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S1 Assumptions

We first introduce the smoothness classes of functions used in the nonpara-
metric estimation; see e.g. |Stone| (1982, [1994), Robinson| (1988)), Newey
(1997), [Horowitz| (2012) and (Chen| (2007). Suppose that X is the Cartesian
product of r-compact intervals. Let 0 < 6 < 1. A fucntion f on X is said
to satisfy a Holder condition with exponent ¢ if there is a positive constant

L usch that ||f(x1) — f(x)|| < L|jx; — x,]]° for all &1, x, € X. Given a
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r-tuple & = (v, ..., ;) of nonnegative integer, denote [a] = a; + -+ + «,

ol

a1 ar
Ox, " --0xy"

and let D* denote the differential operator defined by D* =

where © = (21, ..., 7).

Definition 1. Let s be a nonnegative integer and s := so+ 6. The function
f on X s said to be s-smooth if it is sg times continuously differentiable
on X and D*f satisfies a Holder condition with exponent & for all o with

[a] = sp.

We use the notation a®? := aa™ for a vector a. The following notation

are needed for our proof:

0(2) ::%, So(2) ::—%, (SL.1)
_ E[0(2)50(Z2)|X] _ E[0(Z2)U(Z)|X]

"X ="Fozx 0 "= Twox 0 B

S\(T,Z;v) = (1 — MZL,%)) m(X) , (S1.3)

So(T, Z: 0, 60) = _ﬁmm 0y — (1 - ﬁ) R(X), (S1.4)

o [Var(Zi0) ~ el X o ]

" _E{ m(Z; %) tr(2) U(X)}} ELT(Z;%)V7 <Z’%)} ’
(SL.5)

= Mm 2 B e efficient variance bound o
VVO_IE[ 7 ) (X)®] (the efficient bound of ) |

(S1.6)

Vo, = Var (Sg(T, Z; %0, 60) — HTS1(T, Z; 70))
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(the efficient variance bound of 6y) . (S1.7)

The following assumptions are maintained in this paper:

Assumption 1. There exists a nonresponse instrumental variable Xy, i.e.,
X = (X{,X3)", such that X, is independent of T given X; and Y fur-

thermore, X5 is correlated with Y.

Assumption 2. The support of X, which is denoted by X, is a Cartesian

product of r-compact intervals, and we denote X = (Xi,..., X,)".

Assumption 3. The functions E[O(Z)5,(Z)|X = «|, E[O(Z)U(Z)|X =

z] and E[O(Z)|X = x| are s-smooth in &, where s > 0.

Assumption 4. There exist two finite positive constants ¢ and @ such that
the smallest (resp. largest) eigenvalue of Efug (X )uj (X)] is bounded away

from a (resp. @) uniformly in K i.e.,
0 < @ < Ain (E[ur (X)ur(X)T]) < Apax (E[ug (X )ur(X)']) <a < oo .

Remark 1. Asssumption 4] implies that following results:

E[flur(X)|]*] = tr (E [ugx(X)ux(X)"]) = O(K) ; (S1.8)

2. the matrices @ - Iy x — Elug (X)ug (X)) and Elug (X )ug(X)']—a-
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I« x are positive definite, and

a< inf Eluyg(X)]< sup Euwg (X)) <a. (S1.9)
ke{lv'%K} ke{l,...,K}

Assumption 5. (i) The parameter spaces I' and © are compact; (ii) The
efficient score function S.1¢(T, Z;v,0) = (S1(T, Z;~),S2(T, Z;v,0))" is
continuously differentiable at each (v,0) € I'x©, and E [08¢s¢(7,6)/0(y",0)]

is nonsingular at (7o, 6p).

Assumption 6. The response probability m(x,y; ) satisfies the following

conditions:

1. there exist two positive constants ¢ and ¢ such that 0 < ¢ < w(x,y;7) <

c<lforallyel and (z,y) € X x R;

2. 7(x,y;7) is twice continuously differentiable in v € T', and the deriva-

tives are uniformly bounded.

Assumption 7. Suppose K — oo and K3/N — 0.

S2 Some useful results

We present some results which will be used in the proof of Theorems 1 and

2.



S2. SOME USEFUL RESULTS

S2.1 Matrix inversion formula

e (General Formula) Let A, C, and C~'+DA'B be non-singular square

matrices; then

(A+BCD)'=A"1-A'B(C"'+DA'B)'DA . (S2.10)

e (Matrix Inversion in Block form) Let a (m + 1) x (m + 1) matrix M

be partitioned into a block form

where A is a m X m matrix, b is a m dimensional column vector, d is

a constant. Then

AT+ 1ATBDTAT, —1A7'D
M= : (S2.11)
_1pT A1
k )

I =

where k =d — b’ A~ 'b.

S2.2 Discussion on ug

To construct the GMM estimator, we need to specify the matching func-
tion ux(X) The most common class of functions are power series. Sup-
pose the dimension of covariate X is r € N, namely X = (X1,..., X,)".

Let A = (A;,...\.)" be an r-dimensional vector of nonnegative integers
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(multi-indices), with norm [A| = >77°_, A;. Let (A(k))7Z, be a sequence
that includes all distinct multi-indicesand satisfies [A\(k)| < |A(k + 1)],
and let X* = | J P X; 7. For a sequence A(k) we consider the series

upr(X) = XM ke {1,..., K}. Newey] (1997) showed the following prop-

erty for the power series: there exists a universal constant C' > 0 such

that
((K):= sugHuK(ac)H <CK, (52.12)
xe
where || - || denotes the usual matrix norm || Al = \/tr(ATA).

