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This supplementary file provides additional materials related to the newly proposed index in Section [3|in the
paper. It also includes proofs of propositions and theorems stated in the paper, and additional simulations

that support our conclusion.

S1 Brownian Motion Approach

We use the discrepancy between the characteristic functions and a particular weight
function to lead to our index @ However, in this section, we show that a Brownian
motion procedure also can derive our index @

Let W be a two-sided one-dimensional Brownian motion/Wiener process with ex-

pectation zero and covariance function |s| + |t| — |s — | = 2min(s, t),s,t > 0 (Székely
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and Rizzo| (2009, 3.3)).

Definition 1. The Brownian conditional difference or the Wiener conditional differ-
ence of a real-valued random vector X given Y with finite second moments is a non-
negative number defined by D, (X|Y) = E(XywX/;/[Y), where W does not depend on

(X, X" Y).
With this definition, we then have the following result.

Proposition 1. If X is an R? valued random vector, Y is an R? valued random vector,
and E[|X[> + E(IX?|Y)] < oo, then E(XwX{,|Y) is nonnegative and finite. Let X
and X' be iid, and Xy and X%, be iid; Ezpectations are taken over every random vector

except conditioning on Y if it appears. Then, (@ holds. That is,

C*(X|Y) = E[Dy (X[Y)].

Proof.

Dy (X[Y) = E[EXw Xy [Y, W)[Y] = E[E(Xw[Y, W)E(Xiy, [Y, W) Y]
= E{EXw|Y, W)}*Y],
which is nonnegative. Finiteness can be obtained as Székely and Rizzo (2009, page

1262). Note that D% (X[Y) = E[E(Xy X} |Y, X, X')[Y]. Now using the same argu-

ment on page 1263 of Székely and Rizzo| (2009), we have that

E(Xy XY, X, X) = E'|Xy - X/| + E|X} — X| - | Xy — X4 | — E[X — X/,
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where the first expectation E’ is over X', the second expectation is over X, and the last
one is over both X, and X’. Thus, by using the fact that X and X’ are iid, and Xy

and X4, are iid,
Dy (X[Y) = B[(E'| Xy — X'|)[Y] + E[(B[XYy — X])[Y] - E[(| Xy = Xy )| Y] - E[X - X/|.

By taking expectation over Y, and the fact that the first term and the last term
are equal, consequently, we have that C*(X|Y) = E[D%(X|Y)]. That is, again (6]

holds. ]

S2 Relations to DISCO

Our index does not require Y to be discrete. However, if Y is categorical, then it is
much intuitive and clear that our estimation method provides a close link to ANOVA,
MANOVA and, most recently DISCO (Rizzo and Székely| (2010))).

To be more specific, we can define the following population within distance and
sample within distance, total distance and its sample version, respectively. If we con-
itTX)

. LT . T
sider e X¥ as an observation, E(e? *v) as the group mean and E(e as the overall

mean in the typical ANOVA calculation, the resulting measures are exactly what are

calculated in ANOVA.

Definition 2. The population within distance is defined as:

W (X]Y) = EVL(X|Y)] = E [ | — Ee X Pw(t)dt;
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The sample within distance is defined as:

WAX|Y) = 3,0 pylle X — £, ()]

The population total distance is defined as:

THX|Y) = BITA(X|Y)] = E [ | — Bet™[2u(t)d;
The sample total distance is defined as:

TAX[Y) = 3,0 pylle X — fz ()]

We can have their respective equivalent formulas, stated below.

Proposition 2. The population within distance can be rewritten as:
WA(X[Y) = EVE(X[Y)] = E[Xy — Xy |;
The sample within distance can be rewritten as:
Wﬁ(XIY) - % 25:1 n_ly ZZ;’ZL |Xy,ky - valy|'
The population total distance can be rewritten as:
TXX|Y) = C*(X|X) = E|X — X'|;
The sample total distance can be rewritten as:
TAXIY) = & X0 S X, = Xy .

y,y'=1

The following result is a straightforward calculation, thus we omitted its proof.
Proposition 3. 1. T*(X[|Y) = C*(X[|Y) + W*(X]|Y);
2. TAX|Y) = C3(X]|Y) + WA(X[Y).

Under the null hypothesis, by SLLN, as n — oo, W2(X]Y) — E|X — X'|. Or note
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that E[T2(X|Y)] = E[W?(X]Y)], thus analogous to ANOVA, we may use test statistic,

CaX|Y)/(H —1)
WiX[Y)/(n — H)’

which is the ratio of between distance over within distance. Note that the previous test

statistic in Section [£.0]

nCi(XlY)  CGXY)/(H-1) n CGXY)/(H-1)

Sn TXXY)/n n—1T2X[Y)/(n—1)

With negligible factor "=, this is the ratio of between distance over total distance.

Note that —”C%gfm #-l) — R2

n c,n?

an estimator of RZ.

In particular, one can show that for response with two categories, the energy dis-

tance of [Rizzo and Székely| (2010, page 1038) is proportion to C*(X]|Y). Indeed, one

also can show that nC?(X|Y) = 25, and nW?*(X|Y') = 2W,, with « = 1, where S, and

W, are defined in [Rizzo and Székely| (2010)).

Classical methods of ANOVA or MANVOA for multi-sample usually require nor-

mally distributed error (see, e.g., |(Cochran and Cox| (1957)); Hand and Taylor (1987);

Mardia, Kent, and Bibby]| (1979)), especially for inference. When such condition fails,

one may apply F statistics via permutation test procedure (Efron and Tibshirani (1998);

Davison and Hinkley| (1997))). Rich literature exists in beyond testing the mean differ-

ences but on distributions, for instance, [Akritas and Arnold (1994) and

Krzanowski| (1999) for structured data, and |Anderson| (2001)), McArdle and Anderson|

(2001)), [Excoffier, Smouse, and Quattro (1992) and Zapala and Schork| (2006) with
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applications in ecology and genetics.

S3 The class of a-divergence

We also can extend our measure @ to a one parameter family of measures indexed
with a positive exponent . Note that in our previous application o = 1.
Suppose that E[Xy|* < co. Let C(X]|Y) denote the a—measure which is the

nonnegative number defined by

C2(a)(x|Y) = EnyX|Y(t) - fX(t)HZ =By /Rp |fXC|~?E;t)a;|tj|E§$)| dt

The a—measure statistics are defined by replacing the exponent 1 with exponent
« in the respective formulas @ and . That is, for instance, in () replace [ X, —
Xy, by [Xyr, — Xy ,|* Lemma |4.2) can be generalized for || - ||o—norms, so that
almost surely convergence of Ca®) (X]Y) — C*)(X[|Y) follows if the a—moments are
finite. Similarly one can prove the weak convergence and statistical consistency for «
exponents, 0 < a < 2, provided that a moments are finite. However, when a = 2, it
leads to 2E(uy — u)?, where py is the mean for group Y and p is the overall mean.
Thus in such a case, C2?(X|Y) = 0 iff gy = u for all Y. Furthermore, for 0 < o < 2,
nCa®(X|Y) = 28, and nW2*(X|Y) = 2W,, where S, and W, are defined in Rizzo
and Székely| (2010).

