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0.1 Estimation

0.1.1 The model

We observe the data {(z;1,%i1), .-, (Tim;s Yim;) : @ = 1,...,n}, which we

write in vector form as {(x;,m;,y;) : i =1,...,n}. We assume
Yij = 9i(wi) + 145,
where the g;s are independent identically distributed realizations of a sto-

chastic process G : . — R and the 7,;s are independent identically dis-

tributed N(0,07) random noise.
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We assume G admits a finite Karhunen—Loéve decomposition

Gla) = via) + > onthy (@),

where the 1), s are orthonormal in L?(.¥) and the vys are uncorrelated zero-
mean random variables independent of the 7,;s.

The grid points z;;s are assumed to be realizations of a doubly-stochastic
Poisson process with intensity A(z). Therefore (x;,m;) | A = \; is a re-
alization of a Poisson process with intensity \;(z) for each i. We assume

log A also admits a finite Karhunen—Loéve decomposition

log A(z) = p(z) + Zuk¢k($),

where the ¢,s are orthonormal in L?(.) and the us are uncorrelated zero-
mean random variables, also independent of the 7;;s.

Let u and v be the vectors of the uys and vs, respectively, and o2 and
o? their variances. We assume the joint distribution of (u,v) is N(0,X)
with

diag(os)  Buw
D

!,  diag(ol)

For the functional parameters u, v, ¢,s and ;s we assume semipara-
metric basis function models. Given a family of basis functions {v,(x), ..., v,(z)},

with v, : & — R, let v(z) be the vector of the ~,(x)s. Then we have

pa) = cgv(), dp(x) = cpy(x), v(z) = dyvy(z) and ¥y (x) = diy(x).
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Let C = (ci1,...,¢,,) and D = (dy,...,d,,); then ¢(z) = CT~(z) and
P(z) = DT~(x), where ¢(x) is the vector of the ¢,(x)s and (z) is the

vector of the 1, (z)s. For a vector of observations x we define the ma-
trices I'(x) = [7,(x),...,7,(x)], ®(x) = [¢1(x),...,,,(x)] and ¥(x) =
[11(%), .., 9,,(x)], where function evaluation of univariate functions at x
is understood in a componentwise way. For data vectors x; we will use the

shorthands I';, ®; and ¥;, respectively.

0.1.2 Joint and conditional densities

Then the joint density of the observations and the latent variables is

fB(X7 m,y,u, V) = f@(y | X, m,u, V)fB(X7 m ‘ u, V)fg(ll, V)'
Since fo(y | x,m,u,v) does not explicitly depend on u and fg(x,m | u,v)
does not explicitly depend on v, we have
fe(xa m,y,u, V) - fe(y | X, m, V)fg(x, m | u)f@(uv V))

where

foy 1m,) = s esp { = lly =0~ W00V (1)

pxomlw = e {= i} ST, @
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where \y(7) = exp{u(z) + u’ ¢(z)}, and

fo(u,v) = (27r)(191+p2)/12(det »)iz P {_;WT’VT)E_I(“T’VT)T} - @)

Each conditional density is a function of the following model parame-

ters:

foly | x,m,v) — do, D, and 0727
fo(x,m|u) — cp and C
fo(u,v) — 02,0 and ¥,

0.1.3 EM algorithm

The penalized maximum likelihood estimator 0 is the maximizer of

— % Z log fo(xi,mi, y:)—& P(p)—&, Z P(¢,)—E3P(v)—¢€, Z P(b,)
=t k=1 k=1

subject to the constraints chcl = df.]dl = 0w, 03] > 0 and ¥ symmetric
positive definite. The penalty functions are quadratic on the basis coeffi-
cients: if f(z) = cTv(z) then P(f) = c'Qc for € that depends only on ~.
Explicitly: if the ;s are univariate (temporal processes) and P(f) = [(f")?,

then

2= [+ (@) @)

If the 7;s are bivariate (spatial processes) and P(f) = [[{( a—f 8t12gt2 )2+
2
(g—é)Q}, then

Q=Jy1+2J12+ Ja
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with

J__// Py ()
v otot; ) \otot; )

Then
1 n
0(8) = - Z log fo (i, mi, i) —€1¢5 Qeo—E, tr(CTQC) —€3dg Rdy—E, tr(D' QD).
=1

The EM algorithm (Dempster et al., 1977) works iteratively as follows:
given the current value of the estimator 9<k_1), the updated value é(k) is

defined as the maximizer of

n

- 1
QO |04-1) = n ZEé(kfl){log fo(xi,mi, yi,u, v) [ xi,mi, yi}

=1

—¢,¢l ey — &, tr(CTQC) — £,d7Qd, — &, tr(DTQD)

subject to the parameter constraints. Considering the factorization of the
joint density and the dependence of each factor on the model parameters,

we can write

QO | é(k—l)) = Ql(dO,D,U% | é(k—l)) + Q2(co, C | é(k—l)) + Q3(X | é(k—l))a

where

R 1 <
Q1(d0,D,U% \ O(k—l)) = ﬁ ZEé(kfl){Inge(yZ' ’ Xi,mi>V) ’ Xiamin}
i=1
—f3d0TQd0 — &4 tr(DTQD),

n

A 1
Q2(co, C | (1)) = ﬁZEé(k_l){lngO(Xz’vmi | u) | xi,my,yi}

=1

—&1¢ Qo — &, t1(CTQC),
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and

A 1 —
Q3(2 | O-1)) = - ZE@(k_l){log fo(u,v) | xi,mi, yi}.

