − A2‖2
S2
≤ 2κ2

+a.

Here, the last inequality holds since ‖X‖op ≤ κ+ under the assumption that

X ∈ Rs×r and ‖A1 − A2‖2
S2
≤ 4a by definition (21). So

dKL(T (a)) ≤ 2κ2
+a. (22)

By the inverse Santalo’s inequality (see, e.g., Lemma 3 of Ma and Wu

(2015)), for some universal constants c0,

vol(T (a))
1
sr = vol(BS2(

√
a))

1
sr =

√
a · vol(BS2(1))

1
sr

≥
√
a · c0

E ‖Z‖S2

(23)

≥
√
a · c′0√

sr
. (24)

In (23), Z is a s × r matrix with i.i.d. N(0, 1) entries. The inequality in

(24) holds since by Jensen’s inequality, E ‖Z‖S2
≤
√

E ‖Z‖2
S2

=
√
sr.
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On the other hand, by Urysohn’s inequality (see, e.g., Eq.(19) of Ma

and Wu (2015)), for any ε > 0 and q ∈ [1, 2],

vol(BSq(ε))
1
sr ≤

εE ‖Z‖Sq′√
sr

≤ εr
1
q′E‖Z‖op√

sr
≤ 2εr

1
2
− 1

q .

Here, 1
q′

+ 1
q

= 1 and Z is a s × r matrix with i.i.d. N(0, 1) entries. The

last inequality is due to Gordon’s inequality (see, e.g., Davidson and Szarek

(2001)): E‖Z‖op ≤
√
s+
√
r ≤ 2

√
s.

Now let

a =

(
γ ∧ 2− 1

2

)2 (
sr ∧ d2

)
, and ε =

c′0
2κ+

√
a r

1
q
− 1

2 . (25)

Then for any A ∈ T (a) and any i ∈ [r], |σi(A) − γ
2
d| ≤

√
a ≤ γ∧2−1

2
d, and

so σi(A) ∈ [d, γd] and T (a) ⊂ Θ0(s, r, d, γ). Applying Proposition 1 with

T (a) and ε in (21) and (25), we obtain a lower bound on the order of ε2.

This completes the proof.

Lemma 10. Let s ≥ r be positive integers. There exist a matrix W ∈ Rs×r

and two absolute constants c0 ∈ (1
2
, 1) and c1 > 0 such that ‖W‖F ≤ 1

and for any subset B ⊂ [s] such that |B| ≥ c0s, ‖WB∗‖sq ≥ c1r
1
q
− 1

2 for any

q ∈ [1, 2].

Proof. We divide the proof into two cases, namely when s ≥ 25 and when
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s < 25.

1◦ When s ≥ 25, let Z ∈ Rs×r have i.i.d. N(0, 1) entries. Then ‖Z‖2
F ∼

χ2
sr, and Laurent and Massart (2000, Eq.(4.3)) implies that

P
{
‖Z‖2

F ≥ sr + 2s
√
r + 2s

}
≤ e−s.

Moreover, for any c0 >
1
2
,

P
{
∃B ⊂ [s], s.t. |B| = c0s and σr(ZB∗) <

√
c0s−

√
r − 1

2

√
c0s

}
≤

∑
B⊂[s],|B|=c0s

P
{
σr(ZB∗) <

√
c0s−

√
r − 1

2

√
c0s

}

≤
(

s

(1− c0)s

)
e−c0s/4

≤ exp
{
−s
[c0

4
+ (1− c0) log(1− c0)

]}
.

Here, the first inequality is due to the union bound, the second inequality

is due to the Davidson-Szarek bound, and the last inequality holds since

for any α ∈ (1
2
, 1),

(
s
αs

)
=
(

s
(1−α)s

)
≤ ( e

1−α)(1−α)s. If we set c0 ≥ 0.96, then

the multiplier c0
4

+ (1− c0) log(1− c0) ≥ 0.1.

So when c0 = 0.96 and s ≥ 25, the sum of the right hand sides of the

last two displays is less than 1. Thus, there exists a deterministic matrix Z0

on which both events happen. Now define W = Z0/‖Z0‖F. Then ‖W‖F = 1
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by definition, and for any B ⊂ [s] with |B| = c0s,

‖WB∗‖sq ≥ r1/qσr(WB∗)

= r1/qσr((Z0)B∗)/‖Z0‖F

≥ r1/q
1
2

√
c0s−

√
r√

sr + 2s
√
r + 2r

≥ c1r
1/q−1/2.

Note that the last inequality holds with an absolute constant c1 when r ≤

1
8
c0s. When r > 1

8
c0s, we can always let r̃ = 1

8
c0r ≤ 1

8
c0s and repeat

the above arguments on the s × r̃ submatrix of Z consisting of its first r̃

columns, and the conclusion continues to hold with a modified absolute

constant c1. This completes the proof for all subsets B with |B| = c0s. The

claim continues to hold for all |B| ≥ c0s since the Schatten-q norm of a

submatrix is always no smaller than the the whole matrix.