One can consider the Levy fractional Brownian motion {W&(¢),t € R}, with Hurst
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index H € (0, 1), which is a centered Gaussian random process with covariance function

(Herbin and Merzbach| (2007))):
EWa(OWi(s)] = [t + [s*" — |t — s t,s € R,

Using Lemma 1 of Székely and Rizzo (2009)), we can show that under E|X|** < oo and

E|Xy|*" < oo, for Hurst parameters 0 < H < 1, and h = 2H (0 < h < 2),

dt = B|X - X'|" - E|[Xy — X§|".

2 B | fxpy () — fx(t)]?

When h = 1, it is Theorem 3.1. Theory for 0 < a < 2 can be established similarly.

S4 Proofs of results in the paper

Proof of Lemma[2.1. 1f X LY, then fxjy(t) = E[e*" X|Y] = E[e""X] = fx(t). Thus
Cr v (X|Y) =0, so does C*(X[Y). On the other hand, if C*(X | Y) = 0, then it implies
that C2 v (X | Y) = 0 almost surely for Y. Hence, fxy(t) = fx(t) almost surely for ¢.
Let s € RY, then e Y fxy (t) = €' Y fx(t). Hence,
E<€isTYE[ez‘tTX|Y]) _ E<€z’sTYE[€z‘tTX])
E[eisTYez’tTX] _ E<€isTY>E[eitTX]
fxx(t,s) = fx(t)fx(s)

That means, X IL'Y. ]

Proof of Theorem[2.]. 1. C3(X|X) = 0 iff "X = E[e""X] almost surely for X, ¢;
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Note that the right hand side is constant with regards to X. Hence, X must be a
constant. And X = E(X) almost surely. If X = E(X) almost surely, the result is

obvious.

. For simplicity, in the following we omit the term w(t)dt in the integrals. Note that
by using the independence of (W1, Vi) and (Wy, Vy), suppose Wi, W, € RP,

Vi, V, € R? we have:

C*(W1+ W,|Vi+V,) =Ey v, / | Wi Walvievs — fwitws |

= Ev, v, / [E[(Ee™ W W2 v, VL) |V + Va] — faw, fws
Apply Propositions 4.6 and 4.5 of |Cook! (1998)), then W Il W5 |(V1, V3). Hence,
.. =Ev,v, / [E[(Ee® WV, Vo)E(e W2 |V, Vo) [V + Vo] — fw, fw, %
Use (W1, Vy) IL Vy, we further have

<= Ev, v, / B[ fw. vy fwave Vi + Va] = fw, fws |
=Ev,1v, / E[(fwi vy — fwi) Swavs + fwi fwave [ Vi + Va] = fw, fw,|?

= EV1+V2 / |E[(fW1|V1 - fwl)fW2|V2|V1 + V2] + leE[fW2|V2 - fW2|V1 + V2”2

Let a = E[(fW1|V1 - fwl)fW2|V2|V1 + V2]7 b= fle[fW2|V2 - fW2|V1 + VQ]?

--:E/|a|2+2E/|ab|+E/|b|2.
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By using Cauchy-Scwarz inequality twice E [ |ab] < (E [ |a|?E [ |b]*)"/?,

< [l e [ ey
That is,
C(W;+ W,V +V,y) < [E/ la?]"/? + [E/ |b|?]1/2. (S4.1)
By conditional Holder’s inequality, separately on a and b with power 2, then
C(Wi+Wy|V, +V,)
<& [Ufwiv, = S P24 B [ v~ faP? (512
= C(W1[V1) + C(W2|Vy).
We can see that if (i) W5 and V; are both constant, (ii) Wy and Vs, are both

constant, or (iii) Wy, Vi, Wy and V, are mutually independent, then we have the
equality. On the other hand, if we have the equality, then we must have equality
in and ([S4.2), which implies (i) or (ii) holds. If none of the (i) and (ii)
conditions is satisfied, the equality holds only if W; and V, and W3 and V5 are
independent, but Wy, V; and Wjy, V, are already independent, so they must be

mutually independent. We complete the proof.

. This follows from item 2. above by choosing W; = V; =X, and W, =V, =Y.
And the independence in item 2. means (i) X is constant; or (ii) Y is constant;
or (iii) both of them are constant, because this is the only case when a random

vector can be independent of itself.
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4. Note that by definition,

CXIY) = Ex[ | Ife(t) = fx(t) ot
By / (B ™ _ Eeit™) (Bt _ Beit™ )y (1)
Re
= By / B X XY =y, Y =y) - E(e" XX|Y =)
RP
— B(e" XY = y) + B XX\ (t)dt]
=Bl - B XY =y, Y =y)} + {1 - B(e" XY =y)}
+{1 = E(" XY = y)} — {1 — B XX }u(t)dt]

=Ey[-E [ {l—cos[t' X =X)[(Y =y, Y =y)]}uw(t)dt]

RP

FEE [ {1 cosftT(X — XY’ = y]}w(t)dt]

RP

+EE / {1 = cos[t" (X — XY = y]}uw(t)df] — By[E / {1 = cos[t" (X — XY }w(t)dt]
RP RP
Note that the last three terms are equal

=Ey[E [ {1 —cos[t"(X — X)]}w(t)dt]

RP

“EE [ {1 - coslt(X - X)|(Y = y. Y’ = y)]}u(t)d]

RP

=E [ {1—cos[t"(X — X)]}w(t)dt

RP

“E[E [ {1—coslt(X - X)|(Y = y. Y’ = y)]}u(t)d]

RP

<E [ {1—cos[t"(X —X)]}w(t)dt.

RP
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However,
CXIX) = EICx(XIX)) = E [ |6 ~ B Put)i
_ E/(l . eitTXEe—itTX N e—itTXEeitTX + EeitTXEe—itTX>w<t)dt

_ / (1 - Be™X B X )it = B [ {1 - cos[tT(X — X')|Jw(t)dt

RP
Hence, conclusion follows. Consequently, 0 < R. < 1.

]

Proof of Theorem 3.1 By the proof in part 4 of Theorem and Lemma 1 of [Székely,

Rizzo, and Bakirov| (2007)), we have
C)(X|Y)=E [ {1 —cos[t"(X — X" w(t)dt — Exy[E [ {1 — cos[t! (Xy — X4 )] }w(t)dt]
RP Rp
— B|X — X'| - B[Xy — X4|.

The last equality holds. Because E|X — X'| = EyE[(|]X — X'|)[Y] = E|Xy — X'|, and
hence, E|Xy — X'| = E|X — X'|, which immediately indicates that the first equality in

(@ holds. Thus we complete the proof. O

Proof of Theorem[3.2. 1. This can be proved easily by plugging X for Y in the second
formula of (). Because, EXy — Xy | =E,E[|X-X|[Y =y, Y =y]. X =Y,
then X' =Y" and X' =Y’ =Y = X. Hence, E|Xy — X4| = 0. Or by the proof
in part 4 of Theorem , and Lemma 1 in Székely, Rizzo, and Bakirov| (2007) we

have C*(X|X) = [(1 — B XEe~*" X)w(t)dt = E|X — X/|.
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2. By using formula @, and note that BB = I, we can prove it easily.

3. If X = g(Y), for some function g, then Xy = X%,. Thus the second term in
C*(X|Y) must be 0. Therefore, C*(X|Y) = C*(X|X), implying that R. = 1. On
the other hand, if R. = 1, then the second term in C*(X|Y) must be 0, which
means that almost surely for Y, there is only one X corresponding to such a value

of Y. Thus, X = g(Y).

Section [31: Conditional normal distribution.