=1

0.1.4 Estimating equations

For 03]: Since

my;
log fo(ys | xi,mi, v) = =75 log(270%) — 2||yl v(x;) = (x)v]’

we have
1 — o
oo 2Ql(do,D J | 9(k ) = EZEé(kl){@log folyi | xi,ms,v) | X3, my, yi}
i=1
o 1 - m; 1
N n <= 2 027
1 — 1 ,
+E — 2(0727)2E9<k—1){”yi — v(xi) = R ()" | xi,mi, yi}
and then
- 1 & ) ) 2
= 55 2 By Alys = 260) = PG [ m i
i=1"""

For dy: Since

1
Dy, log fo(yi | xi,mi,v) = ;{Yi —v(x;) — ‘I’(Xi)V}Tr(Xi)
n
1
= v,v)'T; — —diTIT
Uﬁ n

and

n

1
DdoQ1<d07D U |0k 1)) = EZ (k1 {Ddo logfg(y, | X, My, V ) |Xi7mi7Yi}
i=1

—532(1(7;9,
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we have
Da,Q1(do, D, 02 | 0;_1) = Iy i(y U,v,)T; liidTrTD—zg di Q
o1l 05 »Yn -1 nZ:lo_% 7 AR} zni:lo_?][)zl 340 )
where Vv, = E(;(k_l)(v | x;,m;,y:), SO
1<n 1 I RN
do= (=) STITi+250] ) ST (y; — ¥:¥)
N5 Oy 53 Oy

For D: We can write ¥;v = I'Dv = (vl @ I;) vec D, so

1
Dvecn log fo(y: | xi,m;,v) = F{Yi —v(x;) = O(x;) v} (vI @ Ty).

n

Also, tr(DTQD) = vec D*(I,, ® Q) vec D, so

- 1 1 R
Dueen@1(do, D, 02 | B)1) = o Z ;{Yi —v(x)} (¥ @Ty)
=11

11 —
—=Y —vecDT(vivT @ TTT))
it o

Then we can write
Vieen@1(do, D, 07 | 8(._1)) = —QvecD +b

with

n

1 1 —
Q = — Zl g(vivf R ITTT;) 4 2¢4(1,, ® Q),

nii n
I~ 1 R T
b = EZE(V@'@Fi ){Yi_V<Xi)}7

=1 n
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—_—

where v;v! = E

é(k—l)(VVT | x;,m;,y:). The orthogonality constraints can

be expressed as h?(0) = 0, where h”(0) is a pa(ps+1)/2-dimensional vector
with elements hD)(0) = dFJd; — §;;. We can write d¥Jd; = e/ DTJDe; =

tr(D”JDeje] ), with e; the kth canonical vector, so
hﬁ(@) = vec DT(ekelT & J) vecD — 6kl~

We can linearize the constraints by using the current value of D on the left,

SO

h”(6) = AvecD —f,

where A is the pa(ps + 1)/2 X gpe matrix with rows vec ﬁﬁ_l)(ekelT ®J)
and f are the corresponding d,;s. The Lagrange condition for vec f)(k) to

be a local maximizer under the constraints h” (@) = 0 is then

DvecDQl(deaU?] ’ é(k—l)) = F"'TDvethD(e)

= k'A

Y

where K is the pa(p2 + 1)/2-dimensional vector of Lagrange multipliers.

Transposing both sides on the last equation we get

—Qvec ]j(k) +b=A%k,
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which together with the constraints can be written as a system
Q AT vec Dy b
A 0 K f
Solving this linear system gives the updated vec ﬁ(k).

For cy: Since

log fo(xi,m; |u) = /)‘u dt—logmz'+210g)\ (zij)

7=1

= /)\u dt—logmlhl—Z{’)’ ) Teo+u ¢(9Cw)}

j=1
we have
De, log fo(x;,m; | u) = — / Deo Au(t)dt + i’)’(%‘j)T7
=1
where
DeoAult) = Au(t)De, log Au(?)
= Aa(t)y(t)"
Then
D¢, @2(co, C | é(k ) = ——Z/ ic0,C t)'dt + — ZZ’Y :cw
—26,c0Q, o
where

Mcoclt) = B Dalt) | ximiyi)

= Eé(k,l)[eXP{’Y(t)TCO + ’Y(t)TCU} | X5, M4, il
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A Taylor expansion of A\y(t) on the variable cq at the current €y_1) gives

Auco.c(t) = Auggpry.c(t) + DegAuggyyy.c(t)(co — Eok-1))
- )\u,éo(k,l),C (t) + )\u,éo(kfl),c(t)’y(t)T<CO - éO(k—l))

== >\u760<k,1),c (t){l - ’Y(t)TGO(kfl)} + Au,éo(kfl),c(t)’Y(t)TC07

SO

Dey QalCog, Coeny | 0r) ~ — Z [ A0 = ot
T Z / D))y (D)7 (1)" dt
+ﬁ Z Z’Y(%‘j)T - 2flégk 2

i=1 j=1

where \;(t) = A, , (t). Equating to zero and solving, we get

i80(k—1),C(r—1)

=1
1 n A n
[—52 [ M- iond 3> ]
=1 =1 j=1
For C: We can write
log fo(x;,m; |u) = //\u t)dt — logm;! + Z{,u (zi;) + v(zi5)" Cu}
7j=1

= //\u t)dt —logm;! + Z w(zig) + {u” @ y(xi;)"} vec C],

7j=1

SO

Dyecclog fo(xi,mi | u) = — / DyeccAu(t)dt + Z{UT ®(zi;)"}

j=1
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As before,
DveccAu(t) = Au(f)Dyecc log Ay (1)
= da(t){u" @~()"},
S0
DyeecQ2(¢o, C | B-1)) = ——Z/ By, Pa{U" @)} | xi,mi, yildt

+= Z{u ®Z'r% — 26, vec C7(I,, ® Q),

where 0; = F;

. 1)(u | x;,m;,y;). Expanding \,(t) as before, but on the

variable vec C, we get

Naeoct) 2 Aver ey 0+ Aweyer (D107 @Y7} (vee C — vee )

= Moty =0 Gy (O} 201 (O{u" @)} vec C.