2◦ When s < 25, we have r < 25 since r ≤ s always holds. Let

W =

[
1√
s
1s 0

]
∈ Rs×r, i.e., the first column of W consists of s entries

all equal to 1/
√
s and the rest are all zeros. So W is rank one. It is

straightforward to verify the desired conclusion holds since for any B ⊂ [s],

‖WB∗‖sq = ‖WB∗‖F =
√
|B|/s. This completes the proof.

Lemma 11. Let a = d2 ∧ s log ep
s

. There exist three positive constants

c1, c2, c3 that depend only on γ and κ+, and a subset Θ1 ⊂ Θ(s, k, r, d, γ),



17

such that c3 ≤ c2/3, dKL(Θ1) ≤ c3a and that for any q ∈ [1, 2],

logM(Θ1, ‖ · ‖sq , c1

√
a r1/q−1/2) ≥ c2s log

ep

s
,

where dKL is the Kullback–Leibler diameter and M is the packing number

defined in Proposition 1.

Similarly, for b = d2∧k log em
k

, there is another subset Θ′ ⊂ Θ(s, k, r, d, γ)

such that dKL(Θ′1) ≤ c3b and that for any q ∈ [1, 2],

logM(Θ′1, ‖ · ‖sq , c1

√
b r1/q−1/2) ≥ c2k log

em

k
.

Proof. Let us focus on the first claim and we shall remark on how to estab-

lish the second claim at the end of this proof.

Let W ∈ R(s−r)×r satisfy the conclusion of Lemma 10 and define s0 =

(1−c0)(s−r). Let B = {B1, . . . , BN} be a maximal set consisting of subsets

of [p]\[r] with cardinality s − r and for any Bi 6= Bj, |Bi ∩ Bj| ≤ s0. By

Lemma A.3 of Rigollet and Tsybakov (2011) and Lemma 2.9 of Tsybakov

(2009), there exists an absolute positive constant c′2 such that

logN ≥ c′2(s− r) log
e(p− r)
s− r

.

Now for each Bi ∈ B, define W (i) ∈ Rm×n by setting the submatrix W
(i)
Bi[r]

=
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W and filling the remaining entries with zeros. Then for any i 6= j, |Bi ∩

Bj| ≤ s0, and so there exists a set Bij ⊂ [s] with |Bij| ≥ s−r−s0 = c0(s−r),

such that

‖W (i) −W (j)‖sq ≥ ‖WBij∗‖sq ≥ c′1r
1/q−1/2,

where c′1 is an absolute constant due to Lemma 10.

Define M0 =

Ir 0

0 0

 ∈ Rp×m and for some positive constant c′′1 ≤

γ∧2−1
2
∧
√

c′2
6κ2+

, let

Θ1 =

{
A(i) =

γd

2
M0 + c′′1

√
aW (i) : i = 1, . . . , N

}
.

Note that each A(i) has s nonzero rows and r nonzero columns. Moreover,

for i ∈ [N ], and j ∈ [r]

∣∣∣∣σj(A(i))− σj(
γd

2
M0)

∣∣∣∣ ≤ ‖A(i) − γd

2
M0‖op = c′′1

√
a‖W (i)‖op ≤ c′′1

√
a‖W (i)‖F ≤

γ ∧ 2− 1

2
d.

Here, the second last inequality holds since ‖W (i)‖op ≤ ‖W (i)‖F ≤ 1, and

the last inequality holds since c′′1 ≤
γ∧2−1

2
and
√
a ≤ d. Since σj(

γd
2
M0) = γd

2

for all j ∈ [r], and so σj(A
(i)) ∈ [d, γd] for all j ∈ [r] and i ∈ [N ]. Thus,

Θ1 ⊂ Θ(s, r, d, γ).
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For any i 6= j, D(PA(i)||PA(j)) = 1
2
‖XA(i) −XA(j)‖2

F ≤ (c′′1κ+)2a, and

‖A(i) − A(j)‖sq ≥ c′′1c
′
1

√
a r1/q−1/2.

Hence, for c1 = c′1c
′′
1, c2 = c′2/2 and c3 = (c′′1κ+)2, dKL(F0) ≤ c3a and

logM(Θ1, ‖ · ‖sq , c1

√
a r1/q−1/2) ≥ c′2(s− r) log

e(p− r)
s− r

≥ c2s log
ep

s
.

Here, the second inequality holds since s ≥ 2r and p−r
s−r ≥

p
s
. Moreover, by

our choice of c3, it is guaranteed that c3 ≤ c2/3. This completes the proof

of the first claim.

To establish the second claim, we note that Lemma 10 continues to hold

if we replace s with k and W with W ′. Thus, we could essentially repeat

the foregoing arguments to obtain the second claim. This completes the

proof.

Proof of Theorem 2. Throughout the proof, let c > 0 denote a generic con-

stant that depends only on γ and κ+, though its actual value might vary

at different occurrences. Note that we only need to prove the lower bounds

for σ = 1, and the case of σ 6= 1 follows directly from standard scaling

argument.