- ) ds

mCH(X|Y) = /EY|E[6”X|Y] —EewXFS—2
_ E ispy—s2/2 EIE isXY st
= [ Exle ~ BEEX V)]

. 2 . ) - _ 2 ds
_ /Ey|€zs,uy /2 _poezsp,o s2/2 _plezsp,l s /2|2_2
S

_ /{popﬂezsuo—SQ/Q . ezsu1—52/2|2 +p(2)p1|€zs,u1—s2/2 i ezsu0—52/2’2}8_§

ispo—s2/2 ispn—s2/212 48
:/p0p1|e Ho / —e H1 /ls_2

. ; _ 2d8
= /P0P1|€ZSNO — et fPe =
S
. . _ 2d8
:/popl(Q_ezsA_e zsA)e s —
S

2ds
— /2p0p1(1 — cos(sA))e™® i 2pop1 F'(A),
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where F(A) = [(1 - cos(sA))e‘SQf—;. Note that F'(0) =0, and F’(0) = 0, but

F"(A) = /COS(SA)6_82(18 = Jre M

Thus
Y 2
F'(Y) = \/%/ e /4dz,
0
By using the function (error function, or Gaussian error function), erf(z) = \/%7 I e tdt,
we have that fOY e **dz = /merf(Y/2). Hence,
A Y 5 A
F(A) =7 / e dzdy = ﬁ/ Vmerf(y/2)dy
o Jo 0
A A2
= 7r/ erf(y/2)dy = 27T/ erf(y)dy
0 0
A A e
T e DT
where, we have used the fact that [erf(z)dz = zerf(z) + 6\_/; :
Finally, C*(X|Y) = 4pop:[Serf(5) + e_Aj/;_l]. O

Section [31: Bivariate normal distribution. Note that if X ~ N(u,,02), then E(e®X) =
; 52 2 32 2
et 3% and E(e*¥) = et 5%,

Hence, C*(X|Y) = F(p)/m, where

2
; _ 522 _s2 ds : p2s? e ?
F(p) — Ey‘ezspY 5 (1=p%) _ ez 2702 EylezspY+ — _ 1|2 ds
52 52
252 is Y+p232 —is Y—i——p%z 6_82
= [ Ey(e”® — e — e 1) ——ds
S

_ g2
= /(ep252 - 1)6 5—ds.
s
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. 282 00 252 n
By Taylor expansion, we have that e”*" —1 =" u. Thus,

n=1 n!
Fip)=p Y °
n=1

Note that G(p) is an increasing function, then

2(n—1)

/52(”_1)6_52d5 = p*G(p).

mC*(X|Y) = F(p) < F(1) = nC*(X|X).

In addition, F(0) = 0,F’(0) = 0. Simple calculation shows that F'(p) = 2097

1—p2
Therefore, we have F(p) = [ 725 ? QZ‘F —dz = 2\/7(1 — \/1 — p?), And we have:
2
CHX|Y) = ﬁ(l —V1=p%.
0

Section [3.1: Conditional binomial distribution. Note that if X|Y ~ Bin(n,qy), where

Y € {0, 1}, then we have that
CXIY) = [ BBy - B Pult)i
= Pop1 / [(qoe” +1 = qo)" — (que™ + 1 — q)"[Pw(t)dt
— oo [ | Z A ghe™™ Z k™ (1 — q1) P (t)dt
— o [ | S kM — g0 — g1 — )M Pu(r)de
k=0
~ o [ {i g1~ go)"* — g1 — )"}

X {Z clem™gh(1 —qo)" " — ¢t (1 — q)" }w(t)dt
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= pop1 / { Z cnenlas (1= a0)" " = i (1 = )" Mlgp(1 = 90)" " — 1 (1 — )" eV }w(t)dt

k,1=0

= pomn /{Zc (1 — g0)™* — (1 — )" Ml (1 — o)™ — (1 — )™

k,1=0

x (%D — 1) + 1) w(t)dt

= —popl{z Ll (1= a0)" ™" — ¢ (1 = )" Mlap(1 = g0)" " — (1 = q)" Ik = 1]} + 0
k,l1=0

= —popr[z enchlas (1= a0)" % — b (1 — )" Mlgh(1 — o)™ = ¢h (1 — )" ]Ik — 1]}
k,l=0

Now consider

Gl —q)" = —q)" " =(0— a1+ @) A —q)" " —gf (1 —q)"F

k
=2 ekl —a)'a (1 —a0)" " — (1 — )"

=0
= (90— 1) D _cilao—a) a7 (1= )" F +¢f[(1 = q0)" " = (1 —q)" "]
i=1
k n—k
= (qo —Q1)ZCZ(QO —q) ' = )"+ gl (@ — o Z 1—qo)" "' (1 —q)!
i=1 i=1
k n—k

= (q0 — Ch)[z Glao—q) ' (1 — )" —qf Z(l —q0)" " (1 = )]

i=1 i=1



XIANGRONG YIN AND QINGCONG YUAN

Therefore,
C*(X]Y)
n k n—k
= —pop1(q0 — @1 2{2 CnC Z (g — q1) z ! k Z(1 —q)"" = Qf Z(l - QO)n_k_Z(l - lh)l_l]
k,[=0 =1 i=1

n—I

l
x> dilao—a) e (1 —q)" T = dl Y (1= q0) A = )Tk =1}

=1 =1

When n = 1, then C*(X|Y) = 2pop1(qo — ¢1)%* and when n = 2, then C*(X|Y) =

4pop1(qo — @1 )*[1 + (90 + @1 — 1)) L

Section [3.1: Conditional Cauchy distribution. Note that g, q; > 0, and without loss of
generality we assume that ¢; > go. Define a function F;(x) = ffoo %ds, and integral is

taken in the principal as € to e=* when € — 0. We then have,

CH(X|Y) = / Ey|E[e™X|Y] — Ee"* |Pw(t)dt

_ b / el _ e—q1|t||2dt

@ 12
+o00
_ 2p0P1 / [6—2%15 _ 26—(%4—(11)15 + 6—2q1t}ﬂ
s t2
0
Look at
1
2 dt
(X‘Y ) pipl/ [€—2q0t _ 26_(QO+ql)t +e—2q1t]t_2

-1

2 € dt
_ p;)-pl \/e\ [6_2q0t _ 26_(q0+q1)t _|_ e—?qlt]t_2

Now by using 1.3.2.20 and 1.3.2.12 of [Prudnikov, Brychkov, and Marichev| (1986)), we
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have that
-1
2 ‘ dt
C*(X|Y;e) = p;)_pl / [e~ 200t — 9 (a0ta)t | e—qut]t_Q
2pop1, e ! e~ (q0+aq1)t
T - t 200 B:(—240t) — 2(_T — (90 + @) Ei(— (g0 + 1))
e—qut 1
T 2q1 Ei(—2q1t)]|¢
2 —2qot —(qo+q1)t —2q1t
_ “Pob1;_¢€ n 26 e
™ t t t

— 200 Bi(—2q0t) + 2(q0 + 1) Bi(—(q0 + 1)t) — 20 Ei(—2qut)][S

—2qot —(qo+q1)t —2qitq.—
But [—< tqo + 2¢ (qot ur e tql 1B " 0ase— 0. Thus, as € — 0 we can have

2p Y4 €
C*(X|Y;e) = 7(; =200 Ei(—2q0t) + 2(g0 + 1) Es(— (g0 + 1)t) — 21 Ei(—2q1t)]|

—2q1e7 !t

2 —2aq0¢™" ot —(qota)e™! gt
= o [_2%/ —dt +2(q0 + q1) / —dt —2q; / —dt]
@ —2qo€ t —(qo+q1)e t —2q1¢€ 13
2 (go+q1)e”t —t (go+q1)e —t
™ 2goe—1 t 2q0€ t
2quet ot 2qie ot
—2q1 / —dt + 2¢4 / —dt]
(qo+a)e? b (qo+a)e b

2pop
= 7(; . [2q0A1 — 2qo By — 21 Az + 2q, Bs).

