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We include the theoretical results and derivations of the convergence rates in the sec-

tions S1 and S2. Section S3 contains some implementation techniques. We include

some pictorial details on the simulation study performed on unconditional density es-

timation( in §4 of the manuscript) in Section S4. Section S5 contains some additional

simulation study to study the properties of the density estimator. Section 6 discusses

some properties of the framework and the geometric approach.

S1 Theoretical Results

In this Section we present a detailed discussion on theoretical results and derive prop-

erties which lead to the asymptotic convergence rate of the proposed estimator as

presented in §3 of the manuscript. First, we introduce some notations and definitions.

Recall that F is the space of all univariate pdfs strictly positive on [0, 1] and zero

elsewhere. We have represented an arbitrary pdf as a function of the coefficients w.r.t

a basis set of the tangent space. Since we are performing maximum likelihood es-
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timation over an approximating space Fn for a sample of size n, our estimator is a

sieve MLE, discussed in Wong & Shen (1995) and defined in §3 of the manuscript.

To control the approximation error, Wong & Shen (1995) introduces a family of

discrepancies. They define δn(f0,Fn) = inff∈Fnρ(f0, f), called the ρ-approximation

error at f0. The control of the approximation error of Fn at f0 is necessary for obtain-

ing results on the convergence rate for sieve MLEs. We follow Wong & Shen (1995)

to introduce a family of indexes of discrepency in order to formulate the condition on

the approximation error of Fn. Let

gα(x) =


(1/α)[xα − 1],−1 < α < 0 or 0 < α ≤ 1

log x, if α = 0+

For two strictly positive densities p and f , set x = p/f and define ρα(p, f) =

Epgα(X) =
∫
pgα(p/f). We define δn(α) = inff∈Fn ρα(f0, f). We use α = 1 for our

results. Then δn(1) = inff∈Fn

∫
(f0 − f)2/f , the Pearson’s χ2 number.

The δ-cover of a set T wrt a metric ρ is a set {Θ1, . . . ,ΘN} ⊂ T such that for

each Θ ∈ T , there exists some i ∈ {1, . . . , N} with ρ(Θ,Θi) ≤ δ. The covering

number N is the cardinality of the smallest delta cover. Then log(N) is the metric

entropy for T .

Let ‖·‖r denote Lr norm between functions and ‖x‖ denotes
√∫ 1

0
x2(t)dt for

functions. For two densities f1 and f2, we define the Hellinger metric between f1 and

f2 as H(f1, f2) = ‖f 1/2
1 − f 1/2

2 ‖2. We call a finite set {(fLj , fUj ), j = 1, . . . , N} a
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Hellinger u-bracketing of Fn if ‖fLj
1/2 − fUj

1/2‖
2
≤ u for j = 1, . . . , N , and for any

p ∈ Fn, there is a j such that fLj ≤ p ≤ fUj . Let H(u,Fn) be the Hellinger metric

entropy of Fn, defined as the cardinality of the u-bracketing of Fn of the smallest

size. Throughout, c1 and c2 have been used to represent coefficient vectors in the

tangent space of the Hilbert sphere for some fixed basis set corresponding to warping

function that acts on fp. c0 denotes a coefficient vector corresponding to the true

density denoted by f0 ∈ F . l1, l2, l3 and l4 are used to indicate specific constants.

Also, M1,M2,M3, . . . , have been used to represent generic constants whose value

can change from step to step but is independent of other terms in the expressions.

Let f1 and f2 be two pdfs on Fn with corresponding cumulative distribution

functions F1 and F2. Let fp be the initial density estimate on Fp such that fp is strictly

positive and Lipschitz continuous with cumulative distribution function Fp. Let γ1 =

Fp
−1 ◦ F1 and γ2 = Fp

−1 ◦ F2. Let c1 = (c11, . . . , c1kn)T and c2 = (c21, . . . , c2kn)T

be coefficients associated with two elements of T1(S∞) corresponding to the tangent

space representation of γ1 and γ2, that is, c1 ∈ Cγ1 and c2 ∈ Cγ2 . Here Fn, Cγ and

kn are as introduced in §2 of the manuscript. Then the following Lemma bounds the

norm difference of f1 and f2 with the norm difference in the coefficients.

Proposition 1. |f1 − f2| ≤M0

∑kn
i=1 |c1i − c2i| where M0 > 0 is a constant.