S2.3 Convergence rate of L?> approximation

Suppose f : R" — R is the function we want to approximate. Let fx(X)

be the L*-projection of f(X) on the space linearly spanned by ux(X), i.e.
f(X) = Brux(X) (52.13)

where

-1

Br =E [UK(X)UK(X)T] E [ur (X) f(X)] .

In this section, we establish the L?-convergence rate of fx(X) to f(X),

which will be used for proving the theorems of our paper.

Lemma 1. Under Assumpitons[d and[{], suppose the function f:R" — R
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is s-smooth and fr is defined by (S2.13|), then we have
E[I£(X) = (X)) =0 (K7%) .

Proof. Since f(x) is s-smooth and the support &' is compact by Assumpiton
2} from Section 2.3.1 of [Chen| (2007), we know that there exists 5* € RX

such that

sup | f(x) — (8") "uk(x)| = O(K 7).

xeX

We first claim that

18 — Bl = O(K 7). (52.14)

With the claim (S2.14]), Cauchy-Schwarz inequality, and Assumption {4} we

can obtain that

E[I/(X) = fx(X)F]
= /X [ — 8" Tux(@) + [(5) Turc(@) — f(@)] } dFx (@)

<2(Bx — B)" /

X

ur (@)ux (@) dFx (@) (B — 87) +2 /X () T uk (@) — f(@)]” dFx (@)

<2l1Bic = 811 Ao (E [usc(X)urc (X)) + 2 sup ?

xreX

| £@) = (5) T ux(@)

2s
v

=2(|Bx — B> O(1) + O(K~7) = O(K~ %) .

We now prove the claim ((52.14]). Note that

Bic — B =E [ug(X)ug(X)T] " E [ug(X)f(X)T] = 5"
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-1

=E [ux(X)ur(X)']  E [ux(X)f(X)"]

B [k () ()] E [ (X (X) 47

-1

—E [use(X)ur (X)) E [u (X) {/(X) = (89 Tu(X)}] -

Then

185 — 67112
—tr (B [ure () (30 7] B [use (0 {700 = (57 Tue (0} 78 [ure (0ue(07] )
mas (]E [usc (Xure(X)] *1)

o (E e (XY (7] 72 B [ure (30 {70 = (89T u(X)}] 7 B [use (Oure (%) 7] ‘%)
=Amax (]E [ (X s (X)7] *1)

B[{70) — (8) T ur () ure ()] E [ure X)ure ()] E [ure (X) {1(X) — (89 Tu(x)}]

“Amax (]E [ (X)ure (X)7] _1) E

[ [{700 = (5T ux (30} ue (30T B [ ()i (07] e (%)

]
Amax (E [uK(X)uK(X)T] *1) E Uf(X) - (5*)TUK(X))2]

2 2s
sup ‘f(m)—(ﬂ*)TuK(m)’ =O(K 7),
xeX

<Amax (JE [UK (X)uk (X)T] _1)
where the first inequality follow from the fact that tr(AB) < Apax(B)tr(A)

for any symmetric matrix B and positive semidefinite matrix A; the second

inequality follows from the fact that

-1

E [{/(X) — (5") Tux(X)} ux (X)) E [ux (X)ur (X)) ug(X)

is the L2-projection of f(X)—(8*)"ux(X) on the space spanned by ux(X),

which implies

[ [{700 - (5 (30 e ()7 B [ (0 ()] e ()

L2



S3. PROOF OF THEOREM 1

This complete the proof of the lemma.

S3 Proof of Theorem 1

Define the objective functions:

N T N
A 1 —~-1]1
Qn(7,0) rz{NZgK(Ti,Zi;%@)} W, {NZQK(E,Zi;%H)} 7
=1

and

Qo(7,9) =E [9x(T, Z;7,0)] E[W o] 'E[gx (T, Z;~,0)] .

By definition, (¥,0) and (vo,6,) are unique minimizers of Qu(-,-) and
Qo(+, -) respectively. Note that

|QN('Y’ 9) - QO(’Yv 0)'

N T N
—~—1 1

N
+ Bl (T, Z:7,0)] " {Wo —E[Wo] ™'} {}V ;gK(Ti,Zi;% e>}' (3.16)
—~ 1 N
+ B lgxc(T, Z;7,0)] W], {N > 9x(Ti Zi7,0) — Elgxc (T, Z;%G)]H . (s3a7)
Consider the term (S3.15)). Let
N N
= % > 9k (Ti, Zi5v,0) — E [gx (T, Z;7,0)] and as = Z (Ti, Z::7,6)

and A\pax(A) (resp. Amin(A)) denote the maximum (resp. minimum) eigen-

value of a matrix A. We have that

/\1/\1
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S)\max (CLQ(ZJ) : >\max (‘//‘\/(;2> : ||U,1||2.

By Assumptionsand |§|.1, we have Apax (aQa;) = 0,(1) and Apax <I/7[\/'82> —
[)\min (ﬁ\fO)] o O,(1). Note that

E [llat]?] = [lgxc (T, Z:%,0) — Elgic(T, 2%, OlI] < +-E [l (T, Z:,0) ]
1 T \? ) 1 T 2
=2 | (1w 0|+ 8 [(9 -z ) }
1 o 1 K
< 00 - Ellux (X + -0 <0 ().

where the second inequality holds because of Assumption @1 that w(Z;~)

is uniformly bounded away from zero; the last inequality holds because

Ellluse (X)]°] = tr (Elus (X)ux(X)"]) < Ao (Elurc(X)usc(X) 1) - K = O(K).

Therefore, ((S3.15)) is of O,(1/K/N) by Chebyshev’s inequality. Similarly,

(S3.17)) is also of O,(y/K/N).