u,co,C

Then

DveccQz(éo(k—U, C(k) | é(k—l)) ~

L Z [ Bl @1 = a Gy (O}u" ©3(0)" x5,y
— vec Cﬁ)g Z / E[S\u(k_l)(t){uuT @ v(Oy)TY | xi,my, yildt
+— Z{u X 27 mzy 252 vec C (Im ® Q)?

where j\u(k_l)(t) =A As we did above for D, this can be

w,80(5-1),Clr-1) (t)
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expressed in linear form as

Duec cQ2(€ogk—1), Ciiy | Or_1)) ~ — vec Ca)Q +b"
1 .
Q=- Z/E[Au(k:—l)(t){uuT () Y(E)"} | x5y, yildt + 28,(1,, ® Q)

= __Z/ ({1 —u"dp_y (O Hu @y (1)} | xi,ms, yidt

+ﬁ Z{ﬁi ® Z v(zij)}
i=1 j=1

The orthogonality constraints are handled as before: h®(8) = A vecC — f
with A the p;(p; + 1)/2 x gp; matrix with rows vec Ca_l)(ekef ® J) and
f the corresponding d;s. Then vec é(k) is obtained by solving the system

Q AT vec C b

A 0 K f

For 3: Let w = (u”,v")T. Then
1 L 11
log fo(u,v) o —ilogdetZ — 5V Y'w

] 1
= 5 logdet S — J tx(S ww?),

SO
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where
1 n
S = - ZE«%_U (WWT | Xi,mi,yi) )
i=1

This Q3(X | é(k_l)) is the classical log-likelihood function of a multivariate
normal density, and it is well-known that the (unconstrained) maximizer
is S. However, S must be rotated to satisfy the constraints that the wus
and the vps be uncorrelated, while maintaining the positive-definitness of
the whole 33. To this end we compute the spectral decompositions of the

blocks S,,, and S,,,

U1L1U{ = Suu;

UQLQUg = SMH

with the Us orthogonal and the Ls diagonal, and let

) u? o U 0

0o UL 0 U,

Then the blocks S(k),uu and ZAl(k),m, are diagonal and equal to L; and Lo,
respectively. Then &i(k) = diag fl(k)ﬂw, &Z(k) = diag fl(k)m, and f]uv(k) =

f](k)m. The respective component scores and coefficients must be rotated

too, in order that i(k) be the covariance matrix of the w;s and that the
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values ¢(2)7d and ¢(2)7¥ be preserved:

T ~
Ul ul‘,

E)
I

— Ul

S)

cu,,

I

o
|

DU,.

0.1.5 Algorithm initialization

As initial estimators for the EM algorithm we use the multiplicative com-
ponent model of Gervini (2017) for the point process X, which gives us
initial &y, C, &2 and s, and the reduced-rank principal component model

A2

of James et al. (2000) for the process Y, which gives us initial do, D, G,

6,27 and V;s. As initial X, we then use the cross-covariance matrix of the

;s and the v;s.
0.1.6 Laplace approximation of integrals

The marginal densities f(x,m,y) are computed by Laplace approximation.

We have

foemy) = [[ socmy | w) sy

= // exp g(w)dw
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with
g(w) =log f(x,m,y | w) + log f(w).

I = arg maxg(w) then g(w) = g(¥) + 5(w = W) Hg() (w — ) and
f(x,m,y) & exp{g(W)}(2m)"” det(S)"/?

with p = p; 4+ p, and
S = {—Hg(w%)}~".
In effect, we are approximating
Fx,m,y | w)f(w) = exp{g(W)}(2m)"? det(S) " *pg 5) (W)

where ¢4 g)(W) denotes the pdf of a N,(W, S), so W | (x,m,y) & N,(W,S).

Then we can also approximate the moments:

E(W |x,m,y) w,

Q

EWWT |x,m,y) ~ S+ww’.

We find w by (a few steps of) Newton—Raphson for each (x;, m;,y;).

Since

g(w) = —/)\u(t)dt+210g)\u(:vj)—logm!

Jj=1

1
— log 2mo, - 5521y = v — TG’

1 1
P log2r — =logdet ¥ — —w! X 'w
2 2 2
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the derivatives with respect to w = (u,v) are

— [ Aa(O)p(t)dt + 3" (2
Vg(w) — S a@®(t)dt + 377 d(x;) R

ZP(){y —v(x) — T(x)v}

and

— [ Aat)p(t)D(t) T dt 0]
Hy(w) — JAa(t)o(t)o(t) e

@) U (x)TW(x)

q
S|

0.2 Asymptotics

0.2.1 Explicit Fisher’s information matrix

Fisher’s information matrix Fg = Eg,{V log f(x,y,m;0,)V log f(x,y,m;00)T },
used in the asymptotic results below, is estimated by

R . .
F=— 1 M, yi; 0)V1 i M, Yi; 0 T
=D Viog f(ximi, yi; 0)Vlog f(xi, mi, yi; 0)

i=1

Here we derive V log f(x,m,y; 6) by blocks of @ = (vec X,,, ¢, vec C,dg, vec D, 02, 62, 52).

vIYn

» For vec X, since only f(w) depends on X, we have

vVec Yuv 10g f(X, m,y, 0)

= m // f(x,m,y | W)Vyiecs,. f(W) dw
R e et

= // Viees,, 10g f(W) f(W | x,m,y) dw.
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Since

1 1
log f(w) ~3 log det 3 — §WTE_1W,
the differential with respect to X is
1 -1 | ~1
dlog f(w) = —3 tr(XdX) + oW YT (dY)E T w.