Proof. c1 and c2 are the coefficients associated with two elements v1 and v2 of T1(S∞),

defined in §2 of the manuscript and let q1 and q2 represent the corresponding elements
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on the Hilbert sphere. Then there exists M1 ∈ R such that |Bi| < M1 , where Bi is

the ith basis function, i = 1, 2, · · · , kn. Let v1 =
∑kn

i=1 c1iBi, v2 =
∑kn

i=1 c2iBi. Then

v1, v2 ∈ T1(S∞) with ‖v1‖ < π and ‖v2‖ < π. Hence we have

(v1 − v2)(t) =
kn∑
i=1

(c1i − c2i)Bi(t) < M1

kn∑
i=1

|c1i − c2i|

‖v1 − v2‖ =

√∫ 1

0

(v1 − v2)T (v1 − v2)dt < M3

√√√√ kn∑
i=1

(c1i − c2i)
2 < M1

kn∑
i=1

|c1i − c2i|

Next since x 7→ ‖x‖ =
√∫ 1

0
x2(t)dt and x 7→ cos(x) are Lipschitz continuous,

we have

| cos ‖v1‖ − cos ‖v2‖| < M2|‖v1‖ − ‖v2‖| < M1

kn∑
i=1

|c1i − c2i| (S1.1)

Next note that x 7→ sin(x)/x is Lipschitz continuous. Hence we have∥∥∥∥sin ‖v1‖
‖v1‖

− sin ‖v2‖
‖v2‖

∥∥∥∥ < M2|‖v1‖ − ‖v2‖| < M1

kn∑
i=1

|c1i − c2i| (S1.2)

Noting that

|q1(t)− q2(t)| < |cos ‖v1‖ − cos ‖v2‖|+
∣∣∣∣sin ‖v1‖
‖v1‖

v1(t)− sin ‖v2‖
‖v2‖

v2(t)

∣∣∣∣
we have, combining equations S1.1 and S1.2,

‖q1 − q2‖1 < M1

kn∑
i=1

|c1i − c2i| (S1.3)

Now consider Q = q2. Observe that

(Q1 −Q2)(t) = q1
2(t)− q2

2(t) = (q1(t)− q2(t))(q1(t) + q2(t))

= (cos |v1|+ cos |v2|+
sin |v1|
|v1|

v1(t) +
sin |v2|
|v2|

v2(t))(q1(t)− q2(t)).
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Now (cos ‖v1‖+ cos ‖v2‖+ sin ‖v1‖
‖v1‖ v1(t) + sin ‖v2‖

‖v2‖ v2(t)) is a bounded function. Hence

‖Q1 −Q2‖1 < M1

∑kn
i=1 |c1i − c2i| using equation S1.3. Now we have γi(t) =∫ t

0
Qi(u)du, t ∈ [0, 1], i = 1, 2. Then

|γ1(t)− γ2(t)| =
∣∣∣∣∫ t

0

(
Q1(u)−Q2(u)

)
du

∣∣∣∣ < ∫ t

0

|Q1(u)−Q2(u)|du ≤ ‖Q1 −Q2‖1

Since fp is Lipschitz continuous and strictly positive density on [0, 1], we have

‖fp(γ1)− fp(γ2)‖1 < M4‖γ1 − γ2‖1

Consider |f1 − f2| = |fp(γ1).γ̇1 − fp(γ2).γ̇2|. Keeping in mind that Q = γ̇, we have

|f1(t)− f2(t)| = |fp(γ1(t)).Q1(t)− fp(γ2(t)).Q2(t)|

= |fp(γ1(t)).Q1(t)− fp(γ2(t)).Q1(t) + fp(γ2(t)).Q1(t)− fp(γ2(t)).Q2(t)|

≤ |Q1(t)|M1‖γ1 − γ2‖1 + |fp(γ2(t))|‖Q1 −Q2‖1

≤ M2‖γ1 − γ2‖1 +M3‖γ1 − γ2‖1 < M0

kn∑
i=1

|c1i − c2i|.

Therefore we have |f1 − f2| < M0

∑kn
i=1 |c1i − c2i| for some fixed M0 > 0.

Remark 1. It follows that H(f1, f2) < M1

√
‖f1 − f2‖1 < M1

√∑kn
i=1 |c1i − c2i| <

l1
√

max1≤i≤kn |c1i − c2i| for some fixed l1 > 0 where H(f1, f2) is the Hellinger met-

ric between two densities f1 and f2.

The following Lemma provides a bound for the Hellinger metric entropy for Fn.

Lemma 1. 1. There exists positive constants C3 and C4 and a positive ε < 1 such
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that, ∫ √2ε

ε2/28

H1/2(
u

C3

,Fn)du ≤ C4n
1/2ε2, (S1.4)

2. There exists positive constants C1 and C2 such that for any ε > 0,

P ∗
(

sup
{‖p1/2−p1/2

0 ‖
2
≥ε,p∈Fn}

n∏
i=1

p(Yi)/f0(Yi) ≥ exp(−C1nε
2)

)
≤ 4 exp(−C2nε

2)