We next consider ((S3.16)). Note that
(BT =[Efax] ™ { Wy —~EWo) "} as| =Elaa) T {Wy" ~EWo| '} azal {Wy' —E[Wo) "} Ea)
max (aza] ) Elaz) T {Wo ' —E[Wo] = }{W," — E[Wo] !} E[az]
=Amax (aga;) - tr (]E [a2] E[az] " {‘//[\/81 — E[Wo]_l} {‘//[781 — E[Wo]_l})
s (207 ) Amax (Elaz] Efao]7) - e ({Wo ' —E[Wo) = J{W, " —E[Wo]'}),
where the last inequality follows from the fact that tr(AB) < Apax(B)tr(A)
for any symmetric matrix B and positive semidefinite matrix A. By As-
sumptionsand@l, we have that A\« (aga;) = 0,(1) and Apax (E [as] E [aQ]T> =

O(1). Note that
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( Wi —E[Wo|™ }{WO _E[Wo]” })
—tr (VT/Q {E [Wo] —Wo} E[W o] "E[Wo] {E[WO]—WO}V’%l)
—tr (VT/JIV/[?;l {E[ﬁ?o - WO}E[WO |7 E[Wo] ! {]E W] — VTIO})

~—1

Dmax (Wo W) - tr ({EIWo] - Wo } BIWo) E[Wo]* {E[Wo] - Wi })

“Am (WO WO) tr( W] 'E[Wo]~ {]EWO]—WO} {E[WO]—WO})

max (VT/; vT/g).Amx( [Wo] 'E[W,]™ ) ({E[VT/O]—VT/O}{E[VT/O]—VT/O})
=Up KW s
(%)

where the last inequality follows from the following fact and a use of Cheby-

<0,(1)- 0 - | Wo — E[Wa |

shev’s inequality:

o[-l ] -2 |3

Z uK(XZ)uK(XZ)T - E[UK(X)UK(X)T]

=B [ (Xuse(X)T — Bl (X use (X))

1
_N
< 5up @) - Ellluc(X) ] = ;- O(K?) - O(£)

K3
TN

Ef]lur (X )ur (X) "ug (X )ug (X)"|]

Then (S3.16) is of O,(y/K3/N). Therefore, for each (v,0) € I' x ©, we

have

1Qn(3,0) = Qo(,0)| < |EZTH)| +|E316) + [EZID| = O, <\/§) +0, < ﬂi) +0, (ﬁ)

= 0,(1). (S3.18)
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where the last equality follows from Assumption [7} Next, we strengthen
above convergence result to sup, gjerxe [@n(7,0) —Qo(7,0)| = 0,(1). Note
that

N N T

N . T —1
Qn (1, 0) = {%Z (- -2) mxi)} [% menmxﬂ {% > (1-sz) ux<xi>}

i=1 i=1

N

s = x]) {55 (0 i) )

where the operator IEHX | is defined by

Il
z|
iy
7~

=)

-1

E[¢(Z)|X] := {]17 Z¢(Zi)UK(Xl)} [i, Z“K(Xl)uK(XZ)T] uk (X), Vo(-) € L%,
=1 =1

which is the least square projection of ¢(Z) on space linearly spanned by

the basis ux(X). Note that

A 2
IV v,00@Qn (7, 0l =N Z

i m(Z;7) m(Z;7)?
+2- 1%(9— I U(Z-)) : iZN: L V. m(Z;v)U(Z;)
N~ m(Ziy) N & n(Zsv)? 7 '
1 & T
t N; (0_ W(Zi;v)U(Zi)>

2 1 N N
+N§::

E[I—L‘X:Xl]

g ™(Z;7) pas
()| |y e
1 & T
2 N;(eﬂ(ziw)wzi))"

Using the least square projection property and Assumption [6], we have that

for all (v, 0):
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where C' := sup, cr [|[7(+;7)|loo < 00. Therefore, sup(, g)erxe ||V(%9)QN(77 0)|| =
Op(1). Similarly, we have that sup(, pierxe |V5.0Qo(7,0)|| = Op(1). All
conditions imposed in Corollary 2.2 of [Newey| (1991) are satisfied, then it

follows from Corollary 2.2 of |[Newey| (1991)) that

sup ’QN(77 9) - QO(’V? 9)’ ﬂ) 07
(v,0)eT'x©

which implies the consistency result ||(¥,6) — (70, 60)|| = 0.

Next, we establish the convergence rate ||(¥,6) — (70,0)| =
O,(N~%2). Using the first order condition of optimization in Step I, we

obtain that

Gr(3,0)T - Wy - V,4Gi(7,0) =0 (S3.21)
An application of Mean Value Theorem yields:
Ouxpin) = Gk (10000) W+ [1:95.0Gc 0, 00)|
+ (VNG = 0)T, VN( - 60)) - [%VWGK(&, é)} Tt {%V%QGK(’Y, é)}

+[yerGd] W [ £ 906xE.0)] (VEG -0 V- 0-00)" (s322)

where (7, 6) lies on the line joining (¥, 6) and (o, 6y). Obviously, in order

to show ||(¥,0) — (70, 00)|| = O,(N~1/?), it suffices to establish the following

resutls:
I —-1 |1
ﬁGK(’)/(), 00) : WO : NV%QGK(’}/(), (90) = Op(l) s (S323)
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{ |:%V'y,9GK(:Y, é)] " w,' . [%VWG’K(&, é)] }_1 = 0,(1), (S3.24)
{%GK@@T W %Vi,eGK(%é)} = 0p(1) . (S3.25)