Now, differentiating with respect to 3,

O dx,,
d¥ =

=7 0

Then if we split £~ into four blocks 217, 315, X5,' and X5, commensurate
with the four blocks of ¥, and the vector ¥~ 'w into the first p; coordinates

(X7'w); and the last p, coordinates (X71w),, we have

—— Y, dEl BdE,,
TpdE], E3dE,,

and then
tr(Z7MdY) = tr(TFdED) + (25 dE L)

= 2tr(d=l B

= 2vec(dX,,)’ vec(Z1y)
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and
w! Sl dE) 2w = 2(Z7'w)idEl ) (Z7w),
= 2tr{dX] (Z7'w) (Z'w)3 }
= 2vec(dX,,)” vec{(Z'w) (= 'w)L ]
Then

dlog f(w) = — vec(dZ,,)" vec(E5) + vec(dX,, )" vec{(Z'w) (=7 'w)1},
which implies
Viees,, f(W) = = vec(33y) + vee{ (Z7'w)1(27'w); }

and then

Vvec Suw lOg f(X7 m,y; 0) == Vec(zl_Ql) + vec EO {(2_1W)1(2_1W)g | X, m, Y} .

The second term can be written more explicitly in terms of Eg(ww?! |
x,m,y): since (X7'w); = [I,,,0] X7 'w and (¥7'w)y = [0,L,,] X 'w, we

have

(= 'w) (Z7'w); = [1,,,0] T 'wwi !

P2
i)

= [Z0, 35 ww’

-1
222
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and then we take Eg.

» For ¢y, since only f(x,m | w) depends on ¢j, we have

Ve, log f(x,m,y:0) / Ve, log f(x,m | w) f(w | x,m, y) dw.

Here

log f(x,m | w) = —/)\u(t)dt + Zlog Au(zj) — log m!
j=1

with \y(t) = exp{clv(t) + ul'¢(t)}, so

Ve log flxm | w) = = [ Aulepy(o)de + Y- v(a)

and then

Ve, log f(x,m,y:0) = — [Eg{Aa(t) | x,m, y}y(t)dt + i ().

J

» For vec C, again only f(x,m | w) depends on vec C, so

Vieeclog f(x,m,y;0) Z//Vvecclogf(x,m |w) f(w]x,m,y)dw

as above. Since \y(t) = exp{u(t)+~v(t)T Cu} = exp[u(t)+{ul @v(t)"} vec C],

we have

Voo log f(x,m | W) = — / Nl {u® vt} + Y {u @)}

J=1

and then

m

VVecC IOg f(Xa m,y; 0) = - I[EG{/\U(t)u | X, m, Y} & 7(t)]dt + Z{Ee(u | X, m, Y) ® 7(1‘])}

J=1
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» For dy, since only f(y | x, m,Vv) depends on this parameter, we have

Vi, log f(x, y,m; 8) — / Vaolog f(y | x.m,w) f(w | x,m.y) dw.

Since
1
lOg f(y | X, m, W) X _FHY - F(X)dﬂ - \II(X)VH27
n
we have
1
vd() log f(y | X,m, W) = ;I‘(X)T{y - F(X)dﬂ - lI’(X)V}
n
and then

Va, log f(x,y,m;0) = %I‘(X)T{y —T(x)dy — ¥(x)Eg(v | x,m,y)}.

n

» For vec D, only f(y | x,m,v) depends on this parameter, so

Voeen log f(x, y, m; 0) = / / Voeen log f(y | 3 m,w) f(w | x,m.y) dw.

Since

1
20%

log f(y | x,m,w) o ly — v(x) = T(x)Dv|]*

1
= 55l —v(x) — (v ®T(x)} vec D,
n
we have

Vienlog f(y [, w) = —{v® L) Hy — v(x) - B(o)v)

n

g veell ()" y — () — B(x)v}v]
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n

Vieen 08 £,y 13 0) = — vee(P()" [y — v(x) HBo(v" | x,m,y) -

U(x)Bo(vv? | x,m,y)]).

» For o2, we have only f(w) depending on this parameter, so

s

Vg2 log f(x,m,y; 0

As before,

1
dlog f(w) = —3 tr

1
() + 5sz—l(dz)z—l

but now, differentiating with respect to o2,

d¥ =

Then

tr(21dX%)

and

w1 (dZ)s!

diag(de?) O

O O

tr{El_l1 diag(dai)}

diag(2}')" do

(7 'w)! diag(de?) (= 'w),

{(Z7'w)?} do,

where ©? denotes element-wise squaring. Then

1 . B 1 -
dlog f(w) = — diag(2;7) dor} + 5 {(57'w)?) dor,

fw|x,m,y) dw
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SO
1 1
Voz log f(w) = —5 diag(2y,') + 5(2_1‘”)?2

and then

L. - 1 _
vo‘% log f(x7may’ 0) = _5 dlag<2111) + §E0{<2 1W)?2 | X, m,}’}

The second term can be written more explicitly in terms of Eg(ww?’ |

x,m,y): since (X71w); = [I,;, 0] 7w and (2 7'w)P? = diag{(Z'w),(Z"'w)T},

we have
Il
(B'w)§? = diag{[L,,. 0] = 'ww's 1 | " [}

(@)

iy
= diag{[El_ll,El_;] ww' ¥

2—1

21

and then we take Eg, which commutes with the diag operator.

» Similarly, for o2 we have

Vg2 log f(x,m,y; 0 // Vo2 log f(w) f(w|x,m,y) dw.
Since
1 -1 |\ -1
dlog f(w) = ) tr(XdX) + oW Y (dX)X
differentiating with respect to o2 we get
O Q)

d¥ =
O diag(do?)
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and then
tr(X71dE) = tr{Z, diag(do?)}
= diag(23,)"do
and

w! Sl dE)E'w = (Z7'w)] diag(de?) (=7 w),

= {(E7'w)5*} do.
So, as before,

1 . _ I
Vo2 log f(w) = D) diag(23,) + 5(2 'w)s?

and then

L. _ 1 _
Voz log f(x,m, y;0) = =5 diag(Zy;) + 5Ee{(Z7'W)5" | x,m, y}.

Again, the second term can be written out in terms of Eg(ww? | x,m,y) us-
ing that (X7'w)y = [0, L,,] 7'w and (2 7'w)$? = diag{(Z 7 w)o(Z"'w)L},
S0

O
(E'w)5? = diag{[0,1,,] S 'ww!S"! }

Ipz
. 1 w1 T 2;21

= d1ag{[221,222]ww }-
2—1
22
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Then we take Eg, which commutes with the diag operator.