But A; = [P emveymldy < (2g0) (g1 — qol)e 2@ — 0 as e — 0. Similarly,

2q0

Ay — 0 as € — 0. Now by using 1.3.2.13 of |Prudnikov, Brychkov, and Marichev] (1986)),
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we have
— (—(q0 + q1)e — (—2qo¢)"
By =1In| —In(2
(g0 + q1)e +; o n(2qo¢) ; o
G+ a1 = (—(q0+ @)e)F — (—2qoe)"
=1
" ow ; KTk
= (- 2
:lan+ql+Z( (g0 + @) — (= QO) bt as € — 0.
2(10 1 k"]{f 2(]0
While by similar argument, we have By = v
CA(X|Y) = lim C*(X|Y3€) = Apopn (goIn 0 ¢ In .
™ do +q1 do +q

Note that C2(X]Y) > 0, and it is 0 if ¢, = qo; However, C*(X|Y) > 0 increases as

q1 > qo; decreases as q; < qo. Thus C*(X]Y) = 0 iff ¢; = qo. O

Proof of Theorem [{.1. Following [Székely, Rizzo, and Bakirov] (2007, we have that

Ny ,Ny

_— 1
fxpy () fx, (1) = ) Z cost’ (Xyk, — Xy,) + 01
Y kg ly=1
- Ty, Myr
fX\y( :_Z Z COSt yky_Xy’,ly/>+U2
Y= ky,l, =1
HH Tyny

fX( Z Z COSt y ky — Xy/:ly/) + vs,

yy’ lkyl/ 1

where vy, vy and v3 vanish when integral is evaluated. Since
cost? (X—X;) = 1—(1—cost’ (X;—X;)), and /[1—costT(Xk—Xl)]w(t)dt = X=Xy,
by choosing k =y, k, and | = y,1,,, we have

cos tT(X%ky — Xy,ly) =1—(1—cos tT(vaky — valy))
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and / [1— cos (X, — Xy Juw(t)dt = Xy, — X0

by choosing k =y, k, and | = ¢/, [/, we have
cost’ (Xyx, — Xy1,) =1 (1~ cos " (Xym, — Xyi,))
and / 11— cos t7(Xyp, — Xy Meo(t)dt = X, — X1, |

We also have

|3 () = FROF = £, (8) Frey, () = Ry, (0 % (E) — Fe, (% (8) + fx() X (8).

Therefore,

TLyﬂ'L i 1 ny’ny
= nn § : E : |Xy ky lly/| - ﬁ E |Xy7ky - quly|
Yoy =1kyl,=1 Y key,ly=1
HH ny,n /

) Z Z |Xy,ky ’ly/"

yy_lkyl/ 1

And thus, we have

Ty Ty Ty, Ny
= E :E : E : ‘Xy,ky /l/ - § : § : |Xy,ky y,ly‘
y= 1y71ky,l/ 1 y 1 ykyly—l
Ny, Ty

- 9 Z Z |ka ’ly/|

yy—lky,l/ 1

H,H  TysTy Ny, Ny

- Z Z |vaky lvl ! Z Z |Xy ky — y,ly .

Y,y =1 ky,l, =1 y 1 k:y,ly—l
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Note that the summation in the first and third term after the second equality sign are

the same. We complete the proof. O]

Proof of Lemma[{.9 This can follow from Theorem 2 of [Székely, Rizzo, and Bakirov
(2007) and Theorem 3 of |Shao and Zhang] (2014). By applying SLLN of V-statistic to
achieve the conclusion.

Note that let &, (t) = fx;,(t) — fx(t), then C7, . (X[|y) = [|n,(t)[|*. Hence, by ,
we have C2(X[Y) = Ey 2, (X[Y) = By [|60r 2 = 2200, p, 142, () — SO
Define &,(t) = fxjy(t) — fx(t), and let uy,p, = exp(it' Xyx,) — fx)y(t) and vy, =

exp(it’ Xy x,) — fx(t). Then,

1 & 1 L&
Eng() = — > uys, = =D > vy, +&(1)
ky=1 y=1 ky=1

In integrals, we can use the symbol dw, which is defined by dw = w(t)dt, where
w(t) is defined previously. Define the region D(0) = {t: 0 < |t|, < 1/d}, for each § > 0,

and the random variables

ez S(Xly) = / 60y (1) 2o
D(9)

For any fixed §, the weight function w(t) is bounded on D(¢). Hence, C;, , , ;(X]y) is a

combination of V —statistics with finite expectation. By the SLLN for V —statistics, it

follows that almost surely

lim €2 5(X]y) = 2, (XJy) = /D e 0ra

n—o0
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Clearly C7,, 5(X]y) converges to C, ,(X]y) as § — 0. Therefore, it remains to prove

that almost surely

lim sup lim sup |C Xly) — Xly)| = 0.

w y n 5(
0—0 n—00

wyn(

For each 6 > 0,

2 (XIy) = €2y s (XI) = [

[t|<d

nFdot [l 0Fde  (513)

t1>5

For z = (21, ,2,)7 € RP, define the function

1 —cosz;
G(S) = /|;|<S M—1+pd2

By Lemma 1 of |Székely, Rizzo, and Bakirov| (2007), clearly G(s) is bounded by ¢, and
lim, ,o G(s) = 0. Using the inequality |a + b+ c|* < 3(|a|* + |b]* + |¢|?), and applying

Cauchy-Schwarz inequaltiy, we have that

|€ny ‘_Zuyky‘ +|_szy,ky|2+’§y(t)|2)

ky 1 y=1 ky=1
H ny
1 1
SRR SUTTNCNE S o LT R0 R W)
Y ky=1 y=1 ky=1

After a suitable change of variables, we have

|U ,ky\z
[ Ml <o 016X - X
<5 Cp

/| 5c| |ytl|€l dt < 2Ex|X — Xy, |G(IX = Xy 1, [0)
t[<o ~p
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Therefore, we have

6
/| 5 |€n,y(t)|2dw < n Z EX\y|X - Xy7ky|G|y(|X - Xy,kyw)
t|<

Y ky=1

H Ny
6
O3 X~ Xy X~ X, 9)+3 [ e (0P

y=1 k,=1 [t|<é

By the SLLN, then

nmwg/5mw@WMS6mMX—X®Gmx—X%>
t|<

n—0o0

+6E(|X — X'NG(|X — X'|6) + 3/ &, (1) [P dw

[t|<é

By the Lebesgue Dominated Convergence theorem, we then have

lim sup lim Sup/ €0y (t)Pdw = 0, almost surely.
[t|<d

6—0 n—oo

Now consider the second term in equation (S4.3)), using the fact that |u, x, %, [vyx, |, [&(0)]* <

4 and the inequality (S4.4) implies that |&, ,(¢)|*> < 36. Hence,

/ [ () [Pdw < 36 / - 36h(9).
It]>%

It|>5 Cplt|MFP
But h(d) goes to zero as § — 0. That means C;,, (X|y) — C;, ,(X|y) almost surely, for

w’y?”

any given y. And the conclusion then follows. O

Proof of Theorem[{.2 The argument is very similar to that presented in the proofs of
Theorem 5 and Corollary 2 of [Székely, Rizzo, and Bakirov (2007)) and that of Theorem
4 of |[Shao and Zhang| (2014). Let I'(-) denote a complex-valued zero-mean Gaussian

random process with covariance function covr(s, sg) = [fx(s—s0) — fx(s)fx(so)], where
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s,s0 € RP. Note that fx|y(s) = E(e"X|Y), fx(s) = E(e**), n, = [pyn], where n, is
the number of observations in Y € y, y = 1,2,...H and 25:1 ny = n. And fx(s) =

Ey fx|y(s) = X2y py fxjy(s), where py = P(y € Y).