We first prove (83.23)). By computing the second moment and using Cheby-

shev’s inequality, Inequality (52.12), we can obtain that

0, ( %) | (83.26)
W — E[VT/O]H ~0, (\/?) , (53.27)
=0, <\/§> , (S3.28)

1 1 K
Nvi,eGK(%,eo)—E[Nvi,gGK(vo,eo)]H :Op( N) . (S3.29)

Using ([S3.26)) and (S3.27)), we can deduce that

L
vN

1
— 0
NGK(%a 0)

1

NV%QGK (70, 90) - B(K+1)><(p+1)

b

\/NGTK(VO,@()) E[Wo] " Biisi)x(p+1) + 0p(1) -

G (70,60) - ﬁ\/gl : [%V’Y,OGK(’YOaGO)} =

Computing the variance of N‘l/QG}((fyo, 6) -E[ﬁ\/o]_l B (k41)x (p+1) Yields:
1 —

‘ Var (WGTK(’Y(N 90) . ]E[WO} 1 . B(K+l)><(p+1)> H (8330)

=|| Bl x40 EIWol E [gx (T, Z570, 00 %] EIW o] Buicixip)|

o~ 2
= MB?KH)x(pH)E[Wo}719K(T’ZWO’GO)H }

+E |6

U(Z)

* " 7(Z;0)
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<2.E IE {%w(xﬂ E [ure (X)%2] " uge (X) 2'{1_7r(ZT;w)}T
o o [ZentZn)] g {go_ﬁ(ZTMUm}T
{E %—%U(Z)Q

<2(14+c¢ ) E HIE {MW(X)T} E [ur(X)®?] " uk(X) ’

m(Z;0)

+0(1) +0(1).

Note that E [MUK(X)T} E [ux (X)®2] " ug (X) is the L2-projection

7(Z;v0)
Of Vym(Ziv0)
2
:| < 00.

m(Z;v0)

on the space spanned by ux (X)), which implies that
} . ‘vmz;%)

E
7(Z;70)

HE {%“Wﬂ B [ure (X) %] ur(X)

Then we have

1 _
[Var (G0 BT - B ) | = 000

which implies (S3.23)) by Chebyshev’s inequality.

We next consider to prove (|S3.24)). Note that

1 T~ |1
[va,QGK(Vve)} ’ WO ' |:Nv7,9GK(779>:| =

where

— ) 1 N N T ®2 1 N T ®2
M, (7) =N § E {7ﬂ(zlf7)2vﬂ(zm)‘xi] + {N § ﬂ(Z_T’y)QU(Zi)V.YTr(Zi;’y)} ,
- 19 i—1 Ty

— @) I T
M) =5 Y~ 33U (Z0)Vm(Zi57).

By the least square projection property and Assumption [6, we have that
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for all v € T,

T 2
————5U(Z:)V1(Zi;7)

N
— 1) 1
HM’”XPW)H <y 2 m(Zi;7)?

2 1N
+ =
v
N
N

E {L’:Wvﬂ(zm)'xz}

2

Vo (Zs;7) U(Z:)Vym(Zis7y)

— || m(Zis7)? — W(Zz,v
0?1 & )
SQT+ A ‘N;‘U(ZZ)‘ = 0p(1),
and
—(2) N 20 1 & 2
| M pxa (v Z U(Z:)Vyn(Zisy) §67~NZ|U(Z1)| =0p(1)
i=1 - =1

Therefore, we can justify (S3.24)).

Proving is similar to proving sup ., g)erxe |QN('y, 0)—Qo(v,0)| &
0. We can first show that for each fixed (v,0) € T'xO, [N"'Gx (v, (9)]T-ﬁ7(:1-
(NTIV2 ,Gc(7,0)] —E [gie(T, Z: 7, 0)]T-E[Wo] - [V2 g1 (T, Z57,0)] =
0p(1), then strengthen to sup(, gcrxe [N Gk (7, 0)]T-ﬁ\/0 [NTIV2 ,Gk (7, 0)]—
Elgx (T, Z;7,0)]7-E[W o] -E[V2 495 (T, Z;,0)]| = 0,(1). Then in light of
the facts that [|(,6)—(v0, 60)|| < [|(¥,6)—(70,60) | = 0 and Elgx (T, Z; 70, 60)] =
0, we can obtain (S3.25).

Finally, by combining (S3.23), (53.24), (53.25)), and (53.22)), we can

conclude our desired result ||(¥,0) — (70, 60)|| = Op(N~'/2).
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S4 Proof of Theorem 2

The consistency result [|(7,8) — (70,60)|| = 0 holds by using a similar
argument of showing ||(5,6) — (70,60)|| 2 0 in Theorem 1.

We next show the asymptotic normality for the infeasible estimator

(7,0). Using the first order condition of optimization, we can obtain that

Gr(7.0)"  Digiiyxisny VaoGr(7:.0) =0,
then an application of Mean Value Theorem yields:
01 (p+1) =%G}<(WO,00) ' D(_I;+1)><(K+l) ’ {%VMGGK(VO’GO)]

o 1 * T — 1 * 0*
+ (\/ﬁ(fy - 'YO)Tv\/N(G - 60)) . [Nv'y,@GK(’Y 70 ):| : D(I%+1)X(K+1) . [ﬁv’y,GGK(’Y 70 ):|

1 * p* T - 1 *  pk = o T
+ [ﬁem 0 >} "Dy (k1) [ﬁv?y,eGK(w 6 )} (VNG =07, VN - (0 -60))" .