Proof. We note that H(f1, f2) ≤ l1
√

max1≤i≤kn |c1i − c2i| for some l1 > 0 following

Remark 1. So finding a δ covering for Fn is equivalent to finding an l1
√
δ cover-

ing for the space of coefficients in the tangent space using L∞ norm. Let us have a

closer look at the space of coefficients. We have ‖v‖ < π for tangent space rep-

resentation of Γ, which is equivalent to ‖c‖2 ≤ l3,say. Therefore Fn ≡ {c ∈

Rkn : ‖c‖2 ≤ l3} = Ckn ,say. Then Ckn ⊂ {c ∈ Rkn : ‖c‖∞ ≤ l4} ≡ {c ∈

Rkn : |ci| ≤ l4∀i = 1, . . . , kn} = C0, say. Now C0 is a compact set with Ckn as

a compact subset. Therefore the covering number N for Ckn would be less than the

covering number for C0. Since C0 ≡ {[−l4, l4]kn}, we have the covering number

for C0 as ( 2l4
l1
√
δ
)
kn . We obtain this by partitioning the interval [−l4, l4] into pieces

of length l1
√
δ for each coordinate so that the partition of C0 is reached through

cross product. Then in each equivalent class of the partition of C0 we will have

‖c1 − c2‖∞ ≤ l1
√
δ which is equivalent to H(f1, f2) ≤ δ. So we have the metric

entropy for Fn = H(.,Fn) = H(u,Fn) < kn log l/u, where l = 2l4 and u = l1
√
δ.
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Now,

∫ √2ε

ε2/28

H1/2(
u

l3
,Fn)du ≤

√
kn

∫ √
log(l0/u)du ≤

√
kn log(M/ε2)(

√
2ε− ε2/256)

where l0 = l3l and M = 28l0. For the existence of an εn that satisfies (S1.4) we need

an εn less than 1 that satisfies

√
kn log(M/ε2)(

√
2ε− ε2/256) ≤ C4n

1/2ε2 (S1.5)

But this inequality holds at 1− and hence there exists a smallest εn < 1 that

satisfies S1.5. The Part 2 of the lemma follows directly from Theorem 1 in Wong &

Shen (1995).

Lemma 2. Under the above notations and assumptions, there exists a positive con-

stant C5 such that δn(1) = C5n
−2β/(2β+1).

Proof. δn(1) = inff∈Fn ρ1(f0, f) = inff∈Fn

∫
p0g1(f0/f). = inff∈Fn

∫ (f0−f)2

f
be

the Pearson’s χ2 number. Now, f0 is assumed to belong a Hölder space of order

β > 0 (Assumption 2). By Proposition 1, it is straightforward to show that if kn =

l1n
1/(2β+1) then inff∈Fn ‖f0−f‖∞ ≤ l2n

−β/(2β+1) for some arbitrary constants l1 and

l2 . This follows from standard approximation results in L2 basis (e.g. Fourier) of

Hölder functions of order β. For a detailed discussion please refer to Triebel (2006).

Also, f0 is assumed to be strictly positive. That is, there exists a positive number

d such that inf
t∈[0,1]

p(t) ≥ 2d. Let f̂ = arginf
f∈Fn

‖f0 − f‖∞. Then it follows that for
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a large enough n, inf
t∈[0,1]

f̂(t) ≥ d. Then we have, δn(1) = inff∈Fn

∫ (f0−f)2

f
dt <

inff∈Fn ‖f0 − f‖2
∞/d = C5n

−2β
2β+1 for some C5 > 0.

S1.1 Proof of Theorem 1

We have from equation S1.5
√
kn log(M/ε2)(

√
2ε− ε2/256) <

√
kn log(M/ε2)

√
2ε.

So for an upper bound of the smallest root we can solve the equation
√
kn log(M/ε2)

√
2ε =

C4n
1/2ε2. Let εn be of the form

√
Mn−γ(log n)t, γ > 0, and, let kn = n∆, ∆ < 1

Then log (M/εn
2) = 2γ log n− 2t log log n ≤ 2γ log n.

So for an upper bound of the smallest root we can solve the equation

√
kn2γ log n

√
2ε = C4n

1/2ε2.

Therefore equating, n∆/2
√

2γ
√

log n
√
Mn−γ(log n)t withC4Mn1/2n−2γ(log n)2t,

we get γ = 1
2
(1−∆), and t = 1/2. Thus we have εn =

√
Mn

−(1−∆)
2

√
log n. We take

∆ to be 1
2β+1

to use the theoretical properties of Hölder space of order β > 0. There-

fore εn =
√
Mn

−β
2β+1
√

log n is an upper bound for the smallest value that satisfies the

condition for Lemma 1. Therefore, using the definition given in Theorem 4 in Wong

& Shen (1995), we get

ε∗n =


Mn−β/(2β+1)

√
log n, if δn(1) < 1

4
C1M

2n−2β/(2β+1) log n,

(4δn(1)/C1)1/2, otherwise.

But δn(1) = C5n
−2β/(2β+1) < 1

4
C1M

2n−2β/(2β+1) log n for n > exp(4C5/M
2C1).

Thus for large enough n, ε∗n = Mn−β/(2β+1)
√

log n and following Theorem 4 of
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Wong & Shen (1995) we get

P (‖q1/2 − p1/2
0 ‖2 ≥ ε∗n) ≤ 5exp

(
− C2n(ε∗n)2)+ exp

(
− 1

4
nC1(ε∗n)2). (S1.6)

S2 Theoretical Results for Conditional Densities

Here we prove the asymptotic consistency properties of the conditional density esti-

mate. First, we introduce some new notations and borrow some notations from previ-

ous discussions and redefine some in the context of conditional density estimation.