1. Define the empirical process

Ty (s) = vyl fxp,(s) — fx(s)].

Under independence hypothesis, Ex|y[I's,(s)] = 0 and Exy[I'ny(5)ny(s0)] = (1 —
) fx (s — s0) — fx(s) fx(s0)] = (1 — " )covr(s, so). In particular, Ex, [Ty, (s)]> =
(1= 20— [ fx(s)P) < 1

Note that nC2(X[Y) = 3270 [T,y (s)][*

For each § > 0, define the region D(J) = {s : § < |s|, < 1/0}. For each ¢ we

construct a sequence of random variables {Q),,(0)} such that

o () Qn(8) 2 Q(6) for each § > 0;
o (i) limsup,,_,o B|Qn(8)—[[Ta(s)|[?| = 0asd — 0; T (s) = (Tua(s), -+, Do (s))-
e (iii) E|Q(d) — C*(X|X)Q| — 0 as § — 0.

Then the weak convergence follows from Theorem 8.6.2 of |[Resnick| (1999)). There-

fore,

nC3(X|Y) = anny (s)]]? = C*(X|X)Q.
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Following the construction in [Shao and Zhang| (2014) and |Székely, Rizzo, and

Bakirov| (2007)), we define

@0 = [ Iu(s)Pdo and Q) = [ AP
D(6) D(s)

where A(s) is the limt of T',(s), and |A(s)|*> ~ (1 — fx(s)?)Q.

Given € = 1/q > 0, ¢ € N, choose a partition {Dy}_; of D(d) into N = N(e)
measurable sets with diameter at most e. Then Q,(6) = S_n_, Jp, ITn(s)[?dw and
Q(0) = Xt [, |A(s) P

Define Q4(6) = Y331, [p, [Tu(so(k))Pdw and Q4(8) = S0, [, |A(so(k))[2dw,
where {so(k)}2_, is a set of distinct points such that so(k) € Dy. By multivariate
CLT and continuous mapping theorem, Q4 (6) D, Q1(9), for any ¢ € N. Note that
under independence of slicing and under dependence of slicing, the two resulting
A(s) are different but distributions of |A(s)|?> are the same (see Remark 1 and

Remark 2 below). Thus based on Theorem 8.6.2 of Resnick| (1999), (i) holds if

we can show that

limsup E|Q(0) — Q(d)] =0, (54.5)
and
lim sup lim sup E|Q%(0) — Q.(5)| = 0. (54.6)

q—00 n—00
Let By(€) = sup, o, B[[Tny (s)]* =Ty (s0)| and B(e) = sup, ;, BI[T(s)[*=[T(s0)[?],

where the supremum is taken over all s and sy, under the restrictions: § <
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Is]ps |S0lp < 1/6 and |s — sgl, < €.

Be) = sup E[|I(s)[* — [T(so)["|

$,50

=sup E[(T'(s) — F(So))m + T(s0)(I'(s) — T'(s0))|

5,50

< sup B'2|T(s) — T(so) P(BV?[D(s)]” + EV2|T(s0) )

5,50

< 25up E'2[[(s) — D(so)?

5,50
= 2sup |covp(s, s) — covr(s, so) — covp(so, s) 4 covp(sg.s0)|"/>.

5,50

Since fx(s) is uniform continuous in s € R?, it is clear that S(e) — 0 as € — 0.

To show ([S4.5), note that A(s) is the limt of I',,(s),

E|QY(5) - Q(6) = E Z /D B)) P — /D NECE

—F Z/D (|A(so(k))[2 = |A(s)[*)dw

§2B(1/q)/ w(s)ds — 0 as ¢ — 0.

D(3)

By using the same argument, we can show that (54.6|) holds as well. Hence, (i) is

true. To prove (ii), note that

E|/ 9)2dw — |Fn(s)|2dw|—/ E|Fn(s)|2dw+/ B|T, (s) [2dw.
RP |s|<o

[s|>1/6

By noting that Exy [Ty (s)* = (1 —2)[1 -] fx(s)|*] and following from the proof
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of Lemma 4.2, we have that
/ BT, () Pdw < (1= “1)E|X - X|G(]X — X'|9).
|s|<o
The fact Exjy|Tyy(s)[* < 1 implies that

/ E|T,,,(s)|*dw < h(6),

|s|>1/6

where h(0) is defined in Lemma [4.2] and goes to zero as 6 — 0. Thus (ii) holds.
Applying a similar argument, (iii) holds. Thus we complete the proof of (1).

. This can easily follow from Corollary 2 of Székely, Rizzo, and Bakirov| (2007) and
see Theorem 4 of [Shao and Zhang| (2014) as well.

Based on (1), nC2(X|Y) —2— C2(X|X)Q. By the SLLN for V—statistics, as
n—oo

n — oo, C2(X|X) — C*(X|X)|, almost surely. Therefore,

nC2(X[Y)/C2(X|X) —"— Q.

n—o0

. If X and Y are dependent, then C?(X|Y') > 0. Lemma [4.2] implies that when for
large n, C2(X]Y) > 0, and thus nC%(X|Y’) — oo as n — oo. By the SLLN, C3(X|X)

converges to a constant and therefore, as n — oo, nC(X|Y)/C2(X|X) — .
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Remark 1: Proof of Theorem under independence of slicing. Since Y is sliced,

Loy(s) = iy [fx1 () — fx(s)]

1 < .o 1 on &N
— ny o § :ezs Xy,ky - § : E :67,3 Xy,ky
n n
Y ky=1 y=1 k,=1

Then nC2(X|Y) = 311 [T, (s)||* And note that

Laa(s) tom mE ) (LS e — f()

Loals) | (LS e g (o))

(5 e A (S, e — ()
=AU,

A, i A, where

I—p —+/P1P2 -+  +/P1PH
—v/Pp2  1—py - —\/DopH

—/P1Pr —+/P2PH -+ 1—pg

A is an idempotent matrix with rank H — 1. by central limit theorem, U, 2, U, where
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U ~ N(0,0%1) with 02 = 1 — | fx(s)|*. Therefore,

le(S)
Fs) (1 —p)(1 - fx(s))
n2(s
’ D AU~N |0 ,
(1 —pa)(1 = fx(s))
Fn,H(S)
< D
D Day(s))* = U, AU, = [1—|fx(s)]] @,
h=1
follows continuous mapping theorem, where A(s) = AU, and Q ~ x%_,. ]

Remark 2: Proof of Theorem under dependence of slicing. Let [Z.(h) =l{Y,=
y(h)}v S = {517527"' 75H}7 S_h =S \ {Sh}7 IS(}fLL) = (Z?:l Iz(h)>7 MS = Hthl IS(Q)’
M;h = MS/IS(Q), Dn = HhH:1 “h and p = Hthlph.