(S4.31)

where (7*,6%) lies on the line joining (%,60) and (70,6p). Note that the

expression ([S4.31]) has the same structure as (S3.22)), except for that the

weighting matrix used in (S4.31]) is D(_I;+1)X(K+l

—~ —1 ~
used in (53.22)) is W, . Using a similar argument of showing sup, gerxe |@n (7, ) —

) while the weighting matrix

Qo(7,6)| & 0 and (S3.25)), we can obtain the following results:

1 * * T — 1 * *
{NVW,HGK(V .0 )] 'D(Ii—l-l)x(K—H). {NVWGK(V 0 )]

:(B(K+1)X(p+1))T ) D(_I%+1)><(K+1) Bk 1)x(p+1) op(1) (54.32)

and

1 * % T — 1 * %
"0 DG | VoGl 00| =0, (1) (543
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Combining ((S3.28]), (S4.31)), (S4.32), and (S4.33) together, we can deduce

that

VN =)

-1
-1
= - {(B<K+1>x<p+1>)T D gyt B<K+1>x(p+1>}

VN(0 — 6y)
) 1
(Br1)xor1) D (e (k1) ° \/_NGK('VOa 0o) + 0,(1) .
Then

\/N(’_Y - %) | -1
Cov = ((B<K+1>x(p+1))T "D ki1 (x+1) B(K+1)x(p+1)) +o(1)

VN (G — o)

=Vik + 0(1) .

Therefore, we can obtain that

~1/2
—-1/2 o -1
\/NVK == {B-(FK+1)><(p+1) 'D(K+1)><(K+1) ‘ B(K+1)X(p+1)}
0 — 6,
BT D} e 6 1
CEP (KA (pH1) T (K1) X (K+1) \/_N & (70, 00) + 0p(1).

(S4.34)
. . ~1/2 7=

We next show that the normalized estimator v NV K con-
6 — 6,

verges to the normal distribution. The key part of the proof is to ver-

ify the Lindeberg type conditions imposed in [Eicker| (1966)). Note that
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\/LNGK(%, 6p) can be written as:

\/LWGK(%’QO) = \FZZ ! [ Z—VO)} ug(X;)
WZZ 1[90 WU(Zi)}

=A(K+1)xN(EK+1) " EN(K+1)x1 >

where
\/Lﬁth, O1xn, O1xn, -+ O1xn, O1xn
O1xn, \;_N]-lxN7 O1xn, 01w, Oixn
A(K+1)><N(K+1) =
01><N; 01><N 01><N7 \/Lﬁ]-lxN7 01><N
O1xn, O1xn Orxnv, 01N \/Lﬁhxzv

isa (K +1) x N(K + 1) matrix, and

5N(K+1)x1 = (’leN(l), ce >U1><N(K)a wlxN)T )

SRTETSY | FRE S VSN PR S P

T1 TN
=0y ———U(Z,), - 00— ———U(Z
WixN (0 W(Zl;')/o) ( 1)7 » V0 W(ZN,'YU) ( N))
for k € {1,..., K}, and 11y (resp. Oixn) denotes a N-dimensional row

vector whose elements are all of 1’s (resp. 0’s). From Eicker| (1966), the fol-

lowing Lindeberg type conditions are sufficient to ensure v N VI_(I/ 2 (7 — 70,

T
0 — 90) i> N(O, ](p+1)><(p+1))7 namely,
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T T -1 .
L. ie{1,.?}\?€§<+1)}ai (A(K+1)><N(K+1)A(K+1)><N(K+1)) a; — 0, where a; is

the ith column of A(K+1)><N(K+1)§

ke{l,.. K}
0 and
T 2 T
o[ O (e s 0
as § — 00;

Conditions 1 is natually satisfied by the definition of Ak 1)xn(x+1). Con-

dition 2 holds because

(=) w1 (1 ) o] =)

< (1 + é>2 B wre (X)21 (]ukK(X)| > s (1 + %) _1>

where ¢ > 0 is lower bound of the propensity socre 7(z; 7o) (Assumption [f]),

E

§—00,
—0,

and the last convergence holds from the fact sup E[uZ,(X)] < @ (see
ke{l,..,K}

(S1.9)) and Dominated Convergence Theorem; the second part in Condition

2 also follows from Assumption [6] and Dominated Convergence Theorem.

Condition 3 holds because

E

T Vo] e[ 2] 5 L ey s LB
(1 W(Z;vo)) x(X) ] E{ wz) X) }> B [uxc(X)*?] 2 = Do
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2
. . . . T 2 .
which implies that ke{lnf K}E {(1 - m) urr (X) ] > 0; the second

.....

part in Condition 3 is obvious. Therefore, Conditions 1, 2, and 3 are all

satisfied, then we can conclude our desired result that

+
_ _ d
\/NVKI/Z ( ¥ —,0 =t > - N (07 I(p+1)X(p+1)) :

S5 Proof of Theorem 3

Morikawa and Kim|(2016]) show that the efficient variance bounds of (7o, 6)
is Vg = E[Seff(T,Z;yo,Ho)@]_l, where S.;p = (S],5:)" and S, S,
are defined in and respectively. Let V., (resp. Vj,) be the
efficient variance bound of 7, (resp. 6p). After some simple computation,

we can find out

_ 1 —7(Z;v) 2 -
V., =E 7T<Z—;%)m()()®
and
Vo, = Var (S2(T, Z;~0,00) — ' S1(T, Z; 7)) -
where
o [V (Z0) LG O
o = | pz) - vy B | Tz |

.
From Theorem 2 we know have that \/NVI}I/2 ( 7 — 70,0 — 6, ) 4

N (O, ](p+1)><(p+1))7 therefore to prove Theorem 3, it suffices to show Vg
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converges to the efficient variance bound of (o, o).