» Finally, for o7, which is only present in f(y | x,m,w), we have

aa log f(x,m,y; 6 // 5 log f(y | x,m,w) f(w|x,m,y) dw

where
| M )
og f(y | x,m,w) =~ log 20 — 2||n||
with n =y — v(x) — ¥(x)v. Then
0 m
| _ 2
507 og f(y | x,m, w) 207 + 5% 2(02) 5|l
and consequently
0 m 1
907 og f(x,m,y;0) 202 + 202)2 o([m]]? | x,m,y)

0.2.2 Consistency

The consistency proof follows the usual steps for maximum likelihood esti-
mators and M-estimators; see e.g. Pollard (1984) and Van der Vaart (2000).
First we show that the asymptotic objective function has a unique maximum
at the true parameter 6y, then that {9n} is bounded in probability, and fi-
nally, via the Argmax Theorem, that 0, converges to 6, in probability. In

the following we use Z = (x,m,y) to simplify the notation. Also, we define

£n = (51na§2n7§3n7€4n)T andP(e) = (P(M), 21:1 P(gblc)’ P(V)7 Zil P<¢k))T
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Lemma 1. Under assumption A2, the function M(0) = Eg, {log f(Z;0)}

has a unique maximum at @ = 6.

Proof. This is a consequence of Jensen’s Inequality and model identifiabil-

ity:

because

for all 8. Moreover, inequality (1) is strict unless Pp,{f(Z;0)/f(Z;0¢) =
1} = 1, which happens only if @ = 6, by identifiability. Then Eq, {log f(Z;0)} <

Eq, {log f(Z;8)} for any 0 # 0,,. O

Lemma 2. Under assumptions Al and A3, ||0,| = Op(1).

Proof. Let
1 n
M,(0)==>) 1 Z;;0).
0)= ;D los (7:0)

By definition, 8,, maximizes

gn(e) = Mn<0) - £TP<9)7

n

so we have

Mn(én) - Mn(go) > SZ{P(én) - P<00)}'
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Since P(0) > 0 for all 0, this implies

—Zlo ZZ’ 93 —£,P(60), (2)

with the right-hand side going to zero as n — oo. As in Van der Vaart

(2000, p. 63), consider the surrogate functions

9(;8) = log { f(z0) + f(z e@}

2f(z;6o)
which satisfy

105(%) < g(20) <log {C(z) + 1z 00)}

2f(2§ 90)

where ¢(z) > f(z;0) for all 8. By concavity of the logarithm,

1 f(z6) 1 1o f(%0)
2% 7(200) g loelh) =5 los f(z;60)’

so (2) implies
> olZ:0,) 2 S{-€1PO), ®

For any K > 0, if ||0,,|| > K we have

—Zg Z;;6,) Zw (4)

with
Y(z) = sup g(%0).
l6]>K

By Law of Large Numbers n=' Y7 4(Z;) L Eo, {t/(Z)}, and by Bounded

Convergence Theorem we can switch supremum and expectation:

Eo{t(Z)} = ||3ﬁ1>pz< Eoy{9(Z;0)}.
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Now, as in the proof of Lemma 1, by Jensen’s Inequality we have

Eanlol(2:6) < log o, { /DT IEONN o o goz:60)

with strict inequality for any @ # 6y. So max Fg,{g(Z;0)} = 0 and the
maximum is attained only at the 8ys. We can rule out the possibility of
FEg,{9(Z;8)} approaching zero at infinity because limg|— f(2;8) = 0 and

then

1
lim Fg,{9(Z;0)} = Eeo{w}lilm 9(2;0)} = log(3) < 0.

[[6]]—o00

Therefore, there exists an € > 0 and a K > 0 such that Eg {)(2)} < —e.
This fact together with (3) and (4) imply that P(||@,| > K) goes to zero

as n — o0. O

Lemma 3. Under assumptions A1-A3, 0, EiR 60y asn — oo.

Proof. By Lemma 2, for any € > 0 we can choose K > 0 such that P{||8,,|| >
K} < /2 for all n, and we can choose it so that K > ||@o||. On the other

hand, for ||@,|| < K we have

0, = argmax /,(0).
on{llell <K}

The penalty function P () is continuous and therefore uniformly continuous

on compact sets, and the process M, (0) is stochastically equicontinuous

(Pollard, 1984, ch. 7), so ¢, (0) converges in probability to M (€) uniformly
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over bounded sets. Then by the Argmax Theorem (Van der Vaart, 2000,

ch. 5.9),

argmax (,,(0) L argmax M(0) = 6y,
enfllell<k} en{llel<K}

so for any 6 > 0 we can choose N such that P{||0,| < K, [0, — 6| > 6} <

/2 for every n > N. This completes the proof. n

0.2.3 Asymptotic normality

To prove the asymptotic normality of 6, we will follow the approach of
Geyer (1994), which makes use of the tangent cone of the parameter space.
The definition and properties of tangent cones can be found in Rockafellar
and Wets (1998, ch. 6). Using Theorem 6.31 of Rockafellar and Wets (1998),

the tangent cone of © at 6 is
Jo = {6€R :Vh(00)6=0, k=1,...,1, I=1,...,pi,
Vhp(00)'6 =0, k=1,...,1, I=1,...,p}.
Note that c;10 and dji; are strictly positive, so they do not contribute
restrictions to the tangent cone. The explicit forms of VA$;(0) and VhD (6)

are derived in Section 0.2.4. Fisher’s information matrix Fy, which appears

in the results below, was derived in Section 0.2.1.