Let fmX denote the marginal density of X . Let fx(y) ≡ fx(y|X = x) be the true

conditional density estimator of y given X = x. Let f̃x(y|X = x) be any conditional

density estimate of fx(y|X = x). Let X denote the compact support of the predictor

variableX and let Y denote the support of the response variable Y . For simplicity, we

assume Y = [0, 1]. Let kn be the number of basis elements used for the tangent space

representation of the warping functions γ ∈ Γ for sample size n. Let fp(y|X = x)

be the initial guess of the conditional density of y given x, as discussed in Section

5 of the paper. Define Fx as the set {fp(γ(y)|x)γ̇(y), γ ∈ Γ}. Define the approxi-

mating space of densities Fx,n as Fx,n = {fp(γ(y)|x)γ̇(y)fX(x)|γ ∈ Γkn}, where

Γkn is defined in Section 2.1 of the paper. Let wi,n,x0 refer to the weights centered at

x0 ∈ X associated with the likelihood function, defined in §5 of the main paper, after

normalization. Wi,n,x0 refers to the weights before normalization. For instance, the

weights were chosen to be Gaussian kernels in the simulated examples. c refers to a
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generic positive constant that changes value from step to step but do not affect other

terms. l(γ|yi, xi) = log fp(γ(yi)|xi)γ̇(yi) refers to the log likelihood of γ under the

assumption yi ∼ fxi . On the other hand, l(γ|yi, x0) = log fp(γ(yi)|x0)γ̇(yi) refers

to the log likelihood of γ given that yi ∼ fx0 . For a given γ ∈ Γ and x0 ∈ X , let

L̃n,x0(γ) =
∑n

i=1 log fp(γ(yi)|xi)γ̇(yi)wi,n,x0 . We drop the x0 suffix henceforth for

easier notation. Let γ̂n,x0 = argmax L̃n,x0(γ), and f̂x0,n = fp(γ̂n(·)|X = x) ˙̂γn ∈

Fx0,n be the sieve maximum likelihood density estimate. Let Fx and Fp(·|X = x) be

the cumulative distribution functions corresponding to fx and fp(·|X = x), respec-

tively. Then γ0x = F−1
p (Fx) is the true warping function. For any γ, let vγ represent

the tangent space representation of γ. Also, let vγid ≡ 0 be the tangent space repre-

sentation corresponding to γid(t) = t, the identity warping function.

Now, we list some assumptions under which we can prove the consistency of the

conditional density estimator and derive an upper bound of the convergence rate:

A1. The marginal density of X , denoted by fmX is Lipschitz continuous, and is

bounded away from zero on its support.

A2. The support Y of the response variable Y is [0, 1].

A3. The true conditional density fx0 : [0, 1]→ R+ is continuous and strictly positive.

A4. The initial shape fp : [0, 1] → R+ is bounded away from zero, and is Lipschitz

continuous.

A5. For any target location x0 ∈ X , the weights wi,n satisfy the following properties:
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a. There exists a positive sequence hn → 0 with nhn → ∞ such that for all x0, x ∈

X , y ∈ Y , and n ≥ 1, we have supγ∈Γkn ,|x−x0|<hn |[l(γ|y, x0)− l(γ|y, x)]| < chn.

b. wi,n ≤ n−1o(1) for all {xi : |xi − x0| > hn}.

c. The number of observations in the hn-neighborhood of x0 is of the order of nhn,

for all x0 ∈ X , where the hn-neighborhood is [x0 − hn, x0 + hn].

d. 1 ≤ {maxi:|xi−x0|<hn{wi,n}{mini:|xi−x0|<hn{wi,n}−1 ≤ C0n, whereC0n is a bounded

positive sequence with C0n → 1 as n→∞.

A6. The true conditional density fx0(·|X = x0) either belongs to Hölder or Sobolev

space of order β.

Assumptions A1 and A5.c make sure that for any x0 ∈ X , the number of obser-

vations in the neighborhood hn of x0 grows at the same rate (upto constants) as the

sample size increases. The Assumption A2 is for simplicity of analysis. Assumption

A4 ensures that the initial guess is in the correct space of densities. Some simple ex-

amples of initial guesses can be truncated gaussian densities, any standard conditional

density estimate, and so on. Assumption A5.a is a very important assumption which

states that the true conditional density of the observations in a neighborhood around

the target location is “not too far away” from that of the target location. Further, this

discrepancy of the observations in the neighborhood decreases to zero as the sample

size increases. Without this assumption, it is not possible to derive a good estimate
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of the true density. Assumption A5.b and A5.d ensures that the weights associated

with the observations in the neighborhood of the target location are asymptotically

same, whereas the weights outside the neighborhood collapse to zero at a faster rate.

This ensures that the weighted likelihood function asymptotically behaves like an un-

weighted likelihood function of observations in a neighborhood around x0.

Theorem 1. Under assumptions A1-A5, for any fixed ε > 0 and x0 ∈ X , P (‖f 1/2
x0 − f̂

1/2
x0 ‖2 ≥

ε)→ 0.