-1
Since Vi = {BEK-H x(p+1) D(I%+1 )x (K+1) B(K+1)X(p+1)} , we first

find the expression of Vi without the inverse. Using the inverse matrix

formula (S2.11)), we can have:

AK><K + lAf(lbeKb}(A;(lxKa _%A;(lbeK
D I%—i—l)X(K—i-l) )
_%bII;A;(lxK? %

(S5.35)
where
AKXK — {MUK(X)QM} bK E |:1 — W(Z;’VO) U(Z)UK<X)

7(Z; ) ’ (Z; )
(S5.36)
T 2
= ——U(Z b Al . .
c (90 mrenid )) ] bL AL b (S5.37)
Then we have
Apoa i’p
BEK+1)X(p+1) D(l;—l) x(K+1) Bk 11)x(p+1) = )
A
P
where
~ V,7(Zi%) ] Vor(Ziow]
Ay, =FE | 2" 0 (X)T|- AL . E X ’ - b,b
pPXp W(Z;VO) uK( ) KxK UK( ) (Z;")/O) +c P
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V'YW(Z; ’YO)

- 1 [V7(Z;70)
b, = —_"F |77/
[ m(Z; )

1
: X)|-A2 b+ —E
p - 7r(Z;’yo) U ( )] KxK K+C [

U(Z)} |
(S5.39)

Using the matrix inversion formula (52.11)) again, we can obtain that

-1
-1
V= (BEKH)X(pH) ’ D(K+1)><(K+1) ) B(K+1)x(p+1)>

1 A 7 1T % 1 A
Apo + EApobP pApo’ _EApobP
~T ~ _1
_% pApo %
where
I R
C .= E — pApobp .
Then we can obtain that
_ ~—1 1~-1+ 7~-1
Var(VN®H = %)) = A, + = A,0,b) DA+ o(1), (S5.40)
_ 1
Var(VN( —6y)) = = +o(1) . (S5.41)
c

In order to establish our Theorem 3, it suffices to show that (55.40) and
(S5.41) converge to V., and Vp, respectively. The proof is constituted of

two parts:

Proof of Part (I)

We first show that (55.40) converges to V,, as N goes to infinity.
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Note that

_ ~—1 1~-1 5+ ~7~-1
Var(\/ﬁ(’y — 7)) = Apxp + 5Appr,,bTA <p +0(1)

= [Aps =B8] o)
(e[S ] e[ OTERE] et s .

(S5.42)

where the second equality can be straightforwardly verified as follows:

~ -1 1~-1+ ~7~-1 ~ ~ o1
<Apxp + EApprPprpxp) ) (Apxp —C- bpbp)

~ = =T 1~-1+ -1 C~—-1 % =7~—-1 7 =71
=lpxp — - A, by, + EApobp b, — EApobpprpobpbp
1 - T -1 = 71 >7~—-1~ 1 1 T
Ly =< - [ce- Ay byby s Ay byby - BIAL b + <A, bb
1 ~—1 5 ~7 1~—1~~'|' . - T 51 7
=lp — 7 [ pprpbp] + EApobpbp (smce cc=1—c- prpobp>
=lxp -
Therefore,
. a(Z~)TT1) 1
VartVw (3 — ) = {8 | 2IE 2w (37| - A B w0 TR 70 | |
=E[fx(Z)fx(2)T] " +o(1) , (55.43)
where
. _ . -1
APTRN LV TINN N LI R A

Recalling the definitions of S¢(Z;70) and O(Z) in (S1.1), we can obtain
that

J(Z) =E [So(Z:70)O0(Z)urc (X)T] - E [O(Z)ure (X)%*] " ue(X) ( r )

_{E e

7(Z;0)
E[S0(Z;7)0(2)|X] u T . UK =
02X E[O(Z)|X] K(X)] JE{( E[0(Z)|X] (X)) ]




S5. PROOF OF THEOREM 3

1 T
E[O(Z)|X]“K(X)} E[0(Z) X] (1_ 7T(Z;%)>

1 T
=hx(X) E[O(Z)[X] (1 - ﬂz;w)) ’

where

. ®2 -1
hic (X) = {E[SO(Z’“)O(Z)'X] \/E[O<Z)|X]uK<X>T] [ (VEo@Xlue(x)) |- EO@) Xlux (X)

E[O(Z)|X]

E[S0(Z;70)0(Z)|X]
VE[O(2)|X]

space linearly spanned by {\/E[O(Z)|X]ux(X)}, by Assumptlon I 3 and

Lemmal [T, we can have
‘ E[S¢(Z;7)0(Z)|X]
E[O(Z)|X]

Therefore, we can have that

on the

Note that hx(X) is the least square projection of

E

hi(X) —

2] ~0 (K—%> —o(1). (S5.44)

E[fx(2)/x(2)"] =E hK(X)hK(X)TE[O(;NX] (1 - 7r<z7;70>>2]
[ ] <since E [(1 - W(ZT%))Q X] = ]E[O(Z)|X}>
{]E[So (Z;7)0(2)|X] - E[So(Z;7)O (Z)IX]T}
[ (2)|1X]
=E |m(X)m(X)" (1 - %) } 4

Then in light of (S5.43]) we can obtain our desired result:
—1

VarVR (=) B | (1=~ ) -m<X>®2] v,

Proof of Part (II)
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Next, we show that (55.41) converges to V), as N goes to infinity.