Lemma 4. [|0,, — 0o|| = Op(n='2) if \/n||€,|| = Op(1).
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Proof. The estimator 6,, maximizes (,(0), or equivalently
0,(8) = n{€,(8) — £,(60)},
over 6 € ©. Let r(z,0,0)) be such that
log f(2,0) = log f(z,60) + Vlog f(2,80)" (8 — 8o)
+ |0 — 60| (2,0, 860),

and M (0) = Eg, {log f(Z;0)} as above. Then

M, (0) = > Vlog f(Z:,0)"(6 — 6y)

+ ||0 - 00” Z[T(Ziv 0, 90) - EGO{T(Z’ 0, 00)}]
+n{M(0) — M(8o)} — n&, {P(6) — P(8o)}.
Note that Ep,{Vlog f(Z,00)} = VM(6y) = 0 because f(z,0) is a den-

sity function; the fact that 8, maximizes M (0) does not necessarily imply

VM(6y) = 0 because 8y may be on the border of ©. Let

R.(6) — % Z[T(Zl-, 0.00) — Eo, {r(Z.0,00)}]
and
Z, = % ; V log f(Z;, 6y).
Since ,(8,,) > 0,(6y) = 0,
VRZL(8, — 0,) + /1|6, — 00[|R.(0,) — n&l {P(D,) — P(6,)}

> —n{M(8,) — M(6y)}. (5)
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Clearly ||Z,|| = Op(1) because Z, A N(0,Fp). The mean value theorem

applied to P(0) implies
né&r{P(8,) —P(60)} = n|&,ll0p(16, — 60ll)
= V€, 10p(1)v/n]|8, — 60|

The process R,,(0) is equicontinuous in @ (Pollard, 1984, ch. 7) and R,,(0) 5

N(0,v(6, 6)) with v(6o,8,) = 0, s0 R,(6,) = 0. Then it follows from (5)

that

{0p(1) + 0p(1) = Vall€,Op(1)}V/n]|0, — 6|

> —n{M(8,) — M(8,)}.

Now,
M(B.) = M(B) = 501 — 00)" VM (00)(B, — 00) + 0p(10, — 0ol
and V2M(0,y) = —Fy, so if \; > 0 is the smallest eigenvalue of Fy,
—n{M(8,) — M(69)} = |0, — 8o[*A1 — nop(]|8, — 6o]I%).
Then from the last two inequalities we have

{0p(1) +op(1) = V&, |0p(1)} V1|18, — 80|l = 1l|8, — 60> { M —op(1)},

which implies /|8, — 8,|| = Op(1). O
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Theorem 5. Under assumption A4, \/n(0,, — 6y) A 0(Z), with 6(Z) the
mazimizer of
W(8) = {Z" — k"DP(0,)}6 — %5TF05
over § € 9, where Z ~ N(0, Fy).

Proof. Let W,(8) = £,,(8¢ + 8/+/n) with £,(8) as in the previous lemma.
Then
W,(6) = ZIs

+10]| Ru(60 + 6/v/n)

+n{M (8o + 6//n) — M(6,)}

—n& {P (6o + 6//n) —P(6)},
and 8, = \/n(6, — 6,) maximizes W, (8) over .7, = \/n(© —{6,}). Having
already proved that ||8,|| = Op(1), given € > 0 we can take K such that

P(||8,]| < K) > 1— ¢ for every n, and focus on the set .7, N {||§] < K}.

In the limit, as n — oo, we have:
I, — T, the tangent cone of © at 0,

(Geyer, 1994);

Z, 2> Z ~ N(0,Fy);

R.(00 + 8,./\/n) L, 0 for any bounded sequence {0,.}
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by stochastic equicontinuity of R, (8);
n{M(8o + 8/y/n) — M(66)} = %JT{—FO + op(1)}8:
and
n&, {P (6o +3/v/n) —P(6o)} = vn&, {DP(8,) + op(1)}4.
All this implies that W, (6) 2 W (8) with
W(8) = {Z" — xk"DP(8,)}d — %6TF06,

and the convergence is uniform in 4, i.e. sup 5 ~qjs1<xy |Wn(8) — W(4)| i

0. Then
argmax W, (4) 5 argmax W(9),
Tn{lI8] <K} To
which implies that 8, 2> & (Z) as stated. O

We have 95 = {0 € R* : Ad = 0}, with A the {p1(p; + 1)/2 +
p2(p2 + 1)/2} x s matrix with rows Vh$(00)T and VhE(00)T. Let s; =
{p1(p1 +1)/2+ pa(ps +1)/2}. Then a § € F is of the form & = BT with
B an orthogonal (s — s1) X s matrix with rows orthogonal to those of A
and & € R~ free. So we can reparameterize the process 1W(d) above in

terms of o:

W (o) = W(BT8) = {27 — k"DP(8,)}BT3 — -3 BF,B’3,

1
2
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which is maximized by §(Z) = (BF¢B?)'B{Z — DP(6y)"k}, and then
8(Z) = BT8(Z). Since Z ~ N(0,F,), we have §(Z) ~ N(—(BF,B”)"'BDP(6,)” k, (BF,BT)1)

and then
0(Z) ~ N(—VDP(0,) 'k, V)
with V. = BT(BF¢B?)"'B. The explicit form of DP(6,) is derived in

Section 0.2.4.

0.2.4 Derivatives of constraints and smoothness penalties

The explicit forms of VA$(6) and VhD(6) can be derived as follows. Let
K., be the ¢ x s matrix that “extracts” c; from 6, that is, ¢, = K, 0.