Proof. Note that we have
∑n

i=1wi,n = 1. Let sx0(hn) ∼ nhn denote the number of

observations which lie in the hn neighborhood of x0. Let wmin = min
i:|xi−x0|<hn

{wi,n}.

Then we have, (1− o(1))/C0nsx0(hn) ≤ wmin ≤ (1− o(1))/sx0(hn). Thus, we have

by sandwich theorem, wi,n → 1/sx0(hn) as n→∞ for {i : |xi − x0| < hn}.

Thus, L̃(γ) =
∑sx0 (hn)

i=1 wi,nl(γ|yi, x0)−ηn, where ηn =
∑sx0 (hn)

i=1 wi,n|l(γ|yi, xi)−

l(γ|yi, x0)|+
∑

i:|xi−x0|>hn
|wi,nl(γ|yi, xi)| <= C0n

∑sx0 (hn)

i=1 (1/sx0(hn))chn + o(1) <=

chn + o(1) → 0. This follows from the fact that |l(γ)|yi, xi)| < |l(γ|yi, xi) −

l(γid|yi, xi)|+|l(γid|yi, xi) < c‖vγ−vγid‖+|fp(yi|xi)| following the steps of Proposi-

tion 1 in Section S1. Thus |l(γ|yi, xi)| is uniformly bounded and lim
n→∞

argmax
γ∈Γkn

L̃n,x0(γ) =

lim
n→∞

argmax
γ∈Γkn

∑sx0 (hn)

i=1 1/(sx0(hn))l(γ|yi, x0) . Thus, we obtain P (‖f 1/2
x0 − f̂

1/2
x0 ‖2 ≥

ε)→ 0 using the standard consistency properties of sieve MLEs that follows from the

analysis in Wong & Shen (1995).

Corollary 1. Let ε∗n = csx0(hn)−β/(2β+1) log sx0(hn). Under assumptions A1-A6,
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there exists constants C1 and C2 such that if ηn ≤ cε∗2n /2,

P (‖f 1/2
x0 − f̂

1/2
x0 ‖2 ≥ ε) ≤ 5 exp(−C2sx0(hn)ε∗2n ) + exp(−sx0(hn)C1ε

∗2
n ).

This result follows directly using the theory for unconditional density estimation

using sx0(hn) observations. Note that the rate of convergence is slower than minimax

rate. It depends on the number of significant observations sx0(hn) in the neighborhood

of x0, and the dicrepancy of observations ηn with respect to the target location.

Corollary 2. Suppose γ0,x0 ∈ Γk0 where k0 is a known finite number. Let the normal-

ized weights satisfy that wi,n = 0 for all {xi : |xi − x0| > hn}, and uniform in the hn

neighborhood. Then, if εn = cn−1/3 for some constant c, P (‖f 1/2
x0 − f̂

1/2
x0 ‖2 ≥ εn) ≤

5 exp(−nε2n).

Proof. Note that ηn =
∑sx0 (hn)

i=1 wi,n|l(γ|yi, xi) − l(γ|yi, x0)| ∼ hn. Using sx0(hn)

observations for Theorem 2 in Wong & Shen (1995), we get εn = sx0(hn)−1/2 as

the convergence rate. This is the fairly standard n−1/2 convergence rate for MLEs in

finite dimensions. Choosing hn = n−1/3, we get εn = cn−1/3. The statement then

follows from directly applying Theorem 2 in Wong & Shen (1995). Interestingly, this

convergence rate agrees with Hu (1997) who obtained (
∑
w2
i,n)

1/2 as the convergence

rate for relevance weighted MLEs.
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S3 Estimation Algorithm

In this section we outline the estimation procedure and discuss some of the imple-

mentation issues. We discretize density functions using a dense uniform partition,

T = 100 equidistant points over the interval [0, 1]. For approximating derivatives of

a function, for example γ̇ for a warping function γ, we use the first-order differences.

The integrals are approximated using the trapezoidal method.

For optimizing log-likelihood function according to Equation 2.5 of the manuscript,

we use the function fminsearch in MATLAB for our experiments. The fminsearch

function uses a very efficient grid search technique to find the optimal values of coef-

ficients {cj}, corresponding to the chosen basis elements, to approximate the optimal

warping function γ. However, fminsearch function can get stuck in locally-optimal

solutions in some situations. To alleviate this problem we use an iterative, multi-

resolution approach as follows. We start the optimization using a small number of

basis elements J with c = 0, the point that maps to γid ∈ Γ under H . This implies a

low-resolution search and low-dimensional search space RJ . Then, at each successive

iteration we increase the resolution by increasing J and use the previous solution as

the initial condition (with the additional components set to zero) for the next stage.

This slow increase in J , while continually improving the optimal point c, performs

much better in practice than using a large value of J directly in fminsearch.