Applying the matrix inverse formula (S2.10)) to (S5.41)), we have

Var(v'N(8 — 6)) = E A bp} o)

- - RN
=c—c- ; . <—Apxp +c- bpb;) p - c+o(l) (by (S2.10))

—c+ (E ww(xy AL b —E WU(Z) " o(1)
(Z;70) (Z;) 1
B[y 7| A B[0TI} ot
(L] ] o

(S5.45)

where the last equality follows from the definitions of Apxp and IN)p in (55.38))

and (|S5.39)), namely,

Vr(Z;v)
m(Z;70)

7 C7T(Z§70) T 1
b, c=-FE|———= X A -b E
p - C [ 7(Z: ) ug(X) Kxk ' OK T

In the following we show that

c=E [(ao - Tr(TZ)U(Z))Q] ~E [{ (- szm) R(X)}Q

. {V”(Z”O)uK(X)T} AL bk [MU(Z)] _E [M(R(X) —U(2))| +o1) :

Apxp—c-BpB;:E{

w207 - A [0 T2

m™(Z;7%)

VW(Z; 70) U(Z):| )

m(Z;%)

+o(1) ; (S5.46)

7(Z;70) m(Z;70) 7(Z;0)
(S5.47)

mu Tl A Eluk M o _ o
{E{ 7(Z;70) K (X) ] Ak i E[ (X) (Z:0) ” Vi +o(1) . (S5.48)

where ¢ is defined in ([S5.37)).
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For the term ([S5.46)): Note that

(v~ )

~RE[0(Z)U(Z)ux (X)"] - E [0(Z)ux (X)®?] " -E[O(Z)U(Z)ux(X)] (by definition (S5.37))

c=E

_E (90 - W(ZTWO)U(Z))Q
~-E {]E (0(Z)U(Z)uk (X)) - E[O(Z)ur (X)®?] " - uk(X) (1 - ﬁ) }T
—E (90 _ W(ZTWO)U(Z))T
~E|{EE0@U(2)X] ux (X)) 5 [EOE)IX] ux(X)%) - (X) (1= 1) H
—E (90 - W(ZTWO)U(Z))T
_E[{E % ' \/WUK(X)T] E[E[0(2)|X] - ur (X))
x VEIO(Z) Xuxc(X) IE[O?Z)|X] (1 N W(ZI:WO)) ﬂ '

Considering the last term in above expression, since

E % - ¢E[0<Z>|X]uK<X>T] E[B[O(2)|X] - urc(X)®2] " /EO(Z)[ X]ux (X)

E[O(Z)U(Z)|X]
E[O(2)|X]

{VE[O(Z)| X |uk(X)}, by Assumption |3| and Lemma , we can have

Then we can have that

(eo - W(ZTWO)U(Z))Q] —E

is the L2-projection of on the space linearly spanned by

% v E[O(Z)IX]UK(X)T] -E[E[0(2)|X] - ux (X)™*] " VE[O(Z)[XJux (X)

) E[O<Z>U<Z>|X1’ — O(K%) = of1) . (85.49)

E[O(2)|X]

c —E

E[0(Z)U(Z)|X] | (17 T )2
VE[O(Z)|X] E[O(Z)X] ™(Z;70)
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(o=@ |2 [{ (- ) oo}

which is ([S5.46|).

=E

I

For the term ([S5.47)). Consider the term

VW(Z; ’Yo)

Vr(Z;v)
. { W(Z;’Yo)

iy e | A b8 |

v(z)] .

Using ([S5.49)), we can have

V1 (Z; )
. { m(Z; %)

—E [0(Z)U(Z)ug(X)"] - E [0(Z)ug(X)®?] " -E [uK(X)

X7 | ARl b

V'YW(ZVYO)}
7(Z; )

VWT(Z;%)
m(Z;7%)

Therefore, we can obtain that

=E [R(X) } +o(1) (using (S5.49)) .

V7(Z;0)

V7(Z; )
——(R(X
7(Z;7)

{VW(Z; Y0)
7(Z; o)

(B0, ] b

U(Z)] %IE{

which justifies our claim (|S5.47]).

For the term (S5.48). From Theorem 1 in Morikawa and Kim/ (2016), the

efficient influence function of ~, is
_ 9 -1
Py (T, Z;70) = E [S1(T, Z;70)%] ' - 81(T, Z; %) = —E {asl(ﬂz;%)} -S\(T, Z; ) -

The efficient variance bound of ~q is

Voo =Var(.; (T, Z;v0))
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=E [%m(X)(m] - (S5.50)
[y | e[| s [ ]
(S5.51)

Using (S5.42)), the fact that Var(v/N(5—7)) = V,, and (55.51)), we can

obtain that
L.H.S. of = {E [%

=Var(VN(3 = 0)) +o(1)

Vﬂ(Zwo)T] }71

wre(X)T| - AR B e (0 T2

m(X)

-V, =E
o [W(Z;vo)

1 —1\ T
Von(Zi0)T| E[S)(T,Z:90)%7) (E[ﬂfz(fi)vmz;w] ) ,

which justifies our claim (|S5.48]).

Combining (S5.45), (S5.46)), (S5.47), (S5.48) and the definition of & in
(S1.5)), we can obtain that

Var(VN(0 — 6o))

(o= ®) | -2 [{ (- iy oo}

To complete the proof, we remain to verify

—E + KTE[S1(T, Z; %)%k

(S5.52)

(S5.52) = Var(Ss(T, Z; 4, 600) — k7S1(T, Z; 7)) -
Note that
Var (S2(T, Z;~0,600) — kTS1(T, Z;70))
=E [S2(T, Z;70,60)%] — 2"E [S1(T, Z;70)S2(T, Z;70,00)] + £'E [S1(T, Z; %) %] &
Note that

E [S2(T, Z;70,60)%
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T

- [(90 " w(Zi)

Z; 0

) |-z {(n- gmre) (-

T

Z;0)

Jux)

+E (1‘W(ZTWO)>2R(X)2
e[|
and
E[S1(T, Z;7)S2(T, Z;70,00)]
& _%mm - U<z>: ~E[m(X) - E[0(2)U(2)|X]

Thus, we can conclude (55.52) = Var(Sa(T, Z;~0,600) — &™S1(T, Z;v)).