Then we can write h{)(0) = 8" K JK. 6 — §;; and it follows that
Vhiy(0) = (KI JK.,+K{JK,,)6.

Similarly, if Kq, is the ¢ x s matrix such that dj, = Kgq, 0, we have h1)(0) =

6"KY JKq,60 — 6 and then
Vhi(0) = (Kj JKq,+K] JKq,)6.

The explicit form of DP(0) is derived in a similar way. Using extraction

matrices K as above and the smoothing matrix €2 derived in Section 0.1.3,
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we have P(8) = (P(u), Y0, P(6). P(v), Y02, P(1h))" with

P(H) = COTQCO

= 0"K] OK.,#0,

> P(¢,) = tr(C'QC)
= vecCT(I,, ® Q) vecC

= BTngcC(Ipl ® Q>KVGCC707

P(v) = dlQd,

= 0"K] 9Kq,9,
and
p2
P(y;) = tr(D"QD)
k=1
= eTKxj;ecD(I[Q ® Q)KVQCDH'
Then
20"K! QK.
20"KT (1, @ Q)Kyecc
DP(6) = o

260"K] QOKq,

20TK‘7;€CD (Ip2 ® Q)KvecD
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0.3 Simulations

For the simulations reported in the paper, we used the following choices of
smoothing parameters €,, = (£,,1, {2, Engy Ena)- For five-knot spline bases we
took &x5 = (1074,1075,1074,107%), &1 = (1075,1072,107%,1075), €ypp =
(1077,1075,1077,1077) and &, = (1077,107%,107%,1078). For ten-knot
spline bases we took €5, = (1074,107°,1074,107%), &€, = (107%,107°,1074,107%),
€00 = (1074,107°,107°,107°) and &,,, = (107°,107%,107%,107%). The
same &s were used for both rates r.

Estimation errors for ten-knot spline estimators and variance proportion
a = .75 are reported in Table 1, for five-knot spline estimators and a = .60
in Table 2, and for ten-knot spline estimators and o = .60 in Table 3.

True finite-sample standard deviations of the elements of S along
with median and median absolute errors of their asymptotic estimators are
given in Table 4 for estimators based on ten-knot splines and models with
variance proportion a = .75; for five-knot splines and o = .60 they are
given in Table 5, and for ten-knot splines and o = .60 in Table 6.

Figures 1-6 are plots of functional estimators based on five-knot splines,
for variance proportion a = .75, rates 10 and 30, and sample sizes between
50 to 200. In each figure, the six rows correspond to [i, QASl, &52, v, zAﬂl and

@2, respectively; the first column shows the 300 simulated estimators, the
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second column shows the pointwise mean of the estimators (solid line) and
the true functions (dashed line), and the third column shows the pointwise

standard deviation of the estimators.

0.4 Application: online auction data

The plots of functional estimators obtained for different smoothing para-
meters are shown in Figures 7 and 8. They suggest the choices & = &, =
£, =107* and &; = 107° as reasonable values for the parameters, but other
choices are clearly possible since the estimators do not change much for
nearby ¢&s.

Normal probability plots of the estimated component scores ;s and
;s are shown in Figure 9 and of the residuals 7);; in Figure 10. The latter
shows tails somewhat heavier than Gaussian. Figure 11 shows root mean

squared errors of the 7),;s for each ¢; no gross outliers are evident.
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r =10 r =30

Parameter n=50 n=100 n =200 n=50 n=100 n =200

Yuw,11 .054 .031 .023 .037 .026 .018
w21 .056 .038 .023 .027 .017 .012
Y, 12 .036 .023 .014 021 .014 .010
Yuw,22 .022 .018 .013 .014 .009 .006
I 122 .087 .068 .097 077 .063

v 126 .098 .086 163 144 136
N 735 516 .359 430 .263 175
o) .883 723 .566 .585 391 279
(N 219 .259 .233 139 105 .062
Uy 212 238 .206 .146 .108 .068
Oul .068 .057 .051 .039 .028 .020
Ou2 067 .070 .060 .034 .024 .018
Ol .069 .056 .091 .062 .047 .036
Ov2 .062 .093 .093 037 .033 .018
oy .057 .084 .076 013 .021 .010
U;1 218 184 .170 154 139 134
U2 163 .140 122 118 .104 .097
Vi1 167 157 .149 .168 151 143
Vi 150 152 129 105 .085 .072

Table 1: Simulation Results. Root mean squared errors of estimators based on ten-knot
B-splines under different baseline rates r and sampling sizes n, for model with variance

proportion o = .75.
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r =10 r =30

Parameter n=50 n=100 n =200 n=50 n=100 n =200

Yuw,11 .063 .041 .037 .047 .032 .020
w21 .058 .050 .046 .041 .035 .028
Y, 12 057 .046 .039 .039 .032 .025
Yuw,22 .044 .030 .024 .030 .021 .012
I 123 .100 .089 .093 .081 .070

v 113 .095 .081 145 130 126
N .900 773 .688 672 539 414
o) 957 .849 719 719 .565 433
(N 510 .351 .295 418 311 163
Uy 507 325 .241 419 312 .164
Oul .089 .047 .032 .035 .023 .019
Ou2 .042 .031 .026 .030 .022 .016
Ol .058 .041 .062 .054 .041 .032
Ov2 .090 .078 .080 .047 .033 .023
oy .068 .063 .069 012 .011 .011
U;1 237 204 189 174 .156 143
U2 194 178 .166 .158 144 129
Vi1 .259 193 177 229 .190 .149
Vi 276 205 175 225 174 .109

Table 2: Simulation Results. Root mean squared errors of estimators based on five-knot
B-splines under different baseline rates r and sampling sizes n, for model with variance

proportion a = .60.
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r =10 r =30