Another important numerical issue is the final choice of J . For a fixed sample of
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size n, a large value of J may lead to overfitting and f̂ being a rough function. Also, a

large value of J makes it harder for the search procedure to converge to an optimal so-

lution. Efromovich (2010) and the references there in discusses different data-driven

methods to choose the number of basis elements, by considering the number of basis

elements itself as a parameter. We take a different data-driven approach for selecting

the desired number of basis elements. Using a predetermined maximum number of

basis points, we navigate through increasing number of basis elements and at each

step, we compute the value of the Akaike’s Information Criterion (AIC) and choose

the number of basis elements that results in the best value of the AIC, penalizing the

number of basis functions used. We summarize the full procedure in Algorithm 1.

Algorithm 1 Improving solutions using fminsearch by tweaking the starting points
i. Start with a low number of basis elements, say J

ii. Use 0 vector as the starting point and find the solution d using fminsearch.

iii. Increase the number of basis elements, say J1 more basis elements.

iv. Use [0,0] and [d,0] as two starting points. Compare the AIC for the two cases and choose the

solution with better AIC value. Call the solution d the optimal solution.

v. If the number of basis elements exceeds a predetermined large number, stop. Else go to step iii.

Experimental results show that Bayesian Information Criterion (BIC) overpenal-

izes the number of basis elements used and, therefore, some sharper features of the

true density are lost in the estimate. So the experiments presented in the following

sections use only the AIC penalty.
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S4 Simulation Studies I

Next, we elaborate on the results from experiments on univariate unconditional den-

sity estimation procedure involving two simulated datasets, from Section 5 in the

manuscript. The computations described here are performed on an Intel(R) Core(TM)

i7-3610QM CPU processor laptop, and the computational times are reported for each

experiment. We compare the proposed solution with two standard techniques: (1) ker-

nel density estimates with bandwidth selected by unbiased cross validation method,

henceforth referred to as kernel(ucv), (2) a standard Bayesian technique using the

function DPdensity in the R package DPPackage. The Bayesian approach naturally

has a longer run-time. For both the simulated examples, we use 2000 MCMC runs

with 500 iterations as burn in period for the Bayesian technique. We compare the

methods both in terms of numerical performance and computational cost. Here we il-

lustrate the performance of the various methods using a representative simulation. We

highlight the performance improvement over an (misspecified) initial parametric and

nonparametric density estimate brought about by warping. For the initial parametric

estimate we have chosen a normal density truncated to [0, 1] with mean and standard

deviation estimated from the sample. For the initial nonparametric estimate, we used

inbuilt MATLAB function ksdensity.
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S4.1 Example 1

We borrow the first example from Tokdar (2007) and Lenk (1991), where f0 ∝

0.75exp(rate = 3) + 0.25N (0.75, 22), a mixture of exponential and normal density

truncated to the interval [0, 1]: We generate n = 100 observations to study estima-

tion performance. Here we use Meyer wavelets as the basis set for the tangent space

representation of γs. We use Algorithm 1 to adaptively choose the number of basis

elements. For this example, we start with 8 basis elements and introduce 7 basis el-

ements at each step upto a maximum of 29 basis elements, akin to multiresolution

analysis. Also, we use an unpenalized log likelihood for optimization.

Figure 1: The left panel compares the warped estimate f̂ with other estimates when fp is parametric.

The middle panel shows the corresponding evolution of the negative of log-likelihood function during

optimization. The right figure compares the warped estimate with others when fp is ksdensity.

Figure 1 (left panel) shows a substantial improvement in the final warped estimate

over the initial parametric estimate. Incidentally, it also does a better job in capturing
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the left peak as compared to the kernel(ucv) method. Standard kernel methods need

additional boundary correction techniques to be able to capture the density at the

boundaries, as studied in Karunamuni & Zhang (2008) and the references therein.

However the warped density seems to perform better estimation near the boundaries

compared to the other techniques. The right panel displays the warped result when

using ksdensity output as the initial estimate. It also provides solutions obtained using

kernel(ucv) and DPdensity. Once again, this warped estimate provides a substantial

improvement over the initial solution.

S4.2 Example 2

For the second example we take Example 10 from Marron & Wand (1992), which

uses a claw density: f0 = 1
2
N (0, 1) +

∑4
l=0

1
10
N ( l

2
− 1, (0.1)2). We estimate the

Figure 2: The left panel shows the improvement over initial ksdensity estimate. Both kernel(ucv) and

warped estimate have a good performance here. The right panel shows that all the methods fail to

capture all the peaks. Kernel(ucv) performance is very similar to the warped estimate.
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domain boundaries and unlike the previous example, instead of fixing the number of

tangent basis elements, we employ Algorithm 1 described in Section S3 to find the

optimal number of basis elements based on the AIC, with a maximum allowed value

of 40 basis elements. We start with 5 basis elements, and add 5 more basis elements

at each step. Consequently, the computation cost increases compared to the previous

example because we consider more models with different number of parameters. The

choice of the initial number of basis elements and number of basis elements to add

(step size) is left for the user to decide. Using finer step size tends to improve the

practical performance at the cost of higher computational cost.

S5 Simulation Studies II

In this section we perform some additional experiments and comparisons illustrating

the properties of the proposed estimator.