Define

Then
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Note that

1 _isTX, p(h) n
= L€ I 1 A
Fn,h(s) = \/MNp (n Zt_l h ' - E § GZSTXt)

Ly, i =1
o D5 eisTXtIt(h)Ms_h — HTT s e XM,
= \/Np HH <l Zn I(h)>
h=1 \n t=1"1

(h) (0)

Yn  —Vn
- \/ -

where Vn(h)(h =0,---,H) are V—statistics. We denote the corresponding U —statistics
by UL (h = 1,--- , H) with kernel h® (¢, $7") = "X [W ek (b = 1,--.  H) and
U with kernel h(© (t,S) = e X ), respectively. There kernels are not symmet-
ric in their arguments but can be fixed by averaging over permutations. Note that
En™ = pfx(s) for h = 0,---,H. We consider the following projections of Ui

=25 B(X,) + B h =1, H and U = Z2 57 30(X,) + ERO

where

WM (X,) = E(hW(t,57M)X,) — ER™(t, S~

1
_Hp stXt[(h Z__fx —pfx(S),h:L"'vH;
Phn h'#£h

0" (X,) = E(hO(t, 57M)|X,) — ERO(t, 57"

1 T
_ isTX ( _

Let T, .(s) = 1/nhM. Applying Theorem 5.3.2 in Serfling (2009), we have

Pn

B — U2 = O(n?) as E|h(h)‘2 < oo and hence, /n(UY) — UM) L0 by
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Chebyshev’s inequality. Similarly, \/ﬁ(Vn(h) - UT(Lh)) 5o by Lemma 5.7.3 in Serfling

(2009) and Chevyshev’s inequality. Therefore, I', 5 (s) — [ps(s) 50forh=1,---,H.

Note that
V(U = pfx(s))
Ta(s) T .. 0 —m A
V(O = pfx(s))
~ f171,2(5) L 0 % 0 _ %
Fa(s) = =DPn .
V(O = pfx(s))
1;n,H(s) 0 0 nTH _ HTH »
V(U = pfx(s))
=p,'A,U,.

Applying multivariate Central Limit theorem,

where U ~ N(0,%) with ¥ = Cov </~11(X)> Also note that p, 2> p and A, o A,

where
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0 0 - pu —/Pu

Eventually, we have I',,(s) N A(s) by Slutsky’s theorem, where A(s) ~ N(0,02%) with

0% =1—|fx(s)]* and

I —p —+/P1P2 -+ A/P1DPH
1 - —v/P1D2 1—p2 Tt TN/ D2PH
Y= —5AYAT =
pio
—/P1Pr  —/P2pr -+ 1 —pu

Note that Y is idempotent with rank H — 1, then

ITon(s)” 2 [1— | fx(s)] Q,

1=

where Q ~ x%_,. O

Alternative proof of Theorem [{.4 using U—statistics method. Let D;; = —|X;—X}], ]i(h)

H{Y; =y} for h=1,---  H, and D;; = —|X; — X;| + Ex|X; — X| + BEx|X — X,| —
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Ex x/|X — X'|. Then

H n
cAxy)=Y nﬂh% > D, - L Z D
h=

1 1,j=1 7,7=1
H n 1 n
— N, .M
IS SN IS 3F )
h=1 1,7=1 3,j=1
H
=3 Dy 0
n, n n
h=1

where Vn(h)(h =1,---,H) and V"’ are V—statistics. We denote the corresponding

U —statistics by UM = i n171) Zi# hz(;l) with kernel hgl) = f)z-jli(h)l;h) forh=1,--- H,
and U\ = ﬁzlﬁ h(- with kernel h = D,;, respectively. Let C2(X|Y) =

Sl 22U — UL, then

nCr(X[Y) = nCi(X|Y) = n(Vi¥ = UM) = n(V” = U)

>
Il
—

M=
gs

n B 1 R
Dl = UPM) = (=3 Dis = UYY)
n

=1 =1

T
L

I
M=
EJE
3IH

(H — 1)C*(X|X).

1o

Thus, our objective is to show
nCHX|Y) 2 CHX[X)Q — (H —1)], (S4.7)

where Q ~ x%_;.
A special representation for hg-L) as in Serfling (2009, p.196) will be used. Let
{gbgf)()} denote the orthonormal eigenfunctions corresponding to the eigenvalues {AEJZ)}

defined in connection with hl(-?), ie., {gbgf)()} satisfies the following for h =0,--- , H:
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. h h h h
(i) B, vy o) (X5, )] = A o) (X, Vi)

1 mi1 = Mo

(i) Elohlom] =
07 my #mQ

(iii) limay oo B[R — M Aol (X, V)0 (X5, Y;))? = 0.

ij

Then we write th) =5 )\%L)gzﬁ%)(Xi,Y;)gb%L) (X;,Y;). In the same sense, we have

W (X0, Vi) = B, vphl = 500 Ao (X, Vi) E[oW) (X, Y;)]. Not that Ex, Dy = 0
S0 hl(-h) (X;,Y;) = 0. Therefore, E(gbgf)) = 0 since Var(hih)) = 0, for all m.

Similarly, let {¢,,,(+)} denote orthonormal eigenfunctions corresponding to the eigen-

values {\,,} defined in connection with hg.)). Therefore, E(¢y,) = 0 and we can deduce
from (i) and (ii) that:

(a) ¢ (X3, YD) = Jpdn(X) LY for =1, H

(b) 61 (X, 1) = 6n(X)

() 2l =\ =\, h=1, H.

The following are the explanation for (a) and (c), and the rest follows from the same

logic. From (i),
ARG (X3, Yi) = Erx, b 60 (X5, 15)]

prEx, [D;; WX, y™M), i Y, =y®
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for h=1,---, H. Hence, ¢ (X;, Y;) = c6,n(X;) 1" for some constant ¢ and ’\’Z) = A\,

-1 ... i i - 1
for h=1,--- , H. Required by (ii), ¢ = T

Let D = Y A[Q — (H — 1] and Dy = SSM  M\[Q — (H — 1)], where

Q ~ x%_,. putting 71" = D ik hg?), we have nU" = =T  In terms of

the above presentation for hU T = %Zi# e A,(ﬁ)(Xi,Yi)qﬁ (X;,Y;) and let

i g
=1 2D ik SM AN (X, V7)o )(XJ,Y]) for h = 0,---,H. Eventually, we will

show that

2D (54.8)

L
nC(X[Y) = [Z T =T

n—1
=1

by using characteristic functions. The proof is decomposed into three parts as follows.

o p(h) _p(0) () _p(0)
(1) Given e > 0 and s, Eew(Zh T 1) —Eezs(Zh AT T < e for M and

n sufficientlly large. Using the inequality |e* — 1] < |z|, we have

: n h 0 . n It 0
’Eezs(zh 1 nhT7(LL> T( )) _ Eew(Zh 1 nhT7(7,LI{4_T7§, z)w>

H
n
Z— ™ — 1"y — (1 — 1)

np
h=

H
n
< |s| (Zn—E W -1 |+ B n>—T£?§4>(>
h=1 "
H 971/2 971/2
§|s\{zn—h[E<TT§h)_T$4>] +{E(T£o>_@§?ﬂ>4)} }