First, by restricting the nonzero entries of any matrix in Θ(s, k, r, d, γ)
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to the top left s× r (or r× k) corner, we obtain a minimax lower bound by

applying Lemma 9, i.e., for Θ = Θ(s, r, d, γ) and any q ∈ [1, 2],

inf
Â

sup
Θ

E‖Â− A‖2
sq ≥ c(r2/q−1d2) ∧ (r2/q(s+ k)). (26)

Here, we have used the fact that for any a, b, c > 0,

(a ∧ b) ∨ (a ∧ c) = a ∧ (b ∨ c) � a ∧ (b+ c). (27)

Next, by Proposition 1, Lemma 11 and (27), we obtain

inf
Â

sup
Θ

E‖Â− A‖2
sq ≥ c(

√
a r1/q−1/2)2 = c(r2/q−1d2) ∧

(
r2/q−1

(
s log

ep

s
+ k log

em

k

))
.

(28)

Thus, the minimax risk is lower bounded by the maximum of the lower

bounds in (26) and (28). Applying (27) again, we complete the proof.

6.3 A Theorem on Group Lasso

Theorem 3. Consider the linear model W = XB+Z, where W is an n×r

response matrix, X is an n×p design matrix, B is a p×r coefficient matrix

with s-sparse row support for some s ≥ 1, and Z is an n× r error matrix.
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Let

B̂ = arg min
B∈Rp×r

‖W −XB‖2
F/2 + λ‖B‖2,1,

with a given penalty level λ. Let Condition 1 hold with an absolute constant

K > 1 and positive constants s∗, c∗ satisfying (11).

(i) If 2‖X ′∗j(W −XB)‖F ≤ λ for all j, then it holds that

‖B̂ −B‖F ≤
3(1 + (4c∗)

−1)

κ2
−(s∗)

√
sλ. (29)

(ii) Assume the error matrix Z has iid N(0, σ2) entries. For any given

η ∈ (0, 1), if we set

λ ≥ 2σmax
j
‖X∗j‖(

√
r +

√
2 log(p/η)),

then (29) holds with probability at least 1− η.

Proof of Theorem 3. We may rewrite the minimization problem in a vec-

torized version as follows

min
B∈Rp×r

‖vec(W )− (Ir ⊗X)vec(B)‖2
2/2 + λ‖B‖2,1,

where vec is usual vectorization operator and ⊗ is the Kronecker product



22

as defined in (Muirhead, 1982, Section 2.2). In this case, the rows of B

form natural groups which are all of size r and vec(B) satisfies the (s, rs)

strong group-sparsity as defined in Huang and Zhang (2010).

We are to prove the desired result by invoking Lemma D.4 of Huang

and Zhang (2010). To this end, we first verify that the two conditions of

the lemma is satisfied. Note that the penalty level in Huang and Zhang

(2010) corresponds to 2λ/(nr) in our notion, XGj
corresponds to X∗j, and

the sparse eigenvalues ρ+(Gj) and ρ±(rs) are identified as

ρ+(Gj) = ‖X∗j‖2/(nr), ρ±(rs) = κ2
±(s)/(nr).

Let ` = s∗ − s − 1 and λ2
− = min{kλ2 : kr ≥ `r + 1, k ∈ Z+} = (` + 1)λ2.

The conditions of Huang and Zhang (2010, Lemma D.4) can be rewritten

in our notation as

2‖X ′∗j(W −XB)‖F ≤ λ and
κ̃2

+(s∗, s∗ − s)
κ2
−(s∗)

≤
√
`+ 1

s
, (30)

where κ̃2
+(s∗, s∗−s) =

√
(κ2

+(s∗)− κ2
−(2s∗ − s))(κ2

+(s∗ − s)− κ2
−(2s∗ − s)).

Since by Definition 1, κ2
−(s) ≤ κ2

−(t) ≤ κ2
+(t) ≤ κ2

+(s), ∀t ≤ s, we

obtain

κ̃2
+(s∗, s∗ − s) ≤ κ2

+(s∗)− κ2
−(2s∗).
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Thus, the conditions in (30) are satisfied under the assumption of Theorem

3. Then the conclusion of Huang and Zhang (2010, Lemma D.4) leads to

‖B̂ −B‖F ≤
3

κ2
−(s∗)

(1 + 1.5
√
s/(`+ 1))

√
sλ ≤ 3(1 + (4c∗)

−1)

κ2
−(s∗)

√
sλ.

This completes the proof of part (i).

Turning to part (ii), we need to upper bound 2‖X ′∗j(W −XB)‖F . Since

X ′∗j(W − XB) is a vector of length r with iid N(0, σ2‖X∗j‖2) entries, it

follows from Laurent and Massart (2000, Eq.(4.3)) that with probability

1− η/p,

‖X ′∗j(W −XB)‖2
F ≤ σ2‖X∗j‖2(r + 2

√
r log(p/η) + 2 log(p/η))

≤ σ2‖X∗j‖2(
√
r +

√
2 log(p/η))2.

With probability at least 1 − η, we have 2‖X ′∗j(W −XB)‖F ≤ λ for all j

and thus (29) holds.
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