S5.1 Effect of the initial shape

In Section 3 of the paper we have presented the asymptotic convergence rate of the

estimator to the true density via the convergence of the warping function estimate

to the “true” warping function. Naturally, the notion of a “true” warping function

requires a fixed initial shape (denoted by fp), and we have shown that the convergence

rate of the warping function estimate to the true warping function is independent of
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the choice of fp up to constants.

As a result, the computationally cheapest choice of the initial shape is the uni-

form density shape. However, the proposed method can also be used to improve the

performance of misspecified parametric or nonparametric density estimates. In this

section, we consider three different choices of the initial shape fp, and evaluate the

improvement over the initial shape, and compare the performances of the final density

estimates given these different initial choices. The three choices of fp considered are

(1) Gaussian, with parameters estimated from the data, (2) Uniform on th unit inter-

val, and (3) a kernel density estimate with bandwidth chosen by Silverman’s thumb

rule.

To illustrate the improvement over the initial shapes and compare the final per-

formances, we consider the same two examples as discussed in Section 4 of the main

paper. For this study we consider sample size 100 throughout and use Algorithm 1

discussed in the Supplementary Section to obtain the number of basis elements for

tangent space representation of the warping functions. We start with 5 basis elements

and introduce 5 basis elements at each step up to a maximum of 40 basis elements,

and choose the model with the best AIC. Table 1 summarizes the performances of the

three different choices of starting points for the mixture of exponential and normal

example. Table 2 summarizes the same for the claw example. They indicate that even

though the performance of the initial estimates are quite poor (albeit computationally
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very cheap), the warped estimate provides a very significant improvement via the loss

functions considered. Note that, even though the loss functions for the initial shapes

are quite different, the loss functions of the final estimate are very similar across dif-

ferent initial shapes. Also, for all the chosen initial shapes, the computational costs

for obtaining the final estimate are very similar. In general, it is desirable to have the

initial shape fp as close to the true shape as possible so that the “true” warping func-

tion is close to the identity function. Since the identity function is the starting point in

our search algorithm, the estimation is easier if the true value is close to the searching

point. Hence we advocate using the kernel density with a plug-in bandwidth as a good

choice of fp. This is because the estimate is nonparametric and thus robust to different

shapes of the true density and is also computationally cheap.

S5.2 Comparison of boundary performance versus kernel densities

Kernel density estimates have very good performance in the interior of the support of

the density. However, for densities with compact support, kernel densities tend to have

a lot of bias at the boundaries, and typically need boundary correction techniques to

have better performance. In this section we compare the performance of the proposed

warped estimate with the traditional kernel method focusing on the edges of a compact

support. For this purpose, we use a different loss function LB, defined as follows. Let

the support of the density be [0, 1]. Let f0 be the true density and f̂ be the density
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Table 1: A comparison of the performances for mixture of exponential and normal example.

Method: Initial Shape Warped Estimate

Choice of fp Norm Mean std.dev Time Mean std.dev Time

Gaussian

L1 50.37 2.11 20.93 5.59

L2 6.36 0.23 < 1 sec 2.94 0.67 5 sec

L∞ 1.75 0.08 1.13 0.28

Uniform

L1 34.81 0 19.33 5.39

L2 4.64 0 < 1 sec 2.64 0.72 5 sec

L∞ 1.33 0 0.95 0.36

Kernel

L1 27.74 3.59 19.70 5.49

L2 3.87 0.52 < 1 sec 2.77 0.70 5 sec

L∞ 1.40 0.13 1.05 0.32

estimate. Then LB(f̂) = (f0(0)− f̂(0))2 + (f0(1)− f̂(1))2. For illustration, we use

the first example again, (1)f0 = [0.75exp(rate = 3) + 0.25N (0.75, 0.25)]I[0,1], and

(2)f0(t) ∝ t/5 + (0.5− t)2, t ∈ [0, 1], a density with peaks at both the boundaries.

Table 3 summarizes the results and shows that the warped estimate has significantly

better boundary bias properties than a standard kernel method in all the cases.

S5.3 Choice of basis elements

We have performed the experiments with Fourier basis elements, wavelets and cosine

basis elements. The overall performance of the proposed estimator was very similar
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Table 2: A comparison of the performances for claw density example.

Method: Initial Shape Warped Estimate

Choice of fp Norm Mean std.dev Time Mean std.dev Time

Gaussian

L1 13.44 2.16 8.57 2.64

L2 1.80 0.20 < 1 sec 1.21 0.36 22 sec

L∞ 0.45 0.02 0.38 0.13

Uniform

L1 19.95 ≈ 0 8.97 2.52

L2 2.29 ≈0 < 1 sec 1.25 0.33 22 sec

L∞ 0.44 ≈0 0.38 0.11

Kernel

L1 13.45 2.05 8.55 2.72

L2 1.69 0.14 < 1 sec 1.22 0.35 22 sec

L∞ 0.39 0.03 0.39 0.13

Table 3: A comparison of the LB loss function for the warped estimate and the standard kernel method.