The proof is completed.
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S6 Proof of Theorem 4

~

From the equation (S4.31)), in order to prove |[v/N (5 — 7,0 —0)|| 2 0, it is

sufficient to show

IA)(KH)X(KH) = D(K+1)X(K+1) : (86'53)

Note that

N~ ZN 1-n(Z; ’Y)uK(Xi)®2, NﬁlZN 17ﬁ(%i~;7)uK(Xi)U(Zi)

. i=1 W(Z i) =1 7w(Z;;79)
D (g i1yx(kx+1) =

.5 « 2
NN S (X0 U(Z), NTUEY (0 o 50(20)

i=1 " 7(Z4;7) ©(Zi3)
and
—7(Z; —(Z
: [—:(;W:wwﬂ e[
D(K+1)><(K+1) =
2
1-7(Z;
E[ w(é;v;/)O)UK(X [ Zvo (Z)) ]

For simplicity, we show that the upper left block of D (k1) (x+1) converges
in probability to that of D (xi1)x(x+1), namely

p

1—7r i) 22 1 —7(Z;v) ©2
NZ ug(X5) —E[—uK(X) } =0,

Z;;%) m(Z;7)

(36.54)

and similar argument can be applied to the other three blocks are also of

convergence.

Using Mean Value Theorem, we can obtain that

1—7r i) 1 —7(Z;v)
) Xi ®2—E ) D. ¢ ®2
NZ Z;7) ur(X:) 7(Z; %) ux(X)
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1 i L= 7(Zii%) uk (X)) — E {—1 —m(Z; 70)uK()()®2 (S6.55)
N &~ w(Z) ' m(Z; ) '

N
1
ZV” ” (X ,)% (S6.56)

m(Zi
where v* lies on the line joining vy and 4. By computing the second mo-

ments of ((S6.55)), and using Chebyshev’s inequality and Assumption |7, we

can claim that the term (S6.55)) is of 0,(1).

Consider the term ([56.56). From Assumption |§|, we know that the
funciton V.,7(Z;~) is uniformly bounded and the propensity score w(Z;~)
are uniformly bounded away from zero, thus we can find a finte constant

C > 0 such that

N
3 1
I(BE5! < 15 =0l - C || 57 D ux(X0)™
i=1

Using Chebyshev’s inequality, Inequality (S2.12]), and Assumption , we

-0 (/) -

We also note that |E [ug (X)®?] || < Amax (B [ur(X)€?))- | Ik <k | = OVK).

can deduce that

ZuK E [uk(X)®?]

Therefore, in light of Theorem 1 and Assumption [7] we can deduce that
1(56.56)| < O,(N~Y?)-C - O(VK) = 0,(1) .
Since the terms ) and m are all of 0,(1), we can justify ((S6.54]).
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S7 Proof of Theorem 5

Note that

=5 =T ~—1 ~ -1
Vi = {B(KH)X(p+1)D(K+1)x(K+1)B(K+1)x(p+1)} )

-1
T -1
Vi = {B(K+1)x(p+1)D(K+1)x(K+1)B(K+1)X(p+1)} ’
and Vi 5 Vs¢. From (56.53)), we know that ﬁ(KH)X(KH) 2 D (g 11)x(k+1)-
Therefore, to prove the consistency result vV K>V, ¢, it suffices to show

Bk 1)x(pr1) = Blrin)xpe1)-

We show that the upper left block of B (K+1)x(p+1) converges in proba-

bility to that of B(x41)x(p+1), namely,

Zzaf}/) V’YT((Z;PYO)T
ZuK Zm) 5 E |ug(X) Tz | (S7.57)

and similar arguments can be applied to show that the other three blocks

are also of convergence. Using Mean Value Theorem, we can have

™(Z;;9)"
N ZUK Zm)

N
! Vom(Zis0) "
= 2w X $7.58
N3 (X m(Zi; %) ( )
N
! Vom(Zy )T T
N;“K(XZ) rZop VT ZErT) (=) (ST59)
N
1 1 2 L kk A~
+NZ“K(X1')W'VW(22'W ) —0)- (S7.60)
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where 7** lies on the line joining 4 and ~y. Consider the term (S7.58)), we

have
1 o V. m(Zsv)" V.1(Z;7)T 2
E || ux(X)—L " —E {u X #}
szl X ™(Zi; %) x(X) 7(Z: )
N 2
! V,71(Zis )"
<—=>» E X, =e B
= N2 ; UK( ) W(Zi;’yo)
1 [IVam(Z570) )12 1
<—E gl ’ ) X)I? <0O(1)- —E X2 = O(K/N) — o1
N [ W(ZS’YO)Q ”uK( )H - O( ) N [HUK( )H } O( / ) o( ) ,
where the second equality holds because W is uniformly bounded,

while the last equality holds because of Assumption [7} Then in light of

Markov’s inequality, we can have

= 0y(1) .

Ly Vo (Za) T ol Van(Zi)
N2 Xy B e Tz |

For the terms (S7.59)) and (S7.60]), by using a similar argument of showing

(S6.56)) = 0,(1), we can obtain that both (S7.59) and (S7.60) are of 0,(1).

Therefore, we can justify the validity of (S7.57)). Finally, we can claim our

consistency result 1% K =2 Viess
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