<|s|E

h=1

A

2 2
Similar to Serfling (2009, p.197-p.198), we can show that 32°_, [Aﬁ,’;)] —E [hgp]
2 2
oo and K (TTS’” — Té@@) < 2Z:ZM+1 [Aﬁ,’;)] for h =0,---, H. Combining with

the fact that - LN o the conclusion follows.
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(2) Zthl %quh& — TT(L?JQ D, Dy We may write
M
T = 3 [(Wi) = RO
m=1

2
where W"), = n=1/2 Yo o) (X;,Y;) and RV, =n~? > [ (X, Y;)] . From

the foregoing consideration, it can be seen that

W, = (W noo W E) WT(LO)n)T D, W,,,

n,m n,m

where W,,, ~ N(0,X) with

VP - PE 1
and Cov(W,m, s Wim,) = 0 for my # may. Also, R%h)n Lol for h= 0,---,H. Let

AnEdiag(Mn—ﬁpl 1/%pgi),2'2:—1,thenAn£>AEdiag(1 s 19)

and AY AT has and only has non-zero eigenvalue 1 with multiplicity H — 1. There-

fOI'e, (Awn,m>T AWn,m 2> Qa where Q ~ X%{—l and

H M H
n n
> n_y;gf;g -1 = [( AW,,)" AW, — (Z phn—hR;’}Qn - R&)
h=1

(3) Given € > 0,|Ee*D — EeisPu| < ¢ for M sufficiently large. This can be seen

by Serfling (2009, p.199). Combining (1) with (3), we can establish (S4.8). To
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finish the proof of (S4.7)), we need to show that Y - X, = C*(X|X). Indeed,

CQ(X’X> = 22:1 )‘mE(b?n(X) = Z;j:l Am.-
]

Proof of Theorem[{.3. Note that C2 ,(X[Y) = 75 >, . [X; — X;| — 7, the first term is

a V-statistic, which is root-n consistent to E|X — X'|. For the second term,

i — E(m(y)) = %Z i(y:) — E(m(y))

= =S lye) = my)) + - D mlys) — Bn(y)

n-
=1
The first part tends to 0 based on Lemma [4.3] and the second part tends to 0 by LLN

theory, Thus Theorem [4.3] holds. O

S5 Additional simulation studies

In this section, we report additional simulations related to the examples in the paper.

Example 1. This is an additional example, following Example [6.1 We try other
dependency scenarios when p-value is far from 0. That is we simulate (X,Y) follows a
standard bivariate normal distribution with covariance p and sample size n. Tables
and [2[show the mean and standard deviation of the p-values using dCov, kernel methods
and slicing methods with different number of slices, under 100 replicates for n = 200

and 400. respectively.
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Sample sizes affect all methods. In general, dCov is the best which is not surprising
as the model is a “regression” type. For slicing methods, small number of slices are
preferred, H = 2,5 should be preferred. When p = 0.05 (signal is weak enough), or
p = 0.3 (signal is strong enough), methods of dCov, R.(gau), R.(epa) and R.(slice) for

H = 2,5 are quite consistent, especially for n = 400.

Table 1: Mean and standard deviation of p-value for n = 200 with 100 replicates

p dCov R.(epa) R.(gau) R (slice), H=2 R(slice), H=5
0.05 0.4691(0.2755) 0.4831(0.2951) 0.4727(0.2863) 0.43(0.2735) 0.5219(0.3013)
0.1  0.291(0.2743) 0.3589(0.2722)  0.3342(0.2787)  0.3512(0.2983)  0.3794(0.2889)
0.15  0.1469(0.1886)  0.2731(0.2514)  0.2579(0.2644)  0.2525(0.2659)  0.2422(0.2423)
0.2 0.0931(0.177) 0.1609(0.216) 0.1333(0.1953)  0.1469(0.2115)  0.1773(0.2376)
0.25 0.0165(0.0546)  0.0508(0.1336)  0.0354(0.0972)  0.036(0.0703) 0.0404(0.1007)
0.3 0.0064(0.0099) 0.013(0.0223) 0.0082(0.0116) 0.0279(0.1157) 0.0168(0.0348)
p  Re(slice), H=10  R.(slice), H=20  Rc(slice), H=40  Rc(slice), H=50 R (slice), H=100
0.05 0.4936(0.3011)  0.5(0.2952) 0.4879(0.297) 0.4982(0.2776)  0.5165(0.3034)
0.1 0.4072(0.2945) 0.4067(0.2825) 0.4082(0.298) 0.4328(0.2979) 0.482(0.2993)
0.15 0.2759(0.2467) 0.3356(0.2859) 0.3325(0.2622) 0.39(0.2799) 0.4421(0.2878)
0.2 0.2292(0.2645) 0.2878(0.2849) 0.3197(0.2682) 0.3751(0.2853) 0.4374(0.2801)
0.25 0.0583(0.1047) 0.124(0.1736) 0.2173(0.2387) 0.2394(0.2292) 0.3456(0.2741)
0.3 0.0348(0.0723)  0.0717(0.139) 0.1532(0.1907)  0.1487(0.1683)  0.28(0.2392)

Example 2. Following Example in the paper, we construct models (e)—(g),
where the dimensions of X and Y are the same as the models (a)—(d), except
that each individual random variable is independently generated from t, t3 and x3

distributions, respectively. The empirical type-I errors at the nominal level of 0.1 for

models (e)—(g) are shown in table [3] while at the nominal significance level of 0.05
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Table 2: Mean and standard deviation of p-value for n = 400 with 100 replicates

p

dCov

Rc(epa)

R.(gau)

R.(slice), H=2

R.(slice), H=5

0.05

0.4361(0.2778)
0.1848(0.2579)
0.0679(0.1457)
0.0085(0.0108)
0.0061(0.0058)

0.0047(0)

0.4167(0.2804)
0.2558(0.2591)
0.1573(0.2004)
0.0372(0.0712)
0.0115(0.031)

0.0049(0.0015)

0.4248(0.2615)
0.2459(0.2698)
0.1443(0.2025)
0.0234(0.0435)
0.0104(0.0369)

0.0049(0.0013)

0.4839(0.2788)
0.2161(0.2499)
0.1216(0.2132)
0.0322(0.0729)
0.0106(0.0186)

0.0048(8e-04)

0.481(0.3012)

0.2346(0.2579)
0.1292(0.1984)
0.0338(0.0678)
0.0129(0.0311)

0.0048(0.001)

R, (slice), H=10

R, (slice), H=20

R, (slice), H=40

R (slice), H=50

R.(slice), H=100

0.05

0.1

0.2

0.25

0.3

0.4795(0.2895)
0.2891(0.2697)
0.1992(0.2386)
0.0518(0.0833)
0.0228(0.0709)

0.0069(0.017)

0.5158(0.2951)
0.3392(0.2963)
0.2635(0.2503)
0.089(0.1257)

0.0525(0.1293)

0.0085(0.0144)

0.5516(0.3104)
0.3994(0.2952)
0.3267(0.2656)
0.1641(0.1894)
0.1019(0.1773)

0.0198(0.038)

0.5112(0.3205)
0.4154(0.3256)
0.3607(0.2798)
0.193(0.2037)

0.1212(0.1802)

0.0272(0.0493)

0.5389(0.3109)
0.4291(0.3047)
0.4389(0.3042)
0.2869(0.2448)
0.2036(0.2355)

0.0914(0.1334)

are shown in table [4| for models|6.2| (a)—(d), and in table 5| for models|6.2| (e)-(g). Again,

we have the same conclusion as in the paper.