Parameter n=50 n=100 n =200 n=50 n=100 n =200

Yuw,11 .061 .041 .036 .047 .033 .020
w21 .059 .051 .046 .042 .035 .028
Y, 12 .055 .046 .040 .040 .032 .025
Yuw,22 .042 .030 .025 .030 .021 013
I 120 .087 .065 .095 .076 .062

v 114 .092 077 145 129 126
N 902 775 707 678 .543 416
o) .958 .848 746 124 .568 438
(N 507 .349 .296 418 312 163
Uy 494 .326 .250 420 313 .164
Oul 072 .048 .030 .036 .024 .019
Ou2 .043 .032 .027 .029 .021 .015
Ol .058 .042 .034 .055 .041 .032
Ov2 .090 .079 .084 .047 .033 .023
oy .069 .068 .072 013 .011 .011
U;1 .230 204 191 175 156 143
U2 194 179 .169 .158 144 130
Vi1 .258 189 167 230 .190 .149
Vi 275 .205 176 225 174 .109

Table 3: Simulation Results. Root mean squared errors of estimators based on ten-knot
B-splines under different baseline rates r and sampling sizes n, for model with variance

proportion a = .60.
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r=10

n = 100 n = 200 n = 400

Parameter True Med MAE True Med MAE True Med MAE

Sl 31 135 104 23 .33 .10 17 18 .01
Yuw,21 38 149 111 .23 A1 17 .15 .22 .07
Yuw,12 .23 .87 .63 A7 .25 .08 .10 13 .03
Suv.22 18 .64 .46 12 17 .05 13 .09 .04
r =30
Vw11 .25 .87 .62 18 .26 .07 12 14 .02
Y21 A7 .65 A7 12 .18 .07 .08 .10 .03
Yuv 12 14 49 .35 .10 .14 .04 .06 .08 .02
w22 .09 .36 27 .06 A1 .04 .04 .06 .01

Table 4: Simulation Results. True standard deviations and median and median absolute
errors of estimated asymptotic standard deviations (x10) of estimators under different
baseline rates r and sampling sizes n, for estimators based on ten-knot B-splines and

variance proportion o« = .75
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r=10

n = 100 n = 200 n = 400

Parameter True Med MAE True Med MAE True Med MAE

Yuw,11 .39 7 .38 .36 .35 A1 .23 .19 .07
Yuw,21 .50 a7 27 46 48 14 .36 .32 A1
Yuw,12 .46 .65 .20 .39 .39 12 .32 .26 .10
Suv.22 23 46 .23 20 23 .05 18 .13 .06
r =30
Vw11 .32 45 13 .20 21 .02 12 12 .01
Y21 .35 .54 .19 .28 .29 .07 .18 18 .03
Yuv 12 .32 49 A7 .25 .26 .06 A7 A7 .03
w22 18 .26 .08 A1 13 .02 .07 .08 .01

Table 5: Simulation Results. True standard deviations and median and median absolute
errors of estimated asymptotic standard deviations (x10) of estimators under different
baseline rates r and sampling sizes n, for estimators based on five-knot B-splines and

variance proportion o = .60
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r=10

n = 100 n = 200 n = 400

Parameter True Med MAE True Med MAE True Med MAE

Sl 39 164 124 33 44 11 23 21 .06
Yuw,21 b1 156 1.05 46 .53 15 .36 .34 .10
Yuw,12 46 1.35 .89 40 45 13 .32 .28 .10
Yuw,22 .23 .99 .76 .20 27 .08 .18 .14 .06
r =30
Vw11 .32 .94 .62 .20 .25 .05 12 13 .01
Y21 35 110 .74 .28 .34 .07 .18 .20 .04
Yuv 12 .32 .98 .66 .25 .31 .07 A7 .18 .03
w22 18 .53 .35 A1 .15 .04 .07 .08 .01

Table 6: Simulation Results. True standard deviations and median and median absolute
errors of estimated asymptotic standard deviations (x10) of estimators under different
baseline rates r and sampling sizes n, for estimators based on ten-knot B-splines and

variance proportion o = .60
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Figure 1: Simulation Results. Plots for » = 10 and n = 50.
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Figure 2: Simulation Results. Plots for » = 10 and n = 100.
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Figure 3: Simulation Results. Plots for » = 10 and n = 200.



DANIEL GERVINI AND TYLER J. BAUR

0.2
0
0 0.5 1
1
05 \/\ﬁ/
0
0 0.5 1

o
o [

0

0 0.5 1
0.2
0

0 05 1
0.2

01 m
0

0 05 1
0.2

. \/\/
0

0 05 1

Figure 4: Simulation Results. Plots for » = 30 and n = 50.
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Figure 5: Simulation Results. Plots for » = 30 and n = 100.



DANIEL GERVINI AND TYLER J. BAUR

Iy

[

I

[uy

0.2
0.1 \/\/\W*/J/
. 0
0 0.5 1 0 0.5 1 0 0.5
0.4
0.2 \WJ
0
0 05 1 0 0.5 1 0 0.5
1
0.5 w
0
0 0.5
0.08
0.06
0.04
-5 -5 0.02
0 05 1 0 0.5 1 0 0.5
2 2 0.1
- m
0
0 05 1 0 0.5 1 0 05
2 0.2

[y

5
|

0 0.5

=
o

0.5

Figure 6: Simulation Results. Plots for » = 30 and n = 200.
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muX
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Figure 7: Online Auction Data. Estimators of mean and components of X process for

various smoothing parameters &.
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Figure 8: Online Auction Data. Estimators of mean and components of Y process for

various smoothing parameters &.
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Figure 9: Online Auction Data. Normal probability plots of the estimated component

scores of (a) the bid-time process and (b) the bid-price process.



0.4. APPLICATION: ONLINE AUCTION DATA
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Figure 10: Online Auction Data. Normal probability plot of the residuals of fitted bid

prices.
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Figure 11: Online Auction Data. Boxplot of root mean squared errors of individual bid

price trajectories.
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