Setup: Kernel Estimate Warped Estimate

Example n Mean std.dev Mean std.dev

f0 ∝ 0.75 exp(3) + 0.25N (0.75, 0.25)

25 2.11 0.96 1.60 1.35

100 2.03 0.61 1.17 0.73

1000 2.32 0.29 0.82 0.36

f0(t) ∝ t/5 + (0.5− t)
2

25 2.89 0.98 2.39 3.53

100 1.90 0.81 0.61 0.91

1000 0.96 0.44 0.27 0.26



Dasgupta S., Pati D. and Srivastava A.

for different choices of basis elements. However, since the support of the warping

functions is compact, we recommend using trigonometric (Fourier and cosine) basis

for representation. Please refer to Efromovich (2010) and the references therein for a

more detailed discussion on this topic. When the sample size is small, Fourier basis

can result in spurious bumps near the boundaries, which is why wavelets can be a

good alternative.

S6 Some Properties of the Geometric Framework

S6.1 Advantages Over Direct Approximations

In the previous section, we have used the geometry of Γ to develop a natural, lo-

cal flattening of Γ. Other, seemingly simpler, choices are also possible but at some

loss in estimation performance. For instance, since any γ can also be viewed as a

nonnegative function in L2 with appropriate constraints, it may be tempting to use

γ(t) =
∑∞

j=1 cjbj(t), for some orthogonal basis B = {bj, j = 1, 2, . . . } of L2[0, 1]

as in Hothorn, Möst & Bühlmann (2015). This seems easier than our approach as it

avoids going through a nonlinear transformations. However, the fundamental issue

with such an approach is that Γ is a nonlinear manifold and one cannot technically

express and estimate elements of Γ directly using linear representations, not even in

a small neighborhood. Hothorn, Möst & Bühlmann (2015) uses Bernstein polynomi-



S6. SOME PROPERTIES OF THE GEOMETRIC FRAMEWORK

als, with monotonically increasing coefficients, to represent elements of Γ. However,

one does not reach the entire set Γ using such a representation. To be specific, it is

easy to find a significant subset of Γ whose elements cannot be represented in this

system. As a simple example, consider a γ =
∑4

i=0 ciBi,4 with c0 = 0, c1 = 0.4,

c2 = 0.3,c3 = 0.5, c4 = 1 (not satisfying the monotonicity constraint). Here, Bi,4

refer to the Bernstein basis elements of order 4. Even though this γ is a proper diffeo-

morphism, it cannot be represented in the system used by Hothorn, Möst & Bühlmann

(2015).

Another issue in directly approximating element of Γ that both γ and γ̇ are present

in the final estimate and one needs a good approximation of both of these functions.

However, a good approximation of γ does not automatically imply a good approxi-

mation of γ̇. In contrast, the reverse holds true as shown next.

Proposition 2. For any γ ∈ Γ, let γ̇app be an approximation of γ̇, and let γapp be the

integral of γ̇app. For all x0 ∈ (0, 1] consider intervals Ix0 of the form [0, x0]. Then, on

all intervals Ix0 , ‖γ − γapp‖∞ ≤ ‖γ̇ − γ̇app‖∞.

Proof: For any t ∈ Ix0 , the quantity |γ(t)− γapp(t)| = |
∫ t

0
γ̇(s)ds−

∫ t
0
γ̇app(s)ds| ≤∫ t

0
|γ̇(s)− γ̇app(s)|ds ≤ ‖γ̇ − γ̇app‖∞.t ≤ ‖γ̇ − γ̇app‖∞.x0 ≤ ‖γ̇ − γ̇app‖∞ 2

This proposition states that a good approximation of γ̇ ensures a good approxima-

tion of γ, and supports our approach of approximating γ via the inverse exponential

transformation of its SRSF to the tangent space T1(S+
∞). On the other hand, a direct
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approximation of γ will need many more basis elements to ensure a good approxima-

tion of γ̇.

S6.2 Estimation of Densities with Unknown Support

So far we have restricted to the interval [0, 1] for representing a pdf. However, the

framework extends naturally to pdfs with unknown support. For that, we simply scale

the observations to [0, 1] and carry out the original procedure. Let X1, X2, . . . , Xn ∼

f0, where Xis are n independent observations from a density f0 with an unknown

support. We transform the data as Zi = Xi−A
B−A , where A and B are the estimated

boundaries of the density. Following Turnbull & Ghosh (2014), we take A = X(1) −

sX/
√
n, and A = X(n) + sX/

√
n, where X(1) and X(n) are the first and last order

statistics of X, and sX is the sample standard deviation of the observed samples. Using

the scaled data, we can find the estimated pdf fw on [0, 1] and then undo the scaling

to reach the final solution. Turnbull & Ghosh (2014) provide a justification for the

choice of A and B as the estimates for the bounds of the density. They also discuss

an alternate way of estimating the boundaries using ideas presented in De Carvalho

(2011), and suggest that the Carvalho method produces wider and more conservative

boundary estimates.

Finally, using the fact that any piecewise continuous density function, with sup-

port R and range R≥0 , can be approximated to any desired degree by a strictly positive
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density function on some bounded interval [A,B] (under L2 norm, for example) , we

can extend our method to this larger class of functions.
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