Example 3. These additional simulations follow from Example 6.5 in the paper, but
with different combinations of a, p, 0% and 2. Figure [1| shows similar power changes

as in the paper. Again, kernel methods are the best.

Example 4. This example reports the computing time of dCov and the proposed slic-
ing and kernel methods. Huo and Székely| (2016)) discussed a fast computing algorithm
of the distance covariance measure, which reduces the computational complexity from

O(n?) to O(nlogn). We believe it is similarly possible to reduce the calculation com-

plexity of the proposed measure.
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Table 3: Empirical type-I error rates for 10,000 tests at nominal significance level of 0.1, using B

replicates for models (e)—(g)

(e) t2,p=5,g=1 (f) ts,p=5,9g=1

n B dCov  DISCO  Rc(slice) Rc(epa) Rc(gau) | dCov DISCO  R.(slice) Rc(epa) Rc(gau)

25 400 0.105 0.103 0.105 0.101 0.102 0.101 0.102 0.101 0.105 0.100
30 366 0.097 0.096 0.096 0.093 0.099 0.101 0.099 0.101 0.096 0.099
35 342 0.105 0.103 0.102 0.097 0.105 0.098 0.102 0.102 0.100 0.096
50 300 0.095 0.096 0.095 0.101 0.102 0.096 0.097 0.097 0.102 0.099
70 271 0.100 0.103 0.103 0.100 0.101 0.098 0.096 0.096 0.097 0.097
100 250 0.098 0.095 0.097 0.098 0.100 0.099 0.098 0.099 0.102 0.102

(8) x3.,p=5,q=1

n B dCov  DISCO  Rc(slice) Rc(epa) R.(gau)

25 400 0.100 0.097 0.099 0.099 0.099
30 366 0.099 0.097 0.098 0.096 0.097
35 342 0.097 0.098 0.099 0.099 0.098
50 300 0.102 0.102 0.103 0.103 0.104
70 271 0.100 0.097 0.097 0.095 0.101

100 250 0.100 0.100 0.099 0.100 0.096
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Table 4: Empirical type-I error rates for 10,000 tests at nominal significance level of 0.05, using B

replicates for models (a)—(d)

(a) N(0,1),p=5,9g=1 (b) t1,p=5,g=1

n B dCov  DISCO  Rc(slice) Rc(epa) Rc(gau) | dCov DISCO  R.(slice) Rc(epa) Rc(gau)

25 | 400 | 0.051  0.054 0.054 0.050 0.051 | 0.047  0.046 0.048 0.050 0.050

30 | 366 | 0.049  0.055 0.055 0.050 0.049 | 0.050  0.053 0.051 0.049 0.052

35 | 342 | 0.049  0.050 0.051 0.049 0.053 | 0.051  0.047 0.046 0.049 0.050

50 | 300 | 0.049  0.051 0.051 0.054 0.054 | 0.048  0.048 0.048 0.050 0.051

70 | 271 | 0.050  0.048 0.048 0.047 0.048 | 0.045  0.046 0.047 0.051 0.049

100 | 250 | 0.047  0.049 0.051 0.049 0.043 | 0.044  0.046 0.047 0.045 0.046
(¢) xi,p=5,9g=1 (d) x3,p=5,q=1

n B dCov  DISCO R (slice) R.(epa) R.(gau) dCov  DISCO  Rc(slice) R.(epa) R.(gau)

25 400 0.053 0.054 0.053 0.050 0.050 0.047 0.046 0.046 0.049 0.055
30 366 0.050 0.050 0.050 0.051 0.048 0.048 0.051 0.052 0.050 0.051
35 342 0.052 0.049 0.048 0.052 0.053 0.047 0.052 0.052 0.044 0.048
50 300 0.050 0.050 0.049 0.048 0.049 0.046 0.046 0.048 0.050 0.047
70 271 0.045 0.048 0.047 0.046 0.050 0.046 0.049 0.047 0.049 0.046

100 250 0.051 0.048 0.047 0.046 0.053 0.050 0.048 0.046 0.045 0.051
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Table 5: Empirical type-I error rates for 10,000 tests at nominal significance level of 0.05, using B

replicates for models (e)-(g)

(e) t2,p=5,g=1 (f) ts,p=5,9g=1

n B dCov  DISCO  Rc(slice) Rc(epa) Rc(gau) | dCov DISCO  R.(slice) Rc(epa) Rc(gau)

25 400 0.051 0.050 0.050 0.054 0.053 0.051 0.050 0.051 0.052 0.049
30 366 0.050 0.049 0.048 0.050 0.051 0.049 0.046 0.045 0.050 0.047
35 342 0.050 0.050 0.049 0.051 0.047 0.050 0.048 0.048 0.055 0.051
50 300 0.052 0.050 0.049 0.049 0.051 0.050 0.050 0.051 0.050 0.048
70 271 0.045 0.047 0.048 0.048 0.045 0.044 0.045 0.046 0.047 0.046
100 250 0.047 0.046 0.045 0.045 0.049 0.046 0.047 0.047 0.047 0.047

(8) x3.,p=5,q=1

n B dCov  DISCO  Rc(slice) Rc(epa) R.(gau)

25 400 0.050 0.048 0.048 0.047 0.050
30 366 0.051 0.052 0.051 0.048 0.050
35 342 0.050 0.050 0.049 0.049 0.050
50 300 0.046 0.050 0.050 0.050 0.048
70 271 0.049 0.049 0.050 0.046 0.048

100 250 0.051 0.052 0.050 0.045 0.049
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(e) a=0.3,p=10,02 = 0.5 and 0> = 1.

Figure 1: Empirical power with the change of sample size n for other different parameter combinations.
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Since the fast computing algorithm is written in Matlab, it would not be fair to
compare it with our methods which are written in R. In table [6, we compare the
computation time (in sec) using the dCov method and the proposed slicing and kernel
methods in R. We simulate X and Y independently from U(0, 1) with sample size n,
n goes from 32 (= 2°) to 2048 (= 2''). Compute the average running time for the
different implementations in R with 1000 replications at each sample size. We can see

that slicing method is the fastest, while dCov is the second fastest. The two kernel

methods are much slower as expected.

Table 6: Running time (in sec) for the direct dCov method, the slicing and kernel methods

Sample size  dCov R (slice) R.(gau) R.(epa)
32 0.0007 (0.0007)  0.0014 (0.0005)  0.0014 (0.0026)  0.0055 (0.0011)
64  0.0021 (0.0035)  0.0023 (0.0028)  0.0034 (0.0028)  0.0195 (0.0050)
128  0.0059 (0.0062) 0.0047 (0.0041) 0.0157 (0.0077) 0.0671 (0.0126)
256 0.0287 (0.0194)  0.0135 (0.0106)  0.0868 (0.0184)  0.2983 (0.0233)
512 0.1347 (0.0117) 0.0856 (0.0194) 0.6008 (0.0301) 1.4453 (0.0577)
1024 0.4103 (0.0322)  0.1994 (0.0028)  4.8327 (0.1463)  8.1123 (0.1168)
2048 2.5765 (0.1683) 0.9775 (0.0391) 42.7910 (2.4216) 46.6297 (18.6